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Abstract— The FPGA (Field Programmable Gate Array) tech-
nology is expected to play a key role in the development of
Software Defined Radio (SDR) platforms. To this aim, leveraging
the nascent High-Level Synthesis (HLS) tools, a design flow
from high-level specifications to Register-Transfer Level (RTL)
description can be thought. Based on such a flow, this paper
describes the Design Space Exploration (DSE) that can be
achieved using loop optimizations. The mainstream objective is
to demonstrate the compile-time flexibility of an architecture
when associated with a reconfigurable platform. Throughout both
IEEE 802.15.4 and IEEE 802.11g waveform examples, we show
how the FPGA resources can be tuned according to a targeted
throughput.

Keywords— Software Defined Radio (SDR), Design Space
Exploration, Field Programmable Gate Array (FPGA), High-
Level Synthesis (HLS).

I. INTRODUCTION

Software Defined Radio (SDR) is an emergent technology

that aims at being the hardware support of future smart radios

that have the capability to change their configuration according

to the environmental conditions [1]. The main feature of

an SDR is its flexibility and fast prototyping capabilities

from an high-level description. Thus, one of the mainstream

approaches to specify an SDR platform consists in implement-

ing the processing on Digital Signal Processors (DSP) [2].

However, DSP also suffer from important power consumption

and limited performance as compared to specialized hardware

fabrics. Thus, Field Programmable Gate Array (FPGA) turned

out to be an interesting alternative to DSP. FPGA-based SDR

is an old paradigm [3] offering a good tradeoff between

reconfiguration capability and power consumption.

Our study relies on a novel design flow for the rapid

prototyping of FPGA-based SDR applications [4]. This flow

leverages High-Level Synthesis (HLS) principles and tools

to generate Register-Transfer Level (RTL) description from

high-level specifications. Its entry point is a Domain-Specific

Language (DSL) [5] which partly handles the complexity

of programming an FPGA. It also considers heterogeneous

description of signal processing IPs (Intellectual Properties)

and integrates SDR features.

Based on this flow, this paper addresses the rapid prototyp-

ing of various designs of a given waveform, an architecture

exploration is performed showing the flexibility feature of such

a design flow. Indeed, HLS tools and their associated compilers

give a special emphasis to the timing, area or throughput

constraints and make it easy to explore a set of solution via

Design Space Exploration (DSE) [6][7] considering a given

architecture.

The main contributions of this article are:

- To insert compile-time flexibility feature in the design

flow,

- To analyse throughput/area tradeoff using HLS tools,

- To explore different designs for two useful standards:

IEEE 802.15.4 and IEEE 802.11g.

The paper is organized as follows. A discussion over related

works is given in Section II. The FPGA-based SDR design

flow is introduced in Section III. Section IV details the DSE

based on the throughput/area tradeoff and the implementation

of the flexibility capabilities in the design flow. A DSE

validation is given in Section V for architectures based on

IEEE 802.15.4 and IEEE 802.11g standards. Finally, conclu-

sions and perspectives are drawn in Section VI.

II. RELATED WORKS

Several proposals attempted to meet the flexibility require-

ments of an SDR by using software-based approaches. Indeed,

software gives an abstraction level that enables more con-

trol over the hardware designing flow. Two complementary

approaches have been proposed namely, the SDR-specific

languages to design the waveform [8][9][10] and the SDR

middleware to provide the building environment [11][12].

They both take advantage of the abstraction level given by

the software.

Our proposal aims at keeping a higher level of specification

while addressing FPGA-based SDR. To this end, HLS turns

out to be a good candidate to achieve such a high level

of abstraction and a specific language has been proposed to

describe the waveform. Just like in these related works, the

compile-time flexibility is achieved by the fast prototyping

capability which is enabled in our proposal by the HLS.

III. INTRODUCTION TO FPGA-SDR DESIGN FLOW

The design flow used in this work is shown in Fig. 1.

The flow relies on three main steps: a Domain Specific
Language (DSL) for the high-level waveform description, the

Waveform Compiler that converts the high-level description to

an RTL description and finally the Platform Integration step

to program the design on a dedicated hardware platform.

A DSL is a language that, through its syntax, remains specific
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Fig. 1. FPGA-SDR design flow.

to an application domain [5]. It is a tool that simplifies

and helps the description of the application and is very less

used in the field of telecommunications. In our FPGA-SDR

context, the definition of a DSL turned out to be useful to

the RTL description of a SDR application in the sense that

it adds higher-level information about it. This information

aims to cover a broad range of features going from the

operating frequencies to specific information of the integration

platform. The waveform description language (i.e. the DSL)

is based on a library of signal processing IPs and helps

the hardware generation of different architectures related to

telecommunications standards.

