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Dynamic Screening: Accelerating First-Order

Algorithms for the Lasso and Group-Lasso

Antoine Bonnefoy, Valentin Emiya, Liva Ralaivola, Rémi Gribonval.

Abstract

Recent computational strategies based on screening tests have been proposed to accelerate algorithms addressing

penalized sparse regression problems such as the Lasso. Such approaches build upon the idea that it is worth

dedicating some small computational effort to locate inactive atoms and remove them from the dictionary in a

preprocessing stage so that the regression algorithm working with a smaller dictionary will then converge faster

to the solution of the initial problem. We believe that there is an even more efficient way to screen the dictionary

and obtain a greater acceleration: inside each iteration of the regression algorithm, one may take advantage of

the algorithm computations to obtain a new screening test for free with increasing screening effects along the

iterations. The dictionary is henceforth dynamically screened instead of being screened statically, once and for all,

before the first iteration. We formalize this dynamic screening principle in a general algorithmic scheme and apply

it by embedding inside a number of first-order algorithms adapted existing screening tests to solve the Lasso or

new screening tests to solve the Group-Lasso. Computational gains are assessed in a large set of experiments on

synthetic data as well as real-world sounds and images. They show both the screening efficiency and the gain in

terms running times.

Index Terms

Screening test, Dynamic screening, Lasso, Group-Lasso, Iterative Soft Thresholding, Sparsity.

I. INTRODUCTION

In this paper, we focus on the numerical solution of optimization problems that consist in minimizing

the sum of an ℓ2-fitting term and a sparsity-inducing regularization term. Such problems are of the form:

P(λ,Ω,D,y) : x̃ , argmin
x

1

2
‖Dx− y‖22 + λΩ(x), (1)

where y ∈ R
N is an observation; D ∈ R

N×K with N ≤ K is a matrix called dictionary; Ω : RK → R+

is a convex sparsity-inducing regularization function; and λ > 0 is a parameter that governs the tradeoff

between data fidelity and regularization. Various convex and non-smooth functions Ω may induce the

sparsity of the solution x̃. Here, we consider two instances of problem (1), the Lasso [1] and the Group-

Lasso [2], which differ from each other in the choice of the regularization Ω. A key challenge is to

handle (1) when both N and K may be large, which occurs in many real-world applications including

denoising [3], inpainting [4] or classification [5]. Algorithms relying on first-order information only, i.e.

gradient-based procedures [6], [7], [8], [9], are particularly suited to solve these problems, as second-

order based methods —e.g. using the Hessian— imply too computationally demanding iterations. In the

ℓ2 data-fitting case the gradient relies on the application of the operator D and its transpose DT . We use

this feature to define first order algorithms as those based on the application of D and DT . The definition

extends to primal-dual algorithm [10], [11].
Accelerating these algorithms remains challenging: even though they provably have fast convergence [12],

[6], the multiplications by D and DT in the optimization process are a bottleneck in their computational

efficiency, which is thus governed by the dictionary size. We are interested in the general case where no

fast transform is associated with D. This occurs for instance with exemplar-based or learned dictionaries.

Such accelerations are even more needed during the process of learning high-dimensional dictionaries,

which requires solving many problems of the form (1).

This work was supported by Agence Nationale de la Recherche (ANR), project GRETA 12-BS02-004-01. R.G. acknowledges funding by

the European Research Council within the PLEASE project under grant ERC-StG-2011-277906.
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Algorithm 1

Static screening strategy

D0 ← Screen D

loop t

xt+1 ←Update xt using D0

end loop

Algorithm 2

Dynamic screening strategy

D0 ← D

loop t

xt+1 ← Update xt using Dt

Dt+1 ← Screen Dt using xt+1

end loop

Screening Tests: The convexity of the objective function suggests to use the theory of convex dual-

ity [13] to understand and solve such problems. In this context, strategies based on screening tests [14],

[15], [16], [17], [18], [19] have recently been proposed to reduce the computational cost by considering

properties of the dual optimum. Given that the sparsity-inducing regularization Ω entails an optimum x̃

that may contain many zeros, a screening test is a method aimed at locating a subset of such zeros. It is

formally defined as follows:

Definition 1 (Screening test). Given problem P(λ,Ω,D,y) with solution x̃, a boolean-valued function

T : [1 . . . K]→ {0, 1} is a screening test if and only if:

∀i ∈ [1 . . . K], T (i) = 1⇒ x̃(i) = 0. (2)

We assume that solution x̃ is unique —e.g., it is true with probability one for the Lasso if D is drawn

from a continuous distribution [20]. In general, a screening test cannot detect all zeros in x̃, that is why

relation (2) is not an equivalence. An efficient screening test locates many zeros among those of x̃. From

a screening test T a screened dictionary D0 = DT is defined, where the matrix T removes from D the

inactive atoms corresponding to the zeros located by the screening test T . T is built by removing, from the

K×K identity matrix, the columns corresponding to screened atoms i.e. columns indexed by i ∈ [1 . . . K]
whenever verifies T (i) = 1. Property (2) implies that x̃0, the solution of problem P(λ,Ω,D0,y), is exactly

the same as x̃ the solution of P(λ,Ω,D,y) up to inserting zeros at the locations of the removed atoms:

x̃ = Tx̃0. Any optimization procedure solving problem P(λ,Ω,D0,y) with the screened dictionary D0

therefore computes the solution of P(λ,Ω,D,y) at a lower computational cost. Algorithm 1 depicts the

commonly used strategy [15], [18] to obtain an algorithmic acceleration using a screening test; it rests

upon two steps: i) locate some zeros of x̃ thanks to a screening test and construct the screened dictionary

D0 and ii) solve P(λ,Ω,D0,y) using the smaller dictionary D0.

Dynamic Screening: We propose a new screening principle called dynamic screening in order to

reduce even more the computational cost of first-order algorithms. We take the aforementioned concept of

screening test one step further, and improve existing screening tests by embedding them in the iterations

of first-order algorithms. We take advantage of the computations made during the optimization procedure

to perform a new screening test at each iteration with a negligible computational overhead, and we

consequently dynamically reduce the size of D. For a schematic comparison, the existing static screening

and the proposed dynamic screening are sketched in Algorithms 1 and 2, respectively. One may observe

that with the dynamic screening strategy, the dictionary Dt used at each iteration t is possibly smaller

and smaller thanks to successive screenings.

