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Abstract—Localizing bugs is important, difficult, and ex-
pensive, especially for large software projects. To address this
problem, information retrieval (IR) based bug localization has
increasingly been used to suggest potential buggy files given a
bug report. To date, researchers have proposed a number of
IR techniques for bug localization and empirically evaluated
them to understand their effectiveness. However, virtually all
of the evaluations have been limited to the projects written
in object-oriented programming languages, particularly Java.
Therefore, the effectiveness of these techniques for other widely-
used languages such as C is still unknown. In this paper, we create
a benchmark dataset consisting of more than 7,500 bug reports
from five popular C projects and rigorously evaluate our recently
introduced IR-based bug localization tool using this dataset. Our
results indicate that although the IR-relevant properties of C
and Java programs are different, IR-based bug localization in C
software at the file level is overall as effective as in Java software.
However, we also find that the recent advance of using program
structure information in performing bug localization gives less of
a benefit for C software than for Java software.

Keywords—Bug Localization, Information Retrieval, Search

I. INTRODUCTION

Large, widely used software projects typically combine
many modules with different, interrelated functionalities and
involve many developers. In this environment, it is difficult
for a user that encounters a bug to know precisely where the
bug occurs. Even a developer who reads a bug report may not
immediately know what files are relevant, particularly if the
report does not relate to his own code. If the code relevant
to a bug report is not immediately apparent, the report can
be ignored for a long time, or can be assigned to the wrong
developer, wasting developer time [1].

To ease the process of identifying the source code that
is relevant to a particular bug report, a number of automated
approaches have been developed using Information Retrieval
(IR) techniques such as Latent Dirichlet Allocation (LDA) [2],
Vector Space Model (VSM) [3], Latent Semantic Analysis
(LSA) [4], Clustering [4], and various combinations. These
techniques have low cost and rely only on information from
the bug report and the source code, with no other external
dependencies. Recently, we have proposed a new IR-based
technique, BLUiR, which takes into account program structure,
distinguishing between different kinds of terms in source code
based on program constructs [5]. BLUiR outperforms previous
techniques on standard Java benchmarks.

While previous studies have shown that these IR-based bug
localization approaches give good results, a limitation of these

studies is that they focus on software written in object-oriented
languages, primarily Java. On the other hand, much of the most
critical and widely used software, such as operating systems,
compilers, and programming language runtime environments,
is written in C. Indeed, as of May 2014, C is the most popular
programming language according to the TIOBE programming
language popularity index [6]. Nevertheless, there is a lack of
an established dataset of large-scale, widely used C software,
and a lack of easy-to-use tools for manipulating C code.
Therefore, we yet do not know the efficiency of IR-based bug
localization tools for C code. Most previous bug localization
studies have also acknowledged this limitation [5], [7], [8].

In this paper, we perform a large-scale experiment to
investigate the efficiency of IR-based bug localization for C
systems. To this end, we have created a dataset consisting of
more than 7,500 bug reports from five popular C projects,
and tested BLUiR on this dataset. We focus on the following
research questions:

RQ1. How do the IR-related properties of C software
compare to those of Java software?

RQ2,3. How does the accuracy of bug localization compare
between C and Java software, at the file level (RQ2)
and at the function level (RQ3)?

RQ4. How does the use of English words in software affect
the accuracy of C and Java bug localization?

RQ5. How do preprocessor directives and macros in C code
affect the accuracy of bug localization?

RQ6. How much do the different structural elements of C
and Java code contribute to the accuracy of bug local-
ization and how does this contribution vary between
C and Java code?

Our results show that:

• While structured IR-based bug localization gives com-
parable accuracy for C code and for Java code, the
benefit for C code over language-independent IR-
based bug localization is less than for Java code.

• The rate of English words in methods and identifiers
differs greatly between C code and Java code; the fact
that IR-based bug localization gives good results on
both suggests that the rate of English words is not
a good predictor of bug localization success across
programming languages. However, we did find that
for C programs, there is a correlation between the
use of English words in the code and success of bug
localization.



• Adequate parsing technology exists such that macros
are not a major obstacle to IR-based bug localization.

• Bug localization for both C and Java code mostly
relies on similar information: names of defined meth-
ods/functions and names of referenced identifiers. Bug
localization for Java also benefits from the name of
the defined class, while the C counterpart, i.e., the file
name, provides less information.

Our contributions include: 1) a dataset consisting of more
than 7500 bug reports with their location in the source code at
file level and function level for C programs, 2) a prototype to
localize bugs in C systems; and 3) more generalizable results
on the efficiency of IR-based bug localization.

The rest of this paper is organized as follows. Section II
reviews our previous work on Java code. Section III describes
the tools that we have developed to carry out our comparative
study. Section IV presents our proposed benchmark and the
metrics we use. Section V presents the results for our research
questions. Section VI considers threats to validity. Finally,
Section VII presents related work and Section VIII concludes.

II. BACKGROUND

We first discuss how IR-based bug localization finds buggy
files for a given bug report. We also briefly describe BLUiR,
our recently introduced IR-based bug localization tool [5],
which is currently one of the most accurate such tools avail-
able.

A. IR-based Bug Localization

When a developer, tester or user submits a bug report,
generally they write a brief summary of the bug and a more de-
tailed description of the buggy behavior. The basic assumption
of IR-based bug localization is that some terms in a given bug
report will be found in the source files that need to be fixed.
Therefore, in IR-based bug localization, a software project’s
source code files are considered as a document collection and
a bug report is considered as a search query. Finding candidate
files that should be fixed to eliminate the bug then reduces to
standard IR ranking of documents (source files) based on their
estimated relevance to the query (bug report).