The key advantages of using the proposed DSL are an efficient

low-level (RTL) control enabling a smart data-path associated

to a given waveform, the heterogeneous nature of the IPs and

the management of the design constraints.

The Waveform Compiler main task is the assembly of the

different IPs (or blocks) while generating a control logic and

an adequate communication infrastructure. This RTL merging
step comes in addition to the generation of bidirectional

control logic (Control unit) which provides and receives a set

of signals (enable, clock, reset, . . . ) useful to the merging of

the IPs [4].

The origin of these IP can be diverse. The recent development

of HLS tools allows the consideration of IP described in

C/C++ languages. This leads to a certain level of abstraction

compared to the VHDL or Verilog languages dedicated to

the hardware architecture. The heterogeneous nature thus

conferred on the library aims to cover many physical layers but

also to benefit from previous works. We have experience with

one of those HLS tools and the work that we are depicting in

this paper is partly based on it. CatapultC [13] is a language

and tool from Calypto which produces RTL description from

C-like application specification.

The DSL is responsible to properly execute these tasks.

While a complete description of the DSL has been introduced

in [4], this paper introduces the management of the Design
Constraints that the DSL must deal with. Global and/or

local constraints are described in the DSL and the Waveform
Compiler will generate the design which fits the best to the

constraints.

IV. THROUGHPUT/AREA OPTIMIZATION IN AN

FPGA-SDR DESIGN FLOW

A. Design Optimization Strategy

The Design Constraints block allocates local constraints to

each IP according to their nature (C/C++, VHDL) and their

performance. The management of this block is detailed in

Fig. 2. The allocation is performed with the throughput being

the priority constraint. That means that the Design Constraints
block will choose, for each IP, the lowest area that respects the

targeted throughput. The choice of the allocation algorithm is

not addressed in detail in this paper, future work is to define

global allocation strategies.

The latency is not an input constraint. However, after the

throughput/area exploration was performed, the resulting IPs

shouldn’t have a too large latency in order to insure a ”correct

by construction” implementation of the global design. To this

aim, if we consider the multi-rate conditions of Fig. 2 where

the IP x has an input frequency finx and output frequency

foutx , the latency of the IP Latencyx (in number of cycles)

must respect:

Latencyx <
fclk

max(finx , foutx)
, (1)

with fclk the frequency clock of the FPGA.

Based on this allocation, directives will be communicated

to the Waveform Compiler step. Theses instructions depend on

the nature of the block:

VHDL For an RTL description, the compiler provides an IP

number in order to load the IP which fits the best

the constraints;

C/C++ For a C/C++ description, the compiler generates a

Tool Command Language (.tcl) script which inter-

faces the HLS tool and then provides an RTL IP

with the expected specifications.

Fig. 2. Simplified design constraint management scheme based on through-
put/area tradeoff.
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The Waveform Compiler of the DSL generates .tcl scripts to

control the CatapultC software. Using .tcl will help for rapid

prototyping with the automation of the transformation.

B. Processing Block Generation

The objective is to study the effect of the optimization

tools provided by CatapultC. To illustrate and test the RTL

generation of a processing block, we use the correlation bench

function (named CorrBench) of an IEEE 802.15.4 Zigbee

receiver. The full receiver is detailed in Fig. 7. This CorrBench
function is a set of 16 FIR (Finite Impulse Response) filters

with 16 taps, each filter performing the correlation between

the received data and a code. A filter consists of 2 loops:

Shift that shifts the data of a FIFO register and buffers the

new input data,

MAC that performs a multiplication and accumulation to

compute the output of the filter.

This function is optimized using the CatapultC tools and the

resource estimation of the resulting RTL designs are estimated

using both CatapultC area estimation and ISE complexity

estimation.

Design Exploration using HLS Tool

Several optimizations are made available on a typical HLS

tool [13]. These tools make it possible to optimize the design

at the area or throughput level. Two of the design optimizations

from CatapultC that we use are loop pipelining and loop

unrolling. Loop pipelining provides a way to increase the

throughput of a loop (or decreasing its overall latency) by

initiating the (i+1)-th iteration of the loop before the i-

th iteration has completed. The number of cycles between

iterations of the loop is called the initiation interval (II). The

less the II is the more the pipeline is. Loop unrolling reduces

the total loop iterations by duplicating (with a factor U) the

loop bodies. The number of loop iterations is then reduced

but care must be taken to the data dependencies when using

this technique. Loop unrolling impacts the design latency and

consequently the throughput.