Illustration: We now present a brief illustration of the dynamic screening principle in action, dedicated

to the impatient reader who wishes to get a good grasp of the approach without having to enter the

mathematics in too much detail. The dynamic screening principle is illustrated in Figure 1 in the particular

case of the combined use of ISTA [8] and of a new, dynamic version of the SAFE screening test [15]

to solve the Lasso problem, which is (1) with Ω(x) = ‖x‖1. The screening effect is illustrated through

the evolution of the size of the dictionary, i.e., the number of atoms remaining in the screened dictionary

Dt. In this example the observation y and all the K = 50000 atoms are vectors drawn uniformly and

independently on the unit sphere in dimension N = 5000 of D, and we set λ = 0.75×
∥

∥DTy
∥

∥

∞
. Here,
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Figure 1: Size of the dictionary Dt (number of atoms) as a function of the iteration t in a basic dynamic-

screening setting, starting with a dictionary with K = 5000 atoms.

the actual screening begins to have an effect at iteration t = 20. In about ten iterations, the dictionary

is dynamically screened down to 5% of its initial size and the computational cost of each iteration gets

lower and lower. Then, the last iterations are performed with a reduced computational cost. Consequently,

the total running time equals 4.6 seconds while it is 11.8 seconds if no screening is used. One may also

observe that the screening test is inefficient in the first 20 iterations. In particular, the dynamic screening

at the very first iteration is strictly equivalent to the state-of-the-art (static) screening. Static screening

would have been of no use in this case.

Contributions: This paper is an extended version of [21]. Here we propose new screening tests for

the Group-Lasso and give an unified formulation of the dynamic screening principle for both Lasso and

Group-Lasso, which improves screening tests for both problems. The algorithmic contributions and related

theoretical results are introduced in Section II. First, the dynamic screening principle is formalized in a

general algorithmic scheme (Algorithm 3) and its convergence is established (Theorem 1). Then, we

show how to instantiate this scheme for several first-order algorithms (Section II-B1), as well as for the

two considered problems the Lasso and Group-Lasso (Sections II-B2 and II-B3). We adapt existing tests

to make them dynamic for the Lasso and propose new screening tests for the Group-Lasso. A turnkey

instance of the proposed approach is given in Section II-C. Finally, the computational complexity of the

dynamic screening scheme is detailed and discussed in Section II-D. In Section III, experiments show how

the dynamic screening principle significantly reduces the computational cost of first-order optimization

algorithms for a large range of problem settings and algorithms. We conclude this paper by a discussion

in Section IV. All proofs are given in Appendix.

II. GENERALIZED DYNAMIC SCREENING

Notation and definitions: D , [d1, . . . ,dK ] ∈ R
N×K denotes a dictionary and Γ , {1, . . . , K}

denotes the set of integers indexing the columns, or atoms, of D. The i-th component of x is denoted by

x(i). For a given set I ⊂ Γ, |I| is the cardinal of I, Ic , Γ\I is the complement of I in Γ and D[I] ,

[di]i∈I denotes the sub-dictionary composed of the atoms indexed by elements of I. The notation extends

to vectors: x[I] , [x(i)]i∈I . Given two index sets I,J ⊂ Γ and a matrix M, M[I,J ] , [M(i, j)](i,j)∈I×J

denotes the sub-matrix of M obtained by selecting the rows and columns indexed by elements in I and

J , respectively. We denote primal variables vectors by x ∈ R
K and dual variables vectors by θ ∈ R

N . We

denote by [r]ba , max(min(r, b), a) the projection of r onto the segment [a, b]. Without loss of generality,
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the observation y and the atoms di are assumed to have unit ℓ2 norm. For any matrix M, ‖M‖ denotes

its spectral norm, i.e., its largest singular value.

A. Proposed general algorithm with dynamic screening

Dynamic screening is dedicated to accelerate the computation of the solution of problem (1). It is

presented here in a general way.

Let us consider a problem P(λ,Ω,D,y) as defined by eq. (1). First-order algorithms are iterative

optimization procedures that may be resorted to solving P(λ,Ω,D,y). Based only on applications of D

and DT , they build a sequence of iterates xt that converges, either in terms of objective values or the

iterate itself, to the solution of the problem. In the following, we use the update step function p(·) as a

generic notation to refer to any first-order algorithm. The optimization procedure might be formalized as

the update

(Xt,θt,αt)← p(Xt−1,θt−1,αt−1,D)

of several variables. Matrix Xt is composed of one or several columns that are primal variables and from

which one can extract xt; vector θt is an updated variable of the dual space R
N —in the sense of convex

duality (see II-B2 equation (5) for details); and αt is a list of updated auxiliary scalars in R.

Algorithm 3 makes explicit the use of the introduced notation p(·) in the general scheme of the dynamic

screening principle. The inputs are: the data that characterize problem P(λ,Ω,D,y); the update function

p(·) related to the first-order algorithm to be accelerated; an initialization X0; and a family of screening

tests {Tθ}θ∈RN in the sense1 of Definition 1. Iteration t begins with an update step at line 4. It is followed

by a screening stage in which a screening test Tθt
is computed using the dual point θt obtained during the

update. As shown at line 6, it enables to detect new inactive atoms and to update index set It that gathers

all atoms identified as inactive so far. This set is then used to screen the dictionary and the primal variables

at lines 7 and 8 using the screening matrix Id[Ic
t ,I

c
t−1]

—obtained by removing columns It−1 and rows It
from the K×K-identity matrix— and its transpose. Thanks to successive screenings, the dimension shared

by the primal variables and the dictionary is decreasing and the optimization update can be computed in

the reduced dimension |Ict |, at a lower computational cost. The acceleration is efficient because lines 6 to 8

have negligible computation impact, as shown in Section II-D and assessed experimentally in Section III.

Algorithm 3 General algorithm with dynamic screening

Require: D,y, λ,Ω,X0, screening test Tθ for any θ ∈ R
N and first-order update p(·).

1: D0 ← D, I0 ← ∅, t← 1, X̄0 ← X0

2: while stopping criteria on Xt do

3: ........................ Optimization Update ........................

4: (Xt,θt,αt)← p(X̄t−1,θt−1,αt−1,Dt−1)
5: ................................ Screening .................................

6: It ← {i ∈ Γ, Tθt
(i)} ∪ It−1

7: Dt ← Dt−1Id[Ic
t−1,I

c
t ]

8: X̄t ← Id[Ic
t ,I

c
t−1]

Xt

9: t← t+ 1
10: end while

11: return Xt

Since the optimization update at line 4 is performed in a reduced dimension, the iterates generated by the

algorithm with dynamic screening may differ from those of the base first-order algorithm. The following

1Algorithm 3 uses notation with screening tests indexed by a dual point θ however the proposed Algorithm 3 is valid in a more general

case for any screening test T that may be designed. We use the notation Tθ since in this paper —and in the literature— screening tests are

based on a dual point.
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results states that the proposed general algorithm with dynamic screening preserves the convergence to

the global minimum of problem (1).

Theorem 1. Let Ω be a convex and sparsifying regularization function and p(·) the update function of an

iterative algorithm. If p(·) is such that for any D,y, λ, the sequence of iterates given by p(·) converges

to the solution of P(λ,Ω,D,y), then, for any family of screening tests {Tθ}θ∈RN , the general algorithm

with dynamic screening (Algorithm 3) converges to the same global optimum of problem P(λ,Ω,D,y).

Proof. Since ∀θ ∈ R
N , Tθ is a screening test, problems P(λ,Ω,D,y) and P(λ,Ω,Dt,y) for all t ≥ 0

have the same solution. The sequence {It}t≥0 of located zeros at time t is inclusion-wise non-decreasing

and upper bounded by the set of zeros in x̃ the solution of P(λ,Ω,D,y), so the sequence converges

in a finite number of iterations t0. Then ∀t ≥ t0,Dt0 = Dt and the existing convergence proofs of the

first-order algorithm with update p(·) apply.