Generally an IR system comprises three major steps: text
preprocessing, indexing, and retrieval. Preprocessing involves
text normalization, stop-word removal, and stemming. Text
normalization removes punctuation, performs case-folding, and
tokenizes terms. Stop-word removal removes frequently used
terms such as prepositions, articles, etc., in order to improve
efficiency and reduce spurious matches. Finally, stemming
conflates variants of the same term (e.g., go, going, gone) to
improve term matching between the query and the document.
Then, the documents are indexed for fast retrieval. Once
indexed, queries are submitted to the search engine, which
returns a ranked list of documents in response. Finally, the
search engine is evaluated by measuring the quality of its
output ranked list relative to each user’s input query. For a
broad overview of IR, please refer to the book by Manning [9].

The better an IR system can interpret the bug report and
source files, the more accurately it is expected to highly rank
the source files to be fixed. While deep semantics remain

elusive, shallow matching often works quite well, in part
because developers tend to embed semantic clues in names.

B. BLUiR

In recent work, we have introduced an IR-based bug
localization tool, BLUiR, which is built upon an existing,
highly-tuned, open source IR toolkit, Indri [10]. BLUiR has
three advantages over existing IR-based bug localization ap-
proaches. First, it uses one of the best variants of TF.IDF
formulation based upon the well-established BM25 (Okapi)
model as the underlying retrieval model [11]. This model
has been rigorously evaluated over a decade of use in IR
and found to be very effective. Second, BLUiR uses Indri’s
indexing and retrieval system, which is highly efficient. Third,
BLUiR has three modes of operation: programming lan-
guage independent retrieval, flat-text retrieval, and structured
retrieval. In each mode, BLUiR characterizes a bug report
in terms of its individual words. However, preparation of
documents varies depending on a given mode. For language-
independent retrieval, BLUiR uses simple text processing
(instead of parsing) to prepare source code for retrieval. This
includes splitting terms based on CamelCase and underscores,
and removing numbers and mathematical operators. Flat-text
retrieval mode characterizes a source code file in terms of its
class name, method names, identifier names, and comments,
but does not distinguish between them. Structured retrieval
mode additionally distinguishes between the summary and
description in bug reports, and between the above four different
kinds of terms in the source code. To exploit all of these
different types of query and document representations, BLUiR
structured retrieval performs a separate search for each of the
eight combinations of query representation and document term
type. Then, BLUiR sums the similarity scores across all eight
searches to rank program files. More details are available in
our previous work [5].

Based on an experiment using Zhou et al.’s dataset [3]
containing more than 3,400 bug reports, we showed that
BLUiR’s flat-text retrieval already exceeded the accuracy of
the existing best available tool. Adding structural modeling
significantly improves accuracy further. In this paper, we adapt
BLUiR for C programs.

III. METHODOLOGY

We now describe the methodology that we use to set up
our experiments. This includes creating a large-scale dataset
for C programs and adapting BLUiR for C code.

A. Creating a Dataset

To evaluate an IR-based bug localization tool retrospec-
tively on a software project, we need to have the project’s bug
reports, program source code, and a means of identifying the
files that were eventually fixed for the given bugs. Although
getting bug reports and source code for various open source
projects is fairly straightforward, determining the fixed files
for a given bug is more challenging, since typically the bug
tracking system and the version control system are indepen-
dent of each other. Although there are many commits where
developers indicate that a bug has been fixed, projects vary in
the degree to which a reference to the bug tracker is provided.



Furthermore, different projects have different conventions for
how bug tracker references are indicated. We now describe
how we map bug reports to the commits and to the affected
code, at both the file and the function level.

1) At the File Level: Most of the software projects in our
dataset, presented in Section IV, use git for version control
and Bugzilla for bug tracking. Git commit messages are
free form, and thus developers may reference bug reports
in any manner. To determine how the developers of a given
project typically refer to bug reports, we first searched through
all the commit messages for the keywords bug, issue, and
fix. If we found any of them, we then searched for any
numbers, that could be bug numbers. Then, we manually
analyzed a number of commits selected in this manner from
each system. This analysis revealed some common patterns,
including a complete Bugzilla URL for the Linux kernel and
the keyword PR followed by a bug number for GDB and
GCC. For one of our considered projects, WineHQ, however,
the above process gave no results. We thus consulted with
a developer from the WineHQ community who informed us
that in this community the convention is for the bug report
to refer back to the commit, rather than the commit referring
to the bug report. Indeed, in the WineHQ Bugzilla, there is a
dedicated field for a git commit id. However, many of these
fields are empty since the field is not required. After identifying
the bug fixing commits, we extracted the names of the files that
were changed and stored the bug report id and corresponding
changed files in a JSON file for each project.

One of our considered projects, Python, uses mercurial
rather than git and uses a dedicated bug tracking system
rather than Bugzilla. Nevertheless, the process is essentially
the same. By following the above process, we have found that
Python bug report numbers are indicated by # followed by a
number in the mercurial commit messages.

2) At Function Level: To construct the dataset at function
level, we need to know the name of the function in which
each bug fix occurs. For this, we use the command git
show -U0 to list the differences between the state of each file
before and after the bug fix. git show produces the result in
“unified diff format” [12], which normally shows the function
header preceding each hunk, as illustrated by the following:

@@ -71,6 +71,17 @@ static int acpi_sleep_prepare(u32

acpi_state)

The -U0 option furthermore tells git show to use no
context information, which reduces the chance that a hunk will
cross function boundaries. This approach, however, is still not
completely reliable, e.g., producing a recent label rather than
a function header. We consider only those cases where the
hunk header contains an open parenthesis, which has a high
probability of indicating a function name.