Area Estimation using HLS Tool

The objective of the area estimation is to check the influence

of loop optimization parameters. This will help the allocation

algorithm to set these parameters according to the design

constraints.

Fig. 3 gives the area score provided by CataplutC versus the

throughput for different designs. The throughput refers to how

often, in clock cycles, a block can complete its processing [13].

The different designs are obtained by loop pipelining and loop

unrolling the filters of the CorrBench function. The results

show the throughput/area tradeoff that could be achieved

using the HLS tools. Without optimization, the throughput

is 32 cycles (because of the 2 loops with 16 iterations of

the CorrBench function). By using loop optimizations, the

throughput in cycles can decrease (thus increase in frequency)

down to 2 cycles while increasing the area by a factor of 1.6.

Going into details, Fig. 3 shows that, for a given II of the

Fig. 3. Coarse estimation: throughput/area tradeoff of the CorrBench block.

pipelining, the more unrolled the loop is, the higher the area

is and the lower the throughput is. It is possible to see from

these curves that low throughput in cycles (high in frequency)

is achieved when the design is pipelined to a maximum (II=1).

These results provide a coarse estimation of the design com-

plexity according to different optimization techniques.

Resource Estimation using Synthesis Tool

The fine estimation is computed using ISE synthesis tool

targeting a Virtex 6 FPGA. Synthesis results are detailed in

Fig. 4 giving the estimation of the Look-Up Table (LUT), Flip-

Flop (FF) registers and slices utilization. Results show that the

number of LUT increases with the pipeline and the unrolling

factor (U). Pipelining the design increases the number of FF

registers while the loop unrolling has no influence on it. The

link between the loop optimizations and the number of slices

is more complex to draw. Indeed, the Virtex 6 slices are

composed of 4 LUT and 8 FF registers and the ISE synthesis

optimizes the slices interconnections and their occupations.

It is possible to note that the LUT estimation follows the

CatapultC area estimation as a reference.

C. Implementation in the FPGA-SDR design flow

The proposed design exploration is integrated in the pro-

posed design flow in order to achieve a compile-time recon-

figuration of the waveforms. To this end, willing to include

flexibility requirements, a flexible block is declared with the

key word adaptive in the DSL source code. This declaration

highlights in the description the flexible nature of the block and

enables compile-time flexibility through the DSE feature that

can be afforded through the HLS tools as previously shown.

DSE allows to optimize away a given architecture depending

on some throughput, area or energy constraints.The key word

constraint is used to set the constraints.

As an illustration, Fig. 5 introduces the DSL specification of

the CorrBench block, it is declared adaptive with a throughput

constraint. Thus, different solutions of the block could be

quickly explored by tuning the constraints.
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Fig. 4. Fine estimation: throughput/area tradeoff of the CorrBench block.

The waveform compiler has been defined to parse the DSL-

based specification and generate all the required artifacts and

source code. For example, in the description of CorrBench
block, the key word processing is used to specify the field

of the IEEE 802.15.4 frame that the block is intended to

process.This information is parsed to generate the control unit.

The proposed methodology interacts with several synthesis

tools thereby, it leverages the .tcl scripting language as an entry

point toward these tools. As all operations are commands, it

allows automation and flexibility in the use of applications. In

the case of HLS software, it helps for rapid prototyping.

Thus, the compiler generates .tcl scripts to interact essentially

with the HLS tools and the Xilinx Synthesis tools. An example

of such a .tcl file is detailed in Fig. 6. It controls the CatapultC

software and performs the generation of a VHDL file of the

desired CorrBench function.

To deal with the Design Constraint, the compiler has included

. . . /*Specification of other blocks*/

31 /∗ A d a p t i v e Decoder b l o c k s p e c i f i c a t i o n ∗ /
32 c o r r b e n c h i : a d a p t i v e i p CorrBench p r o c e s s i n g SFD
33 PHR DATA from d e c i m a t i o n i{
34 read r x c h i p s on port c h i p c o r r at f c ;
35 w r i t e symbol rx on port s y m b o l c o r r at f s ;
36 s y n t h e s i s # c a t a p u l t c ;
37 c o n s t r a i n t t h r o u g h p u t N;
38 }

Fig. 5. DSL-based specification of the CorrBench block.

some commands into the .tcl files in order set the desired

loop optimizations. In Fig. 6, the MAC loop of the CoorBench
function is unrolled by 5 and the 2 loops (Shift and MAC) are

pipelined with II=1.