B. Instances of algorithm with dynamic screening

The general form of Algorithm 3 may be instantiated for various algorithms, problems and screening

tests. The general form with respect to first-order algorithms is instantiated for a number of possible

algorithms in Section II-B1. The algorithm may be applied to solve the Lasso and Group-Lasso problems

through the choice of the regularization Ω. Instances of screening tests Tθ associated to each problem are

described in Sections II-B2 and II-B3 respectively. Proofs are postponed to the appendices for readability

purposes.

1) First-order algorithm updates: The dynamic screening principle may accelerate many first-order

algorithms. Table I specifies how to use Algorithm 3 for several first-order algorithms, namely ISTA [8],

TwIST [22], SpaRSA [9], FISTA[6] and Chambolle-Pock [11]. This specification consists in defining the

primal variables Xt, the dual variable θt, the possible additional variables αt and the update p(·) used at

line 4.

Table I shows two important aspects of first-order algorithms: first, the notation is general and many

algorithms may be formulated in this way; second, every p(·) has a computational complexity in O(KN)
per iteration.

Table I makes use of proximal operators proxΩλ (x) , minz Ω (z) + 1
2λ
‖x− z‖22 that handle the non-

smoothness of the objective function introduced by the regularization Ω. Beyond the subsequent definitions

of the proximal operators for the Lasso (see eq. (4)) and the Group-Lasso (see eq. (13)), we refer the

interested reader to [7] for a full description of proximal methods.

2) Dynamic screening for the Lasso: Let us first recall the Lasso problem before giving the screening

tests Tθ that may be embedded in the corresponding optimization procedure.

a) The Lasso [1]: The Lasso problem uses the ℓ1-norm penalization to enforce a sparse solution.

The Lasso is exactly (1) using Ω(x) = ‖x‖1:

PLasso(λ,D,y) : argmin
x

1

2
‖Dx− y‖22 + λ ‖x‖1 . (3)

The proximal operator of the ℓ1-norm is the so-called soft-thresholding operator:

proxLasso
t (x) , sign(x)max(|x| − t, 0). (4)

Screening tests [15], [19], [18] rely on the dual formulation of the Lasso problem:

θ̃ , argmax
θ

1

2
‖y‖22 −

λ2

2

∥

∥

∥
θ − y

λ

∥

∥

∥

2

2
(5a)

s.t. ∀i ∈ Γ, |θTdi| ≤ 1. (5b)

A dual point θ ∈ R
N is said feasible for the Lasso if it complies with constraints (5b).
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Algorithm Nature of {Xt,αt} Optimization update

{Xt,θt} ← p(Xt−1,θt−1,αt−1,D)

ISTA [8] Xt , xt,αt , Lt

θt ← Dxt−1 − y

xt ← proxΩλ
Lt

(

xt−1 − 1

Lt
DT

θt

)

Lt is set with the backtracking rule see [6]

TwIST [22] Xt , [xt,xt−1],αt , ∅
θt ← Dxt−1 − y

xt ← (1− α)xt−2 + (α− β)xt−1 + β proxΩλ
(

xt−1 −DT
θt

)

SpaRSA [9] Xt , [xt],αt , Lt Same as ISTA except that Lt is set with the Brazilai-Borwein rule [9]

FISTA [6] Xt , [xt,ut],αt , (lt, Lt)

θt ← Dut−1 − y

xt ← proxΩλ/Lt

(

ut−1 − 1

Lt
DT

θt

)

lt ←
1+
√

1+4l2
t−1

2

ut ← xt + ( lt−1−1

lt
)(xt − xt−1)

Lt is set with the backtracking rule see [6]

Chambolle-Pock [11] Xt , [xt,ut],αt , (τt, σt)

θt ← 1

1+σt−1

(θt−1 + σt−1(Dut−1 − y))

xt ← proxΩλτt−1

(

xt−1 − τt−1D
T
θt

)

ϕt ← 1√
1+2γτt−1

τt ← ϕtτt−1;σt ← σt−1

ϕt

ut ← xt + ϕt(xt − xt−1)

Table I: Updates for first-order algorithms.

From the convex optimality conditions, solutions of the Lasso problem (3) and its dual (5), x̃ and θ̃

respectively, are necessarily linked by:

y = Dx̃+ λθ̃ and ∀i ∈ Γ,

{

|θ̃T
di| ≤ 1 if x̃(i) = 0,

|θ̃T
di| = 1 if x̃(i) 6= 0.

(6)

We define λ∗ ,
∥

∥DTy
∥

∥

∞
. If λ > λ∗, the solution is trivial and is derived from the most simple

screening test that may be designed, which screens out all atoms. Indeed, starting from the fact that

θ̃ = y/λ is the solution of the dual problem —it is feasible and maximizes (5a)—, we have ∀i, |dT
i θ̃| =

|yTdi|/λ ≤ λ∗/λ < 1 so that the optimality conditions impose that x̃(i) = 0. In other words, we can

screen the whole dictionary before entering the optimization procedure. In the following, we will focus

on the non-trivial case λ ∈ ]0, λ∗].
b) Screening tests for the Lasso: The screening tests presented here have been proposed initially

in the static perspective in [15], [19], [18]. They use relation (6) to locate some inactive atoms di for

which |dT
i θ̃| < 1. The quantity is not directly accessible as the optimal is not known, thus the base

concept of screening test is to geometrically construct a region R that is known to contain the optimal

θ̃ so that the upper-bound maxθ∈R |dT
i θ| ≥ |dT

i θ̃| gives a sufficient condition for atom di to be inactive:

maxθ∈R |dT
i θ| < 1 ⇒ x̃(i) = 0. In particular the previous maximization problem admits a closed form

solution when R is a sphere or a dome.

The SAFE test proposed by L. El Ghaoui et al. in [15] is derived by constructing a sphere from

any dual point θ. Xiang et al. in [19], [18] improved it when the particular dual point y is used. We

propose here a homogenized formulation relying on any dual point θ for each of the three screening tests,

generalizing [19], [18] to any dual point, thereby fitting them for use in a dynamic setting. We present

these screening tests through the following Lemmata, in order of increasing description complexity and

screening efficiency. For more details on the construction of regionsR and the solution of the maximization

problem please see the references or proofs in Appendix.
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Lemma 2 (The SAFE screening test [15]). For any θ ∈ R
N , the following function T SAFE

θ
is a screening

test for PLasso(λ,D,y):

T SAFE
θ

: Γ→ {0, 1}
i 7→

q
(1− |dT

i c|) > rθ
y

(7)

where c ,
y

λ
, rθ ,

∥

∥

y

λ
− µθ

∥

∥

2
and µ ,

[

θ
Ty

λ‖θ‖22

]‖DT θ‖−1
∞

−‖DT θ‖−1
∞

.