3) Collecting information from bug reports: From the
mapping we created in step 1, we have bug identifiers. Then,
we use the Bugzilla Java API to download the summary and
description for the bug report associated with each bug identi-
fier. For Python, which does not use Bugzilla, we download the
corresponding page from the dedicated repository1 and parse it
in an ad hoc manner to extract the summary and description. In

1http://bugs.python.org/

each case, the description contains only the original report text,
and does not contain any subsequent discussions, subsequently
proposed patches, lists of fixed files, etc.

B. Adapting BLUiR

Our experiment uses BLUiR for C code. However, since
BLUiR was designed for Java code, we have had to adapt it
for experiments involving the C programming language.

1) Collecting information from C code: From the C code,
we need to obtain the names of the defined functions and the
identifiers used in each file. For this, we must parse the C
code. A challenge in parsing C code is that such code may use
C preprocessor directives, to include header files, to express
conditional compilation and to use macros. One strategy would
be to apply the C preprocessor before processing, resulting
in a file that conforms to the standard C grammar. This
approach, however, has numerous disadvantages. It would
duplicate commonly used header files in every C file that uses
them, which would explode the code size and could dilute the
information that is relevant to bug localization. Furthermore,
preprocessing the code would eliminate macro names, which
are often more informative than the code that they expand into.
In the case of software in which variability is expressed using
conditional compilation, it would result in discarding the code
that does not correspond to a chosen configuration. Finally, in
the case of the Linux kernel, we have found that the result
of preprocessing is so large that collecting and processing the
relevant terms from the expanded code is impractical, in terms
of both computing time and disk usage.

To avoid these problems, we use a parser for C code, devel-
oped as part of the program matching and transformation tool
Coccinelle [13], that does not require preliminary processing
by the C preprocessor. Instead, the Coccinelle parser makes an
effort to parse macro references, to parse around conditional
compilation directives, and to parse other preprocessor direc-
tives, such as #ifdef and #define directly [14]. When
parsing fails, the parser recovers at the next top-level program
unit, e.g., function, variable, or type definition, thus minimizing
the impact of the failure. The Coccinelle parser also has the
ability to give feedback to the user about the most common
parsing problems. Typically, these problems can be solved by
providing a few artificial macro definitions in a configuration
file. This configuration file typically needs to be created only
once per software project, for use across multiple versions,
as in our experience the set of problematic macros changes
rarely. Except where noted, all of our experiments use these
dedicated macro definition files whenever parsing is required.
We examine these files in more detail in Section V-E.

Our extension of BLUiR, built on the Coccinelle C parser,
collects function names, identifiers, and words appearing in
comments. Function names and identifiers are collected both
in their entirety and are split at underscores and according to
Camel Casing. Identifiers are collected from variable names,
function names, type names, structure field names, function
parameter names, and goto label names.

2) Retrieval: As was discussed in Section II-B, BLUiR
supports language-independent retrieval, flat-text retrieval and
structured retrieval. Since language-independent and flat-text
retrieval are not concerned with distinguishing terms, and differ



only in the strategy for extracting them, retrieval is the same for
both C and Java code. However, since structured retrieval dis-
tinguishes between different types of terms based on program
constructs (class, methods, variables, and comments) we have
to classify C constructs within these categories. We consider C
file names to be equivalent to Java class names and C function
names to be equivalent to Java method names. Identifier names
and comments are the same for both languages. Then, we apply
the same underlying technique to compute the similarity score
between a query and a collection of documents, to rank C files
as described in Section II-B.

IV. DATASETS AND METRICS

Because there is no standard dataset for C software, we
had to create one. In this section, we motivate our choice of
software, and present the metrics that we use to compare bug
localization for C code with bug localization for Java code.

A. Datasets

Generally, bug localization is more useful for large-scale
systems, where developers could have trouble localizing bugs
manually. Therefore, we have selected a number of C projects
that are well known and large, that have a long development
history, and that have a dedicated bug tracking system con-
taining a large number of bug reports. In this way, we have
chosen five open source projects, ordered below from smallest
to largest in terms of the number of lines of code:

• Python 3.4.0: The runtime of the Python programming
language.2

• GDB 7.7: A debugger for programs written in C, C++,
and many other programming languages.3

• WineHQ 1.6.2: A compatibility layer, making it possi-
ble to run Windows applications on POSIX compliant
operating systems.4

• GCC 4.9.0: A compiler for programs written in C,
C++, and many other programming languages.5

• Linux Kernel 3.14: The kernel of the Linux operating
system.6

Table I presents some properties of these projects. For GCC
we have created two versions since GCC has a large testsuite
that consists of more than 20,000 files in form of C code.
GCC NT (no test) represents the version with these test cases
removed. For comparison with Java, we use Zhou et al.’s [3]
dataset, presented in Table II, which we have used in previous
work on BLUiR. We have not included the project ZXing from
this dataset, because this project has only 20 bug reports.