V. DESIGN SPACE EXPLORATION OF RADIO TRANSCEIVER

ARCHITECTURES

FPGA-SDR being the overall objective of the study, two

waveforms are available in the flow, namely the IEEE 802.15.4

and IEEE 802.11g transceivers. This section details the DSE

of both the IEEE 802.15.4 receiver and the IEEE 802.11g

transmitter and the experimentation on the Nutaq platform [14]

as a validation of the design flow.

A. DSE of an IEEE 802.15.4 receiver

The DSE has been validated on a complete IEEE 802.15.4

receiver [15]. Fig. 7 describes the different blocks of the

receiver. Each block is associated with an IP file from the

library that will be used for the RTL merging step:

- 3 blocks (Delay, Decim, Demod) are designed with a

hand-coded RTL IP without DSE (due to their small size),

- 2 blocks (RxFilter, Synchro) are chosen from a set of 3

hand-coded RTL IPs allowing DSE,

- 1 block (CorrBench) is generated using the HLS flow

with a .tcl script instructions performing the DSE.

We explored manually some designs that could be achieved

by combining the available IPs and the proposed design flow.

The exploration is performed manually in the sense that the

design constraints are set in the DSL, but each RTL description

is generated automatically. Synthesis results are detailed in

Fig. 8 giving the estimation of the LUT, FF registers and slices

utilization for 18 designs. The CorrBench block is the main

knob and 6 designs per CorrBench design have been generated

by tuning parameters of the RxFilter and Synchro blocks.

The LUT and FF estimation shows the exploration that can

. . . % Lines setting the FPGA family, the clock, etc.
go analyze
directive set −DESIGN HIERARCHY CorrBench
go compile
directive set /core/main −PIPELINE INIT INTERVAL 1
directive set /core/main/MAC −UNROLL 5
go allocate
go extract

Fig. 6. Example of .tcl script generating RTL code with loop constraints.
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Fig. 8. Design Space Exploration of the Zigbee 802.15.4 receiver architecture.
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Fig. 7. Zigbee receiver blocks and the associated IP from the library.

be achieved using the proposed design flow. The scale of the

LUT number can vary from 1 to 1.7 and from 1 to 1.9 for the

FF number. The link between the loop optimizations and the

number of slices is more complex to draws as early explained.

B. DSE of an IEEE 801.11g transmitter

The DSE has been also been validated on a IEEE 802.11.g

transmitter [16] based on OFDM modulation. The transmitter

includes QAM symbols mapping, IFFT and cyclic prefix

insertion. The IFFT is performed on 256 points and uses the

radix-4 algorithm.

CatapultC ressource estimations are shown in Fig. 9 for 7

designs. The IFFT block being the main knob where DSE

could be applied, only this block is optimized using HLS tools.

Results show the area can be tuned with a factor of 2.7 while

the throughput varies with a factor of 4.8.

C. Platform Experimentation

Thus, willing at validating the proposed design flow from

high-level specifications to FPGA bitstream generation, we

use the Nutaq Perseus 6010 [14]. It is based on an FPGA

Virtex-6 device. In addition, a radio front end Radio420x

daughter board is connected to the mother board to modulate

or demodulate prior or after transmission in the channel.

Feedbacks from the development on the Nutaq platform and

initial implementation results were published in [17].

An IEEE 802.15.4 transmitter design and one of the ex-

plored IEEE 802.11g transmitter designs were prototyped

using the FPGA-SDR design flow. Agilent VSA software is

used in Fig. 10 to analyse the signal. It shows the received

RF spectrum, the baseband waveforms and the demodulated

constellation, thus validating the IEEE 802.15.4 waveform.
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Fig. 9. Architecture exploration for IEEE 802.11g transmitter.

Fig. 11 shows the spectrum of the OFDM based signal with

a 20 MHz bandwidth.

VI. CONCLUSIONS

This paper presents a Design Space Exploration of two

architectures for implementing wireless physical-layer wave-

forms. The exploration relies upon a design flow that includes

an high-level synthesis and its associated design optimizations.

Results show the tradeoff that could be achieved between the

throughput and the FPGA resource utilization. The design flow

is managed by a Domain-Specific Language (DSL) which in-

tegrates SDR features and the constraints management. Future

work is to include an algorithm in the DSL compiler that will

allocate resources to the different blocks according to global

specifications.
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