The notation JPK in (7) means that we take the boolean value of the proposition P as the output of the

screening test. We also recall that [r]ba , max(min(r, b), a) denotes the projection of r onto the segment

[a, b]. Lemma 2 is exactly El Ghaoui’s SAFE test.

The screening test ST3 [18] is a much more efficient test than SAFE, especially when λ∗ is high. We

extend it in the following Lemma so that it can be used for dynamic screening.

Lemma 3 (The Dynamic ST3: DST3). For any θ ∈ R
N , the following function TDST3

θ
is a screening test

for PLasso(λ,D,y):

TDST3
θ

: Γ→ {0, 1}
i 7→

q
(1− |dT

i c|) > rθ
y

(8)

where c ,
y

λ
−
(

λ∗

λ
− 1
)

d∗, rθ ,

√

∥

∥µθ − y

λ

∥

∥

2

2
−
(

λ∗

λ
− 1
)2

, µ ,

[

θ
Ty

λ‖θ‖22

]‖DT θ‖−1
∞

−‖DT θ‖−1
∞

and d∗ , argmaxd∈{±di}Ki=1
dTy.

When applied with θ = y this screening test is exactly the ST3 [18]. Further improvements have been

proposed in the Dome test [19] for which we also propose an extended version appropriate for dynamic

screening.

Lemma 4 (The Dynamic Dome Test: DDome). For any θ ∈ R
N , the following function TDDome

θ
is a

screening test for PLasso(λ,D,y):

TDDome
θ

: Γ→ {0, 1}
i 7→

q
Ql

θ
l(dT

∗ di) < xTdi < Qu
θ
(dT

∗ di)
y

(9)

where

Ql
θ
(t) ,

{

(λ∗ − λ)t− λ+ λrθ
√
1− t2, if t ≤ λ∗

−(λ− 1 + λ/λ∗), if t > λ∗

(10)

Qu
θ
(t) ,

{

(λ− 1 + λ/λ∗), if t < −λ∗

(λ∗ − λ)t+ λ− λrθ
√
1− t2, if t ≥ −λ∗

(11)

rθ ,

√

∥

∥µθ − y

λ

∥

∥

2

2
−
(

λ∗

λ
− 1
)2

, µ ,

[

θ
Ty

λ‖θ‖22

]‖DT θ‖−1
∞

−‖DT θ‖−1
∞

and d∗ , argmaxd∈{±di}Ki=1
dTy.

When applied with θ = y this screening test is exactly the Dome test [19].

Using these Lemmata at dual points θt obtained during iterations allows to progressively reduce the

radius rθ of the considered regions —sphere or dome— and thus improves the screening capacity of the

screening tests associated to these regions. The effect of the radius appears clearly in (7,8,10,11). Note

that the choice of a new θ, for one of the previous screening tests Tθ, only acts on rθ the radius of the

region and not on c its center.
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3) Dynamic screening for the Group-Lasso: The Lasso problem embodies the assumption that obser-

vation y may be approximately represented in D by a sparse vector x̃. When a particular structure of the

data is known, we may additionally assume that, besides sparsity, the representation of y in D fits this

structure. Inducing the structure into x̃ is exactly the goal of structured-sparsity regularizers. Among those

we focus on the Group-Lasso regularization because the group-separability of its objective function (12)

particularly fits the screening framework.

a) The Group-Lasso [2]: The Group-Lasso is a sparse least-squares problem that assumes some

group structure in the sparse solution, in the sense that there are groups of zero coefficients in the solution

x̃. This structure, assumed to be known in advance, is characterized by G, a known partition of Γ, and

wg > 0 the weights associated with each group g ∈ G (e.g. wg =
√

|g|). Using the group-sparsity inducing

regularization Ω(x) ,
∑

g∈G wg

∥

∥x[g]

∥

∥

2
, the Group-Lasso is defined as:

PGroup-Lasso(λ,D,G,y) :

argmin
x

1

2
‖Dx− y‖22 + λ

∑

g∈G

wg

∥

∥x[g]

∥

∥

2
. (12)

The proximal operator of the group sparsity regularization is the group soft-thresholding:

∀g ∈ G, proxGroup-Lasso
t (xg) , max

(

0,
‖xg‖2 − twg

‖xg‖2

)

xg. (13)

The dual of the Group-Lasso problem (12) is (see [17]):

θ̃ , argmax
θ

1

2
‖y‖22 −

λ2

2

∥

∥

∥
θ − y

λ

∥

∥

∥

2

2
(14a)

s.t. ∀g ∈ G,

∥

∥

∥
DT

[g]θ

∥

∥

∥

2

wg

≤ 1. (14b)

A dual point θ ∈ R
N is said feasible for the Group-Lasso if it satisfies constraints (14b).

From the convex optimality conditions, primal and dual optima are necessarily linked by:

y = Dx̃+ λθ̃, and ∀g ∈ G
{

‖DT
[g]θ̃‖2 ≤ wg if x̃[g] = 0,

‖DT
[g]θ̃‖2 = wg if x̃[g] 6= 0.

(15)

We now adapt the definition of λ∗ to the Group-Lasso so that it corresponds to the smallest regularization

parameter resulting into a zero solution of (12). Let us define

g∗ , argmax
g

∥

∥

∥
DT

[g]y

∥

∥

∥

2

wg

, λ∗ ,

∥

∥

∥DT
[g∗]

y

∥

∥

∥

2

wg∗

. (16)

As for the Lasso, if λ > λ∗ one may screen all the atoms and obtain x̃ = 0. Hence for the Group-Lasso

setting, we focus on the non-trivial case λ ∈ ]0, λ∗].
Instances of screening tests for the Group-Lasso are presented in the sequel. We extend here the SAFE

[15] and the DST3 [18] screening tests to the Group-Lasso. To our knowledge there are no published

results on this extension to the Group-Lasso.
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b) Screening tests for the Group-Lasso: As just previously for the Lasso, the quantity ‖DT
[g]θ̃‖2

in relation (15) is not known except if the problem is solved. Regions R containing the optimum θ̃

are considered to use the upper bound maxθ∈R ‖DT
[g]θ‖2 to identify some inactive groups g thanks to

relation (15). Please see the proofs in the appendix for details on the construction of the regions and the

solution of the maximization problem.

For any index i ∈ Γ, we denote by g(i) the unique group g ∈ G that contains i. The following Lemma

extends the SAFE screening test to the Group-Lasso:

Lemma 5 (The Group-SAFE: GSAFE). For any θ ∈ R
N , the following function TGSAFE

θ
is a screening

test for PGroup-Lasso(λ,D,G,y):
TGSAFE
θ

: Γ→ {0, 1}

i 7→

u
v




wg(i)
∥

∥D[g(i)]

∥

∥

−

∥

∥

∥DT
[g(i)]c

∥

∥

∥

2
∥

∥D[g(i)]

∥

∥



 > rθ

}
~ (17)

where

c ,
y

λ
, rθ ,

∥

∥

∥

y

λ
− µθ

∥

∥

∥

2
and µ ,

[

θ
Ty

λ‖θ‖22

]min
g∈G

wg

‖DT
[g]

θ‖
2

−min
g∈G

wg

‖DT
[g]

θ‖
2

.