In terms of size, the C projects fall into three groups:
Python at under 400,000 lines of code, GDB, WineHQ, and
GCC at around 2 million lines of code, and the Linux kernel at
over 11 million lines of code. For both C and Java software,
we computed the size using David Wheeler’s SLOCcount,7

2https://www.python.org/, http://hg.python.org/cpython
3http://www.sourceware.org/gdb/, git://sourceware.org/git/binutils-gdb.git
4http://www.winehq.org, git://source.winehq.org/git/wine.git/
5http://gcc.gnu.org/, git://gcc.gnu.org/git/gcc.git
6https://www.kernel.org/,

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
7http://www.dwheeler.com/sloccount/

TABLE I. DATASET DESCRIPTION FOR C SYSTEMS

Subjects Oldest SLOC For File Level For Function Level
Systems patch #Bugs #Files #Bugs #Functions
Python 1990 380K 3,407 488 - -
GDB 1988 1,982K 195 2,655 177 41,298
WineHQ 1993 2,340K 2,350 2,815 2,218 89,430
GCC 1988 2,571K 216 22,678 193 75,746
GCC NT - 2,062K - 2,473 - 40,684
Linux kernel 2005 11,829K 1,548 19,853 1,178 347,057

TABLE II. DATASET DESCRIPTION FOR JAVA SYSTEMS

Project Description Oldest Patch SLOC #Bugs #Files
SWT 3.1 Widget toolkit for Java 2004 78K 98 484
AspectJ Aspect-oriented extension to Java 2002 323K 286 6485
Eclipse 3.1 Popular IDE for Java 2002 1,579K 3,075 12,863

which includes only the number of lines of C or Java code,
respectively, not whitespace, comments, or code written in
other languages. The C projects are substantially larger than
the Java projects, with the second smallest C project, GDB,
being 25% larger than the largest Java project, Eclipse.

In terms of development history (column Oldest patch,
Table I) all of our C projects date from around 1990. The
current git repository of the Linux kernel, however, only
contains commits going back to 2005, when git was adopted
by the Linux kernel developers. Other projects imported their
previous version control history into git, and thus we have
commits from a wider time span for these projects.

Finally, the number of bug reports available for the different
C projects varies widely, but remains within the same order
of magnitude as the number of bug reports available for
the different Java projects. We have followed the procedure
described in Section III-A for identifying bug reports that
can be linked to commits. We take only the bug reports for
which the fixes touch at least one C file, and for which at
least one of the affected files still exists in the considered
version of the software. At the function level, we have only
considered the bug reports for which at least one name of an
affected function can be identified from the associated patch,
as described in Section III-A. For Python, we have no function-
level information, as Python uses mercurial, whose patch
viewer does not make function header information available.

B. Evaluation Metrics

To evaluate the efficiency of BLUiR for C systems, we cal-
culate three metrics: Recall at Top N, Mean Average Precision,
and Mean Reciprocal Rank. These metrics have been exten-
sively used in prior IR-based bug localization research [3], [5].

Recall at Top N: To calculate this metric, for each bug
report, we first rank all the source code files and then take the
top N files to see if there is any file containing a bug related to
the report present in the list. Then, we calculate the proportion
(basically recall) of the bug reports for which we located the
bug successfully. We calculate Recall at Top 1, Top 5, and Top
10, as done in previous studies [3], [5].

Mean Average Precision (MAP): While Recall at Top N
emphasizes locating a single buggy file, MAP takes all the
buggy files associated with a given bug report into account.
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Fig. 1. Comparison of File Size

The Average Precision of a single query is computed as:

AP =

M∑
k=1

P (k)× pos(k)

number of positive instances
(1)

where M is the number of source files in the ranked list, k is
the rank, and pos(k) is a binary (0 or 1) indicator of whether
or not the item at rank k is a buggy file. P (k) is the precision
for top k files. The MAP for a set of queries is simply the mean
of the AP values for all queries. A higher value is better.

Mean Reciprocal Rank (MRR): The reciprocal rank for a
query is the inverse rank of the first relevant document found.
MRR is the reciprocal rank averaged over all queries:

MRR =
1

|Q|

|Q|∑
i=1

1

rank i
(2)

V. RESULTS

We now present our experimental results. First, we consider
some properties of the C and Java software that may affect the
applicability of IR-based bug localization. Then, we consider
our research questions, as defined in Section I, related to the
accuracy of various BLUiR-based approaches and to several
details of the bug localization process.

A. RQ1: IR-related properties of C and Java software

We first investigate two IR-relevant properties: file length
and nature of terms used in C and Java programs, which have
an impact on the results of any IR system. If these properties
of C and Java software are different, then the effectiveness of
IR-based bug localization may be different as well.

File Size. Figure 1 displays the file size of each software
project in terms of number of lines of code without comments
(SLOC). We observe that the SLOC distribution of GCC files
is completely different from that of the other projects. As we
discussed in Section IV-A, the source code of GCC contains a
large suite of test cases, amounting to more than 20,000 small
.c files. As we expect that few bug reports relate to bugs in
test cases, we also include in Figure 1 information for GCC
with all test cases excluded (GCC NT).
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Fig. 2. Comparison of Number of Terms

Figure 1 shows that the median sizes of C files, indicated
by the thickest horizontal line, vary from 97 (GCC NT) to
396 (WineHQ) SLOC, whereas they vary from 16 (SWT) to 53
(Eclipse) SLOC for Java files. However, for the C projects, the
average, marked by the diamond, is typically much higher than
the median, indicating that the file sizes are highly skewed.
The average size of the C files varies from 492 (Linux) to
793 (WineHQ) SLOC, whereas it varies from 63 (AspectJ) to
161 (SWT) SLOC for the Java projects. Therefore, overall, C
files are, on average, substantially larger than Java files, for
our considered projects.

As an alternate measure of size, we also investigate the total
number of terms in the source code that would be actually used
for IR, as presented in Figure 2. We see that the number of
terms present in the C files is also considerably higher than
that of Java files. The average number of terms in the C files
varies from 456 (Linux) to 928 (WineHQ), whereas for Java
it varies from 114 (AspectJ) to 360 (SWT).