The following Lemma extends the screening tests ST3 [18] and DST3 (see Lemma 3) to the Group-

Lasso.

Lemma 6 (The Dynamic Group ST3: DGST3). For any θ ∈ R
N , the following function TDGST3

θ
is a

screening test for PGroup-Lasso(λ,D,G,y):
TDGST3
θ

: Γ→ {0, 1}

i 7→

u
v




wg(i)
∥

∥D[g(i)]

∥

∥

−

∥

∥

∥DT
[g(i)]c

∥

∥

∥

2
∥

∥D[g(i)]

∥

∥



 > rθ

}
~ (18)

where

c ,

(

Id− nnT

‖n‖22

)

y

λ
+

n

‖n‖22
w2

g∗ ,

n , D[g∗]D
T
[g∗]

y

λ∗

,

rθ ,

√

∥

∥

∥

y

λ
− µθ

∥

∥

∥

2

2
−
∥

∥

∥

y

λ
− c

∥

∥

∥

2

2
and

µ ,

[

θ
Ty

λ‖θ‖22

]min
g∈G

wg

‖DT
[g]

θ‖
2

−min
g∈G

wg

‖DT
[g]

θ‖
2

.

In these two Lemmata, the regions R used to define the screening tests are spheres and the effect of

the radius rθ on the screening capacity is visible in (17) and (18).

The proposed screening tests have been given for the Group-Lasso formulation, but can be readily

extended to the Overlapping Group-Lasso [23] thanks to the replication trick.
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C. A turnkey instance

As a concrete instance of Algorithm 3, we propose to focus on the Lasso problem solved by the

combined use of ISTA and SAFE. We compare the static screening with the dynamic screening, through

implementations given in Algorithms 4 and 5, respectively. The usual ISTA update appears at lines 7 to 9

in Algorithm 4 and lines 5 to 7 in Algorithm 5, where the step size Lt is set using the backtracking

strategy as described in [6]. The remaining lines of the algorithm, dedicated to the screening process, are

described separately in the following paragraphs.

Algorithm 4 ISTA + Static SAFE Screening

Require: D,y, λ,x0 ∈ R
K

1: .......... Screening ..........

2: I ←
{

i ∈ Γ, |dT
i y| < λ− 1 + λ

λ∗

}

3: D0 ← D[Ic],
4: t← 1
5: while stopping criterion on xt do

6: ... ISTA update .....

7: θt ← D0xt−1 − y

8: zt ← DT
0 θt

9: xt ← proxLasso
λ/Lt

(

xt−1 − 1
Lt
zt

)

10: t← t+ 1
11: end while

12: return xt

Algorithm 5 ISTA + Dynamic SAFE Screening

Require: D,y, λ,x0 ∈ R
K

1: I0 ← ∅, r0 ← +∞,D0 ← D

2: t← 1
3: while stopping criterion on xt do

4: .... ISTA update .....

5: θt ← Dt−1x̄t−1 − y

6: zt ← DT
t−1θt

7: xt ← proxLasso
λ/Lt

(

x̄t−1 − 1
Lt
zt

)

8: ............ Screening ............

9: µt ←
[

θ
T
t y

λ‖θt‖22

]‖zt‖
−1
∞

−‖zt‖
−1
∞

10: vt ← µtθt

11: rt ←
∥

∥

y

λ
− vt

∥

∥

2

12: It ←
{

i ∈ Γ, |dT
i y| < λ(1− rt)

}

∪ It−1

13: Dt ← Dt−1Id[Ic
t−1,I

c
t ]

14: x̄t ← Id[Ic
t ,I

c
t−1]

xt

15: t← t+ 1
16: end while

17: return xt

The state-of-the-art static screening shown in Algorithm 4 is the successive use of the SAFE screening

test —Lemma 2 with θ = y results exactly in lines 2-3— prior to the ISTA algorithm. The dictionary is

screened once for all, using information from the initially-available data DTy and λ.

The proposed dynamic screening principle is shown in Algorithm 5. The iteration is here composed

of two stages: a) the ISTA update (lines 5-7) which is exactly the same as lines 7-9 of Algorithm 4

except that the dictionary changes along iterations and b) the screening step (lines 9-13) which aims at

reducing the dictionary size thanks to the information contained in the current iterates θt and zt. The

screening process appears at lines 11-13 where the index sets It of screened atoms form a non-decreasing

inclusion-wise sequence (line 12).

D. Computational complexity of the dynamic screening

The screening test introduces only a negligible computational overhead because it mainly relies on the

matrix-vector multiplications already performed in the first-order algorithm update. We present now the

computational ingredients of the acceleration obtained by dynamic screening.

Algorithm 3 implements the iterative alternation of the update of any first-order algorithm —e.g. those

from Table I— at line 4, and a screening process at line 6-8. This screening process consists of the pairing

of two distinct stages. First the set It of screened atoms is computed at line 6 using one of the Lemmata 2
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to 6. Analyzing these Lemmata shows that the expensive computation required to evaluate the screening

test Tθt
(i) for all i ∈ Γ is both due to the products dT

i c for all i ∈ Γ and to the computation of the

scalar µ which needs the product DT
t θt. Thus, determining a set of inactive atoms may cost O(KN) per

iteration. Fortunately, the computation DTc can be done once for all at the beginning of the algorithm.

Table I shows that the computation DT
t θt is already done by every first-order algorithm. So determining

It produces an overhead of O(
∣

∣Ict−1

∣

∣+N) only. Second the proper screening operations reduce the size

of the dictionary and the primal variables at lines 7 and 8, with a small computation requirement because

matrix Id[Ic
t ,I

c
t−1]

has only |Ict | non-zero elements. So, finally, the computation overhead entailed by the

embedded screening test has complexity O(
∣

∣Ict−1

∣

∣+N) at iteration t which is negligible compared with

the complexity O(
∣

∣Ict−1

∣

∣N) for the optimization update p(·). A detailed complexity analysis is given in

Section III-A. Finally the total computation cost of the algorithm with dynamic screening may be much

smaller than the base first-order algorithm. This is evaluated experimentally in Section III.

III. EXPERIMENTS

This section is dedicated to experiments made to assess the practical relevance of the proposed dynamic

screening principle2. More precisely, we aim at providing a rich understanding of its properties beyond

what the theory can demonstrate. The questions of interest deal with the computational performance and

may be formulated as follows:

• how to measure and evaluate the benefits of dynamic screening?

• what is the efficiency of dynamic screening in terms of the overall acceleration compared to the

algorithm without screening or with static screening?

• to which extent does the computational gain depend on problems, algorithms, synthetic and real data,

screening tests?

A. How to evaluate: performance measures

Let us first notice from Theorem 1 that whatever strategy is used —no-screening/static screening/dynamic

screening—, the algorithms converge to the same optimal x̃. Consequently, there is no need to evaluate

the quality of the solution and we shall only focus on computational aspects.