Terms in Source Code.. Bug reports are generally written in
natural English. IR-based bug localization generally focuses
on identifier (class, method, and variable) names and com-
ments, because these are the places where developers can use
natural English. In object-oriented programming languages,
developers are strongly encouraged to use meaningful words
in identifier names. For example, the Eclipse Foundation has
very specific naming conventions.8 Therefore, IR-based bug
localization is expected to work well for Java projects. Since
the C programming language is used by a different group of
people and is generally used for different types of software
(e.g. systems software rather than applications) than Java, the
programming style of C may be considerably different.

Our study of the use of English words focuses on method
and identifier names, omitting comments on the assumption
that comments almost always contain natural English text,
regardless of the programming language. To have the greatest
chance of finding English words, we split method and iden-
tifier names according to the conventions of CamelCase and
additionally split C names at underscores ( ), following the
conventions commonly used in our software projects. Finally,
we exclude the words get and set when counting English

8http://wiki.eclipse.org/Naming Conventions



TABLE III. PRESENCE OF ENGLISH WORDS IN SOURCE CODE

Term Type Function/Method-Terms* Identifier-Terms
Actual % Unique % Actual % Unique %

Python 66% 44% 67% 33%
GDB 67% 32% 59% 18%
WineHQ 72% 20% 59% 12%
GCC 71% 30% 69% 21%
GCC NT 76% 46% 72% 25%
Linux 59% 20% 59% 10%
SWT 95% 85% 84% 48%
AspectJ 92% 67% 91% 52%
Eclipse 97% 75% 94% 48%

words in Java programs, since these words are very frequent,
due to the use of getter and setter methods. In our C projects,
we have found that developers use underscores in 88%-97% of
method names and 43%-55% of identifier names, and in our
Java projects, we have found that developers use CamelCase in
62%-80% of method names and 38%-46% of identifier names.

Once the identifier names have been split into tokens (or
terms), we match each result against a comprehensive list of
354,983 English words.9 Then, we calculate the percentage of
terms that are found in the list of English words. Since a term
can appear multiple times in the code, we also calculate the
percentage of unique terms that are also English words. That is,
if E is the set of terms that are found in the dictionary, with all
duplicates removed, and T is the complete set of split words,
again with duplicates removed, we calculate the unique word
percentage as |E|

|T | × 100. For function (or method for Java)
names, T is the set of split words obtained from the names
of defined functions, while for identifier names, T is the set
of split terms obtained from all identifier names, including
the names of called functions. From the results, we see that
developers tend to use English terms in both function and
identifier names. However, the higher unique percentages for
function names show that there are more non-English words
in identifier names than function names. From the results we
also see that the presence of English words in Java programs
is considerably higher than in C programs, both in terms of
actual and unique percentages.

Therefore, the overall results show that C and Java are
not only different due to programming paradigms (procedural
vs. OOP) but also different from IR perspectives. Our next
research questions investigate how IR-based bug localization,
which has previously mostly been evaluated for Java programs,
performs in practice for C programs.

B. RQ2: Accuracy of Bug Localization at the File Level

Figures 3 and 4 show the accuracy of bug localization for
the C and Java projects, using language-independent retrieval,
flat-text retrieval, and structured retrieval, in terms of Recall at
Top 1, Top 5, and Top 10, and MAP and MRR. In Figure 3, the
Recall at Top 5 and Recall at Top 10 bars represent the increase
in recall as compared to taking into account the Top 1 or Top 5
files, respectively. We first assess the overall results, and then
compare the results for C and Java projects as the number of
files considered from the top of the ranked list changes, and
in terms of the bug localization strategy.

9http://www.infochimps.com
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For all but the smallest projects (Python and SWT),
whether C or Java, bug localization gives roughly the same
accuracy, with Recall at Top 1 values of 20-34% for C and
16-32% for Java, and Recall at Top 10 values of 48-63% for
C and 44-63% for Java. We see the same similarity in the MRR
scores. The C projects, however, have higher MAP scores than
the Java projects, ranging from 0.249 to 0.337 for C (with
0.586 for Python) and from 0.190 to 0.316 for Java (with 0.557
for SWT). Thus, bug localization is more successful in finding
all of the files that should be changed for the C projects.

Next, we consider the impact on accuracy of considering
more files in the ranked list, by comparing the result for Recall
at Top 1 with the results for Recall at Top 5. For language-
independent retrieval, considering more files gives less of an
improvement for the C projects (51-76%, except for WineHQ,
where there is a 100% improvement) than for the Java projects,
where the improvement is always over 80%. On the other hand,
for flat-text retrieval, the improvement is about the same, being
70-90% for all projects except Python. For structured retrieval,
considering more results gives more of an improvement for C
(62-88% for all C projects except Python) than for Java (59-
71% for all Java projects except SWT). The smallest projects,
Python and SWT, achieve an improvement of 45% and 40%,
respectively, for Recall at Top 5 as compared to Recall at Top
1, but their Recall at Top 1 rates were already much higher,
at 53% and 55%, respectively, than for the other projects.

Finally, we consider the improvement provided by flat-
text retrieval and structured retrieval as compared to language-
independent retrieval. In the case of flat-text retrieval, there is
again a major difference between C and Java projects. For three



of the C projects, GDB, GCC, and Linux, flat-text retrieval
gives a worse Recall at Top 1, by up to 15% for GDB, while
for Java, the result is always the same (SWT) or better. Indeed,
flat-text retrieval increases Recall at Top 1 by 50% for Eclipse
as compared to language-independent retrieval. However, the
results for flat-text retrieval for C projects are not all negative;
for WineHQ, which has the lowest accuracy for language-
independent retrieval, at 20%, flat-text retrieval gives a 30%
improvement, resulting in an accuracy that is comparable to
that of the other larger projects. Structured retrieval gives
an improvement over language-independent retrieval for all
projects. Nevertheless, the improvement is quite small for some
C projects: from 26% to 28% for GDB, from 31% to 34%
for GCC, and from 25% to 27% for Linux. In these cases,
structured retrieval mostly just reverses the losses observed
for flat-text retrieval. Indeed, WineHQ, which benefited most
from flat-text retrieval, obtains a slightly worse Recall at Top 1
result with structured retrieval than with flat-text retrieval, from
26% to 25%. These results contrast with the results for Java,
where structured retrieval gives a substantial improvement in
accuracy, including an improvement of 94% in Recall at Top
1 for Eclipse as compared to language-independent retrieval.

In summary, we find that for both C and Java, the accuracy
is roughly similar, except in the case of MAR, where bug
localization is more successful for the C projects. We also
find that the impact of taking into account more reported files
varies between C and Java, depending on the retrieval strategy,
and that structured retrieval provides less benefit for C projects.

C. RQ3: Accuracy of Bug Localization at the Function Level

Thus far, our results have been expressed at the file level.
We have seen in Section V-A, however, that for our projects,
the C files are much larger, on average, than the Java files.
While knowing the affected file may permit the developer to
hone in directly on the problem, in the worst case, the C
developer has on average, e.g., approximately 2500 to 4000
lines of code to inspect when considering the Recall at Top 5
results, while the Java developer has only at worst on average
300 to 800 lines of code to inspect. Thus, we consider whether
BLUiR can be effective at the function level on C projects, to
further narrow down the search space of developers. Over all
of the C projects, the average function size varies from 28 to
42 lines of code.10 Thus, Recall at Top 5 at the function level
for our C projects would be roughly comparable to Recall at
Top 1 on average for our Java projects at the file level based
on the number of lines to be inspected.

To investigate the accuracy of BLUiR at the function
level, we constructed a document collection containing one
document per function and applied BLUiR to it. Our results
(in Table IV) show that the accuracy of BLUiR is much lower
at the function level than at the file level. The recall in Top 1
ranges from 7% to 11%, whereas the recall in Top 10 ranges
from 21% to 27%. We think this result is not surprising since
an individual function provides much less information than a
complete file. Furthermore, retrieval at the function level can
be more expensive than retrieval at the file level since the
number of functions can be much greater than the number

10Function size is computed from the difference between the line number
of the last line of the function and the line number of the first line, and thus
may include lines containing only comments or whitespace.

TABLE IV. FUNCTION-LEVEL RETRIEVAL ACCURACY

Project Top 1 Top 5 Top 10 MAP MRR
GDB 7% 21% 27% 0.073 0.145
WineHQ 8% 16% 21% 0.085 0.122
GCC 9% 18% 25% 0.081 0.144
Linux 11% 19% 24% 0.127 0.159

of files. For example, in Linux Kernel, BLUiR ranks all the
source code files in 5 seconds on average for a given bug
report, whereas it takes 55 seconds per query at function level,
on a machine having an Intel Core i7 @ 3.50GHz processor
and 16GB memory.

To improve the performance of BLUiR at the function
level, we then tried a two-step approach. First, we ran BLUiR
at file level and took the top k files for function retrieval. From
our previous results, we found that for all projects BLUiR can
localize more than 80% of bugs within the Top 100 files. Thus,
if we consider only the functions from these files, the number
of functions for retrieval would be reduced a lot, without losing
the buggy functions for more than 80% of the bugs. Therefore,
reducing the candidate functions in this way should reduce the
retrieval time but have little impact on accuracy. Our results
show that this alternative approach indeed reduced the retrieval
time considerably, while maintaining almost the same accuracy
as considering all functions. The function-level retrieval now
requires only a fraction of a second after selecting the Top 100
files, reducing the total time from 55 seconds to 5 seconds.

D. RQ4: Impact of the use of English Words

We next investigate whether there is any relationship be-
tween the use of English words in method and identifier names
and the accuracy of BLUiR. We noted previously that the Java
projects use a substantially higher rate of English words than
the C projects. Nevertheless, particularly in terms of Recall at
Top 1, MAP, and MRR, Figures 3 and 4 show that we get equal
or better results for the C projects than for the Java projects.
Among the C projects, we have the highest rates of unique
method names and unique identifier names for Python, and we
obtain the highest accuracy for this project as well. We also
observe that the Recall at Top N gradually increases with the
increase in the unique percentages of English words in method
names and identifiers, except for GDB. To show that this cor-
relation is statistically strong, we calculated Pearson product-
moment correlation coefficient between different accuracies
and unique percentages. The correlation coefficient for method
unique percentage and Recall at Top 1, and identifier unique
percentage and Recall at Top 1 are 0.92 and 0.95, respectively.
We also get 0.84 and 0.92 for Recall at Top 5. Figure 5
presents this trend with scatter plots and best fit regression
lines computed by R.11 But we do not observe the same trend
in the case of Java, where the project with the highest accuracy,
SWT, has the highest rate of unique method names, but does
not have the highest rate of unique identifiers. We also have
not found any systematic relationship for other Java projects.
Therefore our overall results show that the greater usage of
English words only increases the accuracy of bug localization
for C projects.

11http://www.r-project.org
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Fig. 5. Correlation between Percentages of English Words and Accuracy

TABLE V. PROPERTIES OF MACRO DEFINITION FILES

No macro definitions Custom macro definitions
Parse Success Macro Parse Success

Project time rate definitions time rate
Python 51s 62% 24 39s 88%
GDB 8m 45s 78% 18 8m 34s 84%
WineHQ 6m 51s 70% 13 6m 3s 89%
GCC NT 6m 14s 59% 41 4m 26s 77%
Linux 24m 43s 61% 234 19m 51s 84%

E. Impact of tool features

In this section, we study our results in more detail, to better
understand the relationship between the performance of IR-
based bug localization on C and on Java programs. First, we
consider the effect of macros, which complicate the processing
of C code and which are not present in Java code. Then, we
consider the contribution of each kind of information used by
structured retrieval to the final result.