The main figure of merit that we use is based on an estimation of the number of floating-point operations

(flops) required by the algorithms with no screening (flopsN), with static screening (flopsS) and with

dynamic screening (flopsD) for a complete run. We will represent experimental results by the normalized

number of flops flopsS
flopsN

and flopsD
flopsN

that reflect the acceleration obtained respectively by the static screening

and dynamic screening strategies over the base algorithm with no screening. Computing such quantities

requires to experimentally record the number of iterations tf and for each iteration t, the size of the

dictionary |Ict | and the sparsity of the current iterate ‖xt‖0. They are defined for the Lasso as:

flopsN
∑tf

t=1

[

(K + ‖xt‖0)N + 4K +N
]

flopsS KN +
∑tf

t=1

[

(|Ic
0 |+ ‖xt‖0)N + 4 |Ic

0 |+N
]

flopsD
∑tf

t=1

[

(|Ic
t |+ ‖xt‖0)N + 6 |Ic

t |+ 5N
]

and for the Group-Lasso as:

flopsN
∑tf

t=1

[

(K + ‖xt‖0)N + 4K +N + 3 |G|
]

flopsS KN +
∑tf

t=1

[

(|Ic
0 |+ ‖xt‖0)N + 4 |Ic

0 |+N + 3 |G|
]

flopsD
∑tf

t=1

[

(|Ic
t |+ ‖xt‖0)N + 7 |Ic

t |+ 5N + 5 |G|
]

Indeed, one update of a first-order algorithm at iteration t requires at least 2 |Ict |N+|Ict |+N to compute

the gradient, and the proximal operator of the Lasso and Group-Lasso need, 3 |Ict | and 3 |Ict | + 3 |G|
operations, respectively (see Table I, (4) and (13)). The dynamic screening requires the computation of µ:

2N + |Ict | and 2N +2 |Ict |+2 |G| for Lasso and Group-Lasso respectively, (see Lemma 2-6), and 2N for

2The code in Python and data are released for reproducible research purposes at http://pageperso.lif.univ-mrs.fr/~antoine.bonnefoy.

http://pageperso.lif.univ-mrs.fr/~antoine.bonnefoy
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the computation of the rθ. The screening step is then computed in |Ict | operations. The static screening

approach implies a separated initialization of the screening test which requires KN operations.

Note that the primal variable which would be sparse during the optimization procedure which reduce

the number of operation required for Dtxt from |Ict |N to ‖xt‖0 N . Note also that here we do not take into

account the time required to compute the matrix norm of the sub-dictionaries corresponding to each group:
∥

∥D[g]

∥

∥ , g ∈ G. These quantities do not depend on the problem P(λ,Ω,D,y) but on the dictionary and

the groups themselves only, so we consider that they can be computed beforehand for a given dictionary

D and a given partition G.

Another option to measure the computational gain consists in actual running times, which we consider

as well. The main advantage of this measure would be that it results from actual performance in seconds

instead of estimated or asymptotic figure. However, running times depend on the implementation so that

it may not be the right measure in the current context of algorithm design. For each screening strategy (no

screening/static/dynamic) we measure the running times tN/tS/tD. The performance are then represented

in terms of normalized running times tD
tN

and tS
tN

. Eventually, one may wonder whether those measures,

flops and times, are somehow equivalent, which will be checked and discussed in Sections III-C and III-D.

B. Data material

1) Synthetic data: For experiments on synthetic data, we used two types of dictionaries that are widely

used in the state-of-the-art of sparse estimation and screening tests. The first one is a normalized Gaussian

dictionary in which all atoms di are drawn i.i.d. uniformly on the unit sphere, e.g., by normalizing

realizations of N (0, IdN). The second one is the so-called Pnoise introduced in [19], for which all di are

drawn i.i.d. as e1 + 0.1κg and normalized, where g ∼ N (0, IdN), κ ∼ U(0, 1) and e1 , [1, 0, . . . , 0]T ∈
R

N is the first natural basis vector. We set the data dimension to N , 2000 and the number of atoms to

K , 10000.

In the experiments on the Lasso, observations y were drawn i.i.d. from the exact same distribution

as the atoms of dictionaries described above. In experiments on the Group-Lasso, all groups were built

randomly with the same number of atoms in each group. Observations were generated from a Bernouilli-

Gaussian distribution: |G| independent draws of a Bernoulli distribution of parameter p = 0.05 were used

to determine for each group if it was active or not. Then coefficients of active groups are drawn i.i.d.

from a standard Gaussian distribution while they are set to zero in inactive groups. The observation y

was generated as the (l2-normalized) sum of Dx and of a Gaussian noise such that the signal-to-noise

ratio equals 20dB.

2) Audio data: For experiments on real data we performed the estimation of the sparse representation

of audio signals in a redundant Discrete Cosine Transform (DCT) dictionary, which is known to be adapted

for audio data. Music and speech recordings were taken from the material of the 2008 Signal Separation

Evaluation Campaign [24]. We considered 30 observations y with length N = 1024 and sampling rate

16 kHz and the number of atoms is set to K , 10000.

3) Image data: Experiments on the MNIST database [25] have been performed too. The database is

composed of images of N , 28×28 = 784 pixels representing handwritten digits from 0 to 9 and is split

into a training set and a testing set. The dictionary D is composed of K , 10000 vectorized images from

the training set, with 1000 randomly-chosen images for each digit. Observations were taken randomly in

the test set.

C. Solving the Lasso with several algorithms.

We addressed the Lasso problem with four different algorithms from Table I: ISTA, FISTA, SpaRSA

and Chambolle-Pock. Algorithms stop at iteration t if either t > 200 or the relative variation
|F (xt−1)−F (xt)|

F (xt)

of the objective function F (x) , 1
2
‖Dx− y‖22+λΩ (x) is lower than 10−7. We used a Pnoise dictionary

and three different strategies for each algorithm: no screening, static ST3 screening and dynamic ST3
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screening. Algorithms were run for several values of λ to assess the performance for various sparsity

levels.
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Figure 2: Normalized running times and nor-

malized number of flops for solving the Lasso

with a Pnoise dictionary.
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Figure 3: Normalized running times an number

of flops for FISTA solving the Group-Lasso

with different group sizes (5, 10, 50, 100).

Figure 2 shows the normalized running times and normalized number of flops for algorithms with

dynamic screening (black squares) and for the corresponding algorithms with static screening (blue circle)

as a function of λ/λ∗. Lower values account for faster computation. The medians among 30 runs are

plotted and the shaded area contains the 25%-to-75% percentiles for FISTA, in order to illustrate the

typical distribution of the values (similar areas are observed for the other algorithms but are not reported

for readability).

For all algorithms, the dynamic strategy shows a significant acceleration in a wide range of parameter

λ ≥ 0.3λ∗. For λ ≥ 0.5λ∗, computational savings reach about 75% of the running time and 80% of

the number of flops. The static strategy is efficient in a much reduced range λ ≥ 0.8λ∗, with lower

computational gains. Among all tested algorithms, FISTA has the largest ability to be accelerated, which

is really interesting as it is also known to be very efficient in terms of convergence rate. Note that due to

the normalization of running times and flops, Figure 2 cannot be used to draw any conclusion on which

of ISTA, FISTA, SpaRSA or Chambolle-Pock is the fastest algorithm. Finally, one may observe that the

running time and flops measures have similar trends, supporting the idea that only one of them may be

used to assess computational performance in a fair way.

D. Solving the Group-Lasso for various group sizes

We addressed the Group-Lasso with FISTA using Pnoise data and dictionary as described in III-B with

several group sizes. In Figure 3, the median normalized running times and number of flops over 30 runs

are plotted, the shaded area representing the 25%-to-75% percentiles when the group size is 5.

The computational gains obtained by the dynamic screening strategy are of the same order than for the

Lasso, with large savings in a wide range λ ≥ 0.3λ∗. One may anticipate that when groups grow larger it

is more difficult to locate some inactive groups, Figure 3 confirms this intuition: screening tests become
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less and less efficient to locate inactive groups and consequently the acceleration is not as efficient as in

the Lasso problem. As for the Lasso, running times and flops have similar trends, even if we observe

a larger discrepancy. The discrepancy is due to implementation details. For instance the many loops on

groups required for the computation of the screening tests are hard to handle efficiently in python.

E. Comparing screening tests

From the previous experiments, we retained FISTA to solve the Lasso on synthetic data with a Pnoise

dictionary and a Gaussian dictionary, on real audio data, and on images. Results are reported in Figure 4

for all the proposed screening tests.
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Figure 4: Computational gain of screening strategies for various data and screening tests, on the Lasso

solved by FISTA.

For all kinds of data and all screening tests, dynamic screening again provides a large acceleration on

a wide range of λ values and improves the static screening strategy. In the case of the Pnoise dictionary

and of audio data, the ST3 and Dome tests bring in important improvement over the SAFE test, in the

static and dynamic strategies. Indeed, λ∗ is close to 1 in these cases so that the radius rθ in (7) for

SAFE is much larger than in (3) for ST3 and in (4) for Dome, which degrades the screening efficiency of

SAFE. This difference is even more visible when the dynamic screening strategy is used. As a counterpart,

the Gaussian dictionary have small correlation between atoms. In this dictionary, ST3 and Dome do not

improve the performance of SAFE, but the dynamic strategy allows a higher acceleration ratio and for a

larger range of parameter λ.

IV. DISCUSSION

We have proposed the dynamic screening principle and shown that this principle is relevant both

theoretically and practically. When first-order algorithms are used, dynamic screening induces stronger

acceleration on the Lasso and Group-Lasso solvings than static screening, and in a wider range of λ.

The convergence theorem (Theorem 1) makes very few assumptions on the iterative algorithm, meaning

that dynamic screening principle can be applied to many algorithms —e.g. second order algorithms.
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Conversely, dynamic screening tests may produce different iterates than those of the base algorithm on

which it is applied and hence may modify the convergence rate. Can we ensure that the dynamic screening

preserves the convergence rate of any first-order algorithm? Answering this question would definitely

anchor dynamic screening in a theoretical context.

We presented here algorithms designed to compute the Lasso problem for a given λ. Departing from

that, one might be willing to compute the whole regularization path as done by the LARS algorithm [26].

Thoroughly studying how screening might be combined with LARS is another exciting subject that we

plan to work on in a near future.

In a recent work [27] Wang et. al introduce a way to adapt the static dome test in a continuation

strategy. This work relies on exact solutions of successive computation for higher λ parameters. Iterative

optimization algorithms do not give exact solutions hence examining how the dome test can be adapted

dynamically in an iterative optimization procedure might be of great interest and lead to new approaches.

Given the nice theoretical and practical behavior of Orthogonal Matching Pursuit [28], [29], investigating

how it can be paired with dynamic screening is a pressing and exciting matter but poses the problem

of dealing with the non-convex ℓ0 regularization which prevents from using the theory and toolbox of

convex optimality.

Lastly, as in [15], we are curious to see how dynamic screening may show up when other than an

ℓ2 fit-to-data is studied: for example, this situation naturally occurs when classification-based losses

are considered. As sparsity is often a desired feature for both efficiency (in the prediction phase) and

generalization purposes, being able to work out well-founded results allowing dynamic screening is of

the utmost importance.
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SCREENING TESTS FOR THE Group-Lasso

This section is dedicated to the proofs of the screening tests given in the Lemmata 2 to 6.

Proof of Lemmata 2 and 3. Since the Lasso is a particular case of the Group-Lasso, i.e. groups of size

one with wg = 1 for all g ∈ G, Lemmata 2 and 3 are direct corollaries of Lemmata 5 and 6.

Base concept: Extending what has been proposed in [15], [18] we construct screening tests for Group-

Lasso using optimality conditions of the Group-Lasso (15) jointly with the dual problem (14). These

screening tests may locate inactive groups in G. According to (15), groups g such that ‖DT
[g]θ̃‖2 < wg

correspond to inactive groups which can be removed from D. The optimum θ̃ is not known but we can

construct a region R ⊂ R
N that contains θ̃ so that maxθ∈R ‖DT

[g]θ‖2 gives a sufficient condition to screen

groups:

max
θ∈R

∥

∥DT
[g]θ
∥

∥

2
< wg ⇒

∥

∥

∥
DT

[g]θ̃

∥

∥

∥

2
< wg ⇒ x̃[g] = 0 (19)

There is no general closed-form solution of the maximization problem in (19) that would apply for

arbitrary regions R, moreover the quadratic nature of the maximization prevents closed-form solutions

even for some simple regions R. We now present the instance of this concept when R is a sphere. The

sphere centered on c with radius r is denoted by Sc,r.
Sphere tests: Consider a sphere Sc,r that contains the dual optimum θ̃, the screening test associated with

this sphere requires to solve maxθ∈Sc,r
‖DT

[g]θ‖2 for each group g, which has no closed-form solution. Thus

we use the triangle inequality to obtain a closed-form upper-bound on the solution: Lemma 7 provides

the corresponding sphere-test.

Lemma 7 (Sphere Test for Group-Lasso). If r ≥ 0 and c ∈ R
N are such that θ̃ ∈ Sc,r, then the following

function TGSPHERE is a screening test for PGroup-Lasso(λ,D,G,y):

TGSPHERE : Γ→ {0, 1}

i 7→

u
v




wg(i)
∥

∥

∥D[g(i)]

∥

∥

∥

−

∥

∥

∥
DT

[g(i)]c

∥

∥

∥

2
∥

∥

∥D[g(i)]

∥

∥

∥



 > r

}
~ (20)

Proof. Let i ∈ Γ such that TGSPHERE (i) = 1 and r ≥ 0 and c ∈ R
N are such that θ̃ ∈ Sc,r. We use the

triangle inequality to upper bound maxθ∈Sc,r
‖DT

[g]θ‖2:
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max
θ∈Sc,r

∥

∥DT
[g(i)]θ

∥

∥

2
≤
∥

∥DT
[g(i)]c

∥

∥

2
+ max

θ∈Sc,r

∥

∥DT
[g(i)](c− θ)

∥

∥

2

≤
∥

∥DT
[g(i)]c

∥

∥

2
+ r

∥

∥D[g(i)]

∥

∥

Which, as TGSPHERE(i) = 1 gives

∥

∥

∥
DT

[g(i)]θ

∥

∥

∥

2
< wg(i). Then using (19) we have that x̃[g(i)] = 0 and

x̃(i) = 0.