RQ5: Effect of Macros. In Section III-B1, we explained why
the presence of preprocessor directives and macros in C code
can affect the analysis results. While our C parser tries to cope
with unknown macro uses, in some cases, its heuristics are not
successful, and some top-level variable or function definitions
are not taken into account, potentially reducing the amount
of information that is available. Better results can be obtained
by providing a configuration file giving definitions for a few
macros that are difficult to parse, based on feedback from the
parser about common parsing problems. The time required for
creatig this configuration file mostly depends on the parsing
time.

Table V shows the parsing time on our Intel Core I7
machine when no macro definitions are available, the per-
centage of files that are entirely successfully parsed in this
case, the number of macro definitions in our customized
macro definition file for each project, the parsing time when
these definitions are available, and the percentage of files that
are entirely successfully parsed in this case. For the Linux
kernel, we use the existing default macro configuration file of
Coccinelle [13], which targets Linux kernel code.

0.0#

0.1#

0.2#

0.3#

0.4#

0.5#

0.6#

MAP# MRR# MAP# MRR# MAP# MRR# MAP# MRR# MAP# MRR# MAP# MRR#

Python# GDB# WineHQ# GCC# GCC_NT# Linux#

Macro#DefiniFons#Used# Not#Used#

Fig. 6. Effect of Macro Definitions on Flat-Text Accuracy

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

Python" GDB" WineHQ" GCC" Linux" SWT" AspectJ" Eclipse"

File/Class"
FuncHon/Method"
IdenHfier"
Comments"

Fig. 7. Mean Average Precision (MAP) for different kinds of program terms

Figure 6 compares the accuracy of BLUiR when we use
the project-specific macro definition and when we do not use
them. Results show that even though the case without specific
macro definitions results in e.g., only 59% of the files being
successfully parsed in their entirety for GCC, the results are
essentially the same, with a difference of at most 0.002 for
MAP and 0.003 for MRR. Indeed, our C parser recovers at the
start of the next top-level definition that it is able to identify,
and thus in practice a parse error in one part of a file has no
impact on the parsing of the rest of the file. Thus, plenty of
information is available for bug localization, and BLUiR is
able to localize bugs despite the parse errors.

RQ6: Importance of Information Sources. To better un-
derstand the previous results, we investigate which kinds
of program terms (file/class names, function/method names,
variable names, and comments) are more important. To this
end, we run BLUiR on each type of term separately. Since
this produces four sets of results for each project, we present
only MAP for conciseness. MAP takes all the buggy files into
account, and thus is the most comprehensive metric.

The results show that Java class names are more important
than C file names. For C programs, we see a large gap between
the accuracy for file names and the accuracy for other terms for
each project, whereas such gaps are small for Java programs.
Also, we observe that although the number of method names is
far smaller than the number of identifier names, method names
carry a lot of information. For both C and Java programs,
the MAP value based on only method names is very close to
that of identifier names except for GCC. For some projects
(Python, WineHQ, Linux Kernel, and all the Java projects),
method names contribute more than comments. The overall
results show that although all kinds of terms help localize
bugs, for both languages, method/function names and identifier
names are important for every project.



VI. THREATS TO VALIDITY

This section discusses the validity and generalizability of
our findings.

Construct Validity: We used two artifacts of a software
repository: source code and bug reports, which are generally
well understood. We have used three popular metrics: Recall
at Top N, MAP, and MRR, which are standard in IR, have
been used in previous IR-based bug localization studies, and
are straightforward to compute.

Internal Validity: To create the benchmark for C projects,
we have relied on the information in version histories and bug
tracking systems. However, for some cases this information
may be inaccurate or incomplete, which may affect our results.
Indeed, for GDB, WineHQ, and GCC, which are about the
same size, we have widely varying numbers of linked bug
reports, which may indicate that the developers of some
projects do not mention such links systematically.

We have used a single release for bug localization in each
system. Bugs that were previously fixed are no longer present
in that code, and for old bug reports, the code may have
changed substantially since the bug was encountered. Ideally,
for each bug report we would extract the version from when
the bug was reported to get the actual buggy code. However,
this approach is impractical for a large-scale experiment.

Most of our studied projects represent systems code rather
than applications. Systems software may have its own set of
development biases [15]. We may not capture concerns that
are only present in software targeting other domains.

Like other IR-based bug localization studies, our results are
intrinsically sensitive to the quality of the bug reports. An issue
is the possible presence of “too well written” bug reports, e.g.,
where a maintainer of the code has already solved the problem,
and is using the bug repository to record his activities. Such
reports could make bug localization unrealistically easy, as
compared to reports from ordinary users, for which localization
is actually needed. Indeed, Kochhar et al. [16] have found,
in work concurrent with ours, that for three Java projects
different from the ones considered here, around half of the
bug reports contain the name of at least one of the classes that
should be fixed, and that the sets of reports that contain the
names of all of the classes that should be fixed have MAP
scores 2.5-3 times higher than those that contain no such class
names. In our dataset, we have found that 10%-19% of the
bug reports of C projects contain the name of at least one
file that was fixed, and likewise 5% to 29% for Java projects.
If we ignore the extension (.c or .java) of the file name, the
ranges vary from 25% to 29% for C projects and from 32%
to 62% for Java projects. We furthermore observe that 19% of
Python reports contain the name of at least one file that should
be fixed, while only 10% of the WineHQ reports do, which
may account for some of the difference in the success of bug
localization on these two projects (see Figure 3). Nevertheless,
it is hard to determine what proportion of these bug reports are
actually bias in the dataset, since file names or class names may
coincide with natural English words. We also found 34 Linux
Kernel bug reports that contain the name of at least one file
that was not fixed. Thus, file name information may not always
make bug localization trivial. We leave a more detailed study
of the kinds of information present in bug reports and how this

information impacts the success of manual or automatic bug
localization to future work.