Dynamic Construction of feasible point using Dual Scaling for the Group-Lasso: Before giving the

proof of Lemmata 5 and 6, we need to introduce the dual-scaling strategy that computes from any dual

point θ, a feasible dual point that satisfies (14b) by definition and aim at being close to y/λ to obtain

an efficient screening test. Proposed by El Ghaoui in [15] for the Lasso this method applied to the

Group-Lasso is given in the following Lemma:

Lemma 8. Among all feasible scaled versions of θ, the closest to y/λ is v = µθ where:

µ ,

[

θ
Ty

λ‖θ‖22

]smin

−smin

with smin , min
g∈G

wg
∥

∥

∥
DT

[g(i)]θ

∥

∥

∥

2

. (21)

Proof. The dual-scaling problem for the Group-Lasso is:

µ , argmin
s∈R

∥

∥

∥sθ − y

λ

∥

∥

∥

2
s.t. ∀g ∈ G,

∥

∥DT
[g]sθ

∥

∥

2
< wg (22)

The solution of (22) is the projection onto the feasible segment [−smin, smin] ⊂ R of the solution of

argmins∈R

∥

∥

∥
sθ − y

λ

∥

∥

∥

2
. This solution is given in (21).

We now prove the SAFE test for Group-Lasso using Lemmata 7 and 8 following the same arguments

as in [15].

Proof of Lemma 5. Let θ ∈ R
N and v be its feasible scaled version obtained by dual-scaling (Lemma

8). Since y/λ attains the minimum of the unconstrained objective (14a) of the dual problem (14), and

since v complies with all the constraints (14b), the distance between the optimum θ̃ and y/λ is upper

bounded by

∥

∥

∥

y

λ
− v

∥

∥

∥

2
, i.e., θ̃ ∈ Sy

λ
,‖y

λ
−v‖

2

. And Lemma 7 concludes the proof.

Proof of Lemma 6. This proof is illustrated graphically in Figure 5 in 2D. We first construct geometrically

objects that are involved in the proof. Recalling that

g∗ , argmax
g

∥

∥

∥
DT

[g]y

∥

∥

∥

2

wg

and λ∗ ,

∥

∥

∥
DT

[g∗]
y

∥

∥

∥

2

wg∗

, (23)

we define the set of dual point complying with the constraint associated with group g∗ as

V∗ ,
{

θ ∈ R
N ,
∥

∥D[g∗]θ
∥

∥

2
≤ wg∗

}

This set V∗ is the set contained in the ellipsoid:

E∗ ,
{

θ ∈ R
N ,
∥

∥D[g∗]θ
∥

∥

2

2
= w2

g∗

}

.

Point y/λ∗ is on the ellipsoid: we define n as a normal vector to the ellipsoid E∗ at this point. Such a

vector is built from the gradient of f (θ) ,
1

2

∥

∥

∥
DT

[g∗]
θ

∥

∥

∥

2

2
at y/λ∗:

n , ∇f
(

y

λ∗

)

= D[g∗]D
T
[g∗]

y

λ∗

(24)
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Figure 5: Geometrical illustration of regions associated to the screening tests for the Group-Lasso

We denote by A the half-space defined by the hyperplane tangent to the ellipsoid at y/λ∗ that contains

V∗: A ,

{

θ ∈ R
N ,θTn ≤ w2

g∗

}

.

By construction V∗ ⊂ A. We now construct the new sphere SDGST3 containing θ̃. Let θ ∈ R
N and

v the feasible scaled version of θ obtained by dual-scaling. We know θ̃ ∈ V∗ (since θ̃ is feasible) and

θ̃ ∈ Sy

λ
,‖y

λ
−v‖

2

(see proof of Lemma 5), so we have: θ̃ ∈ V∗ ∩ Sy

λ
,‖y

λ
−v‖

2

⊂ A ∩ Sy

λ
,‖y

λ
−v‖

2

.

Then the new sphere SDGST3 is defined as the bounding sphere of A ∩ Sy

λ
,‖y

λ
−v‖

2

, its center is the

projection of
y

λ
on H which is given by:

c =
y

λ
−
(

nTy

λ
− w2

g∗

)

n

‖n‖22
and its radius is given by the Pythagoras theorem:

r =

√

∥

∥

∥

y

λ
− c

∥

∥

∥

2

2
−
∥

∥

∥

y

λ
− v

∥

∥

∥

2

2

We now formally check that θ̃ ∈ Sc,r by showing that A ∩ Sy

λ
,‖y

λ
−v‖

2

⊂ SDGST3. Let θ ∈ A ∩
Sy

λ
,‖y

λ
−v‖

2

, then:

∥

∥

∥

y

λ
− v

∥

∥

∥

2

2
≥
∥

∥

∥θ − y

λ

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

θ − y

λ
+

(

nTy

λ
− w2

g∗ −
nTy

λ
+ w2

g∗

)

n

‖n‖22

∥

∥

∥

∥

∥

2

2

= ‖θ − c‖22 +
∥

∥

∥

∥

∥

(

nTy

λ
− w2

g∗

)

n

‖n‖22

∥

∥

∥

∥

∥

2

2

− 2
w2

g∗

‖n‖22

(

λ∗

λ
− 1

)(

θ
Tn− λ∗

λ
w2

g∗ +

(

λ∗

λ
− 1

)

w2
g∗

)

.
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Where the last equality is obtained using the definition of n:

nTy

λ
− w2

g∗ =
λ∗

λ

yTn

λ∗

− w2
g∗ =

(

λ∗

λ
− 1

)

w2
g∗

Then, using the definition of c, we have:

∥

∥

∥

y

λ
− v

∥

∥

∥

2

2
≥ ‖θ−c‖22 +

∥

∥

∥

y

λ
− c

∥

∥

∥

2

2
+ 2

w2
g∗

‖n‖22

(

λ∗

λ
−1
)

(

w2
g∗− θ

Tn
)

.

As θ is contained in A we have 0 ≤ w2
g∗ − θ

Tn and:

∥

∥

∥

y

λ
− v

∥

∥

∥

2

2
≥ ‖θ − c‖22 +

∥

∥

∥

y

λ
− c

∥

∥

∥

2

2

We finally obtain the radius:

‖θ − c‖22 ≤
∥

∥

∥

y

λ
− v

∥

∥

∥

2

2
−
∥

∥

∥

y

λ
− c

∥

∥

∥

2

2
= r2.

Then A ∩ Sy

λ
,‖y

λ
−v‖

2

⊂ SDGST3 and θ̃ ∈ SDGST3 . Lemma 7 concludes the proof of Lemma 6.
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