Finally, our tools may contain errors. We have carefully
inspected our code and rigorously tested it on a known dataset.

External Validity: We have used five C software projects
and three Java software projects in our experiments. All are
open source. Although, they are popular projects, our findings
may not be generalizable to other open source projects or to
closed source projects. However, to the best of our knowledge,
this is the largest experiment for IR-based bug localization.
The risk of insufficient generalization could be mitigated by
expanding the benchmark to include more software projects
(both open source and closed source). This will be explored
in our future work.

VII. RELATED WORK

The literature on finding bugs and other features of source
code is enormous. We thus focus on related work on matching
some form of user-provided query to regions of source code,
as well as studies that compare results for C to results for Java.

Bug localization: IR-based bug localization techniques
have recently gained attention from the software engineering
research community. Researchers have proposed a number of
retrieval techniques to improve the rank of buggy files for a
given bug report query. Lukins et al. [2] use the Latent Dirich-
let Allocation (LDA), a generative statistical model widely
used for topic modeling, for bug localization. Rao et al. [4]
compare a number of techniques such as the Unigram Model
(UM), the Vector Space Model (VSM), the Latent Semantic
Analysis Model (LSA), the Latent Dirichlet Allocation (LDA),
the Cluster Based Document Model (CBDM), and various
combinations to investigate their relative performance for bug
localization. Based on their evaluation, they concluded that
sophisticated models such as LSA, LDA, or CBDM are not
necessarily better than simpler models such as UM or VSM.

Recent bug localization techniques go beyond traditional
IR by using additional information from software repositories.
Sisman and Kak [8] incorporate version histories in an IR
model. Nguyen et al. [17] introduce BugScout, a topic model-
based tool for narrowing the search space for buggy files. Zhou
et al. [3] incorporate program file length and similar informa-
tion into the TF.IDF term weighted VSM. BLUiR incorporates
structural information into an IR model [5]. AmaLgam takes
into account not only structure information, but also the set of
files that have recently been subject to bug fixes and the set
of files fixed by recent similar bug reports [18].

However, all of the above techniques have been evaluated
on datasets containing object-oriented programs, particularly
Java. Our focus is on whether techniques that work for object
oriented languages also work for imperative languages. Thus,
we evaluate IR-based bug localization with C programs.

Other IR problems and C code: Several other works
have considered other kinds of localization problems for C
code. Wang et al. [19] study the effectiveness of a wide range
of information retrieval techniques on localizing concerns in
Linux kernel source code. Rather than bug localization, they
study the problem of feature localization, mapping a feature,
expressed as a preprocessor flag, to the relevant source code,



defined as the function whose definition is somehow affected
by the flag’s value. Their experiment did not involve bug
reports and was limited to the Linux Kernel. Poshyvanyk et
al. [20] formulated the feature location problem as a decision-
making problem in the presence of uncertainty and evaluated
their approach by localizing bugs in Mozilla. Mozilla contains
both C and C++ code, but only the C++ code was taken into
account in the evaluation.

Marcus et al. [21] use an old version of the NCSA Mosaic
web browser, written in C, to test their approach to concept
location, where the goal is to find code relevant to a developer-
provided code search request. Developer searches may have
different textual properties than bug reports. They use latent
semantic indexing (LSI), which is different than the TF-IDF
based approach used by BLUiR. Finally, the source code size
is small (95KLOC) and there is no comparison between C and
Java.

C vs. Java: Lucia et al. [22] compare the result of
spectrum-based fault localization, in which probable locations
of faults are identified based on succeeding and failing ex-
ecution traces, on C and Java programs, using a variety of
metrics. They find that the results are overall better on C
code than on Java code, and that the set of metrics that
perform best is different in the two cases. Nevertheless, they
consider a different kind of localization problem than the one
considered here (execution trace based rather than IR-based),
the C software projects considered are much smaller than the
ones considered here, being at most 6,218 lines of code, and
the issues of preprocessor directives and macros, which are
critical to treating large C software projects, are not addressed.

VIII. CONCLUSION

In this paper, we have compared the results of IR-based
bug localization on large, widely used C and Java software,
thus giving a richer perspective on the effectiveness of bug
localization than that provided by previous studies, which were
primarily limited to Java. The main technical challenge in
applying IR-based bug localization to real C projects is to cope
with the use of C preprocessor directives and macros. We have
shown that this issue can be addressed in a lightweight way
using existing technology. Another main lesson of our work is
that even though C developers use English words substantially
less often in their method and identifier names than Java
developers, IR-based bug localization can still be effective on
C code, comparably to Java code. On the other hand, our
considered C projects benefit less than our considered Java
projects from taking into account information from program
structure, an extension to IR-based bug localization that has
been proposed in a number of recent techniques. This suggests
that a greater understanding may be needed of the properties of
bug reports and source code to make IR-based bug localization
more effective in practice.

In future work, we will extend the experiment to more C
and Java projects. We will also consider whether the insights
obtained from examining C code can lead to better bug local-
ization algorithms. A particular focus could be on improving
bug localization at the function level for C programs, to
mitigate the possible effect of the large size of C files.

Dataset. Our dataset of C projects is publicly available at
https://utexas.box.com/icsme2014-dataset
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