archives-ouvertes

Dedicated Software Analysis Tools
Nicolas Anquetil, Stéphane Ducasse, Muhammad Usman Bhatti

» To cite this version:

Nicolas Anquetil, Stéphane Ducasse, Muhammad Usman Bhatti. Dedicated Software Analysis Tools.
2014, pp.22-23. hal-01086593

HAL Id: hal-01086593
https://hal.inria.fr /hal-01086593

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inria.fr/hal-01086593
https://hal.archives-ouvertes.fr

Special Theme: Sofware Quality

22

Dedicated Software Analysis Tools

by Nicolas Anquetil, Stéphane Ducasse and Usman Bhatti

The data and software analysis platform Moose allows for the quick development of dedicated tools
that can be customized at different levels. These tools are crucial for large software systems that

are subject to continuous evolution.

The lifetime of large systems (such as
those that support the activities of
banks, hospitals, insurance companies
and the army) can be measured in
decades. Such software systems have
become a crucial component for run-
ning the day-to-day affairs of our
society. Since these systems model
important aspects of human activity,
they must undergo continuous evolution
that follows the evolution of our society.
For example, new laws, economical
constraints or requirements force large
software systems to evolve. Previous
studies have shown that undertaking
this evolution can represent up to 90%
of total software effort [1]. Controlling
such systems and ensuring they can
evolve is a key challenge: it calls for a
detailed understanding of the system, as
well as its strengths and weaknesses.
Deloittes recently identified this issue
as an emerging challenge [2].

From an analysis of the current situa-

tion, four key facts emerge.

1. Despite the importance of software
evolution for our economy, it is not
considered to be a relevant problem
(and in fact, is considered a topic of
the past): for example, currently there
are no EU research axes that focus on
this crucial point while buzzwords
such as “big data” and “the Cloud”
attract all the attention.

2. People seem to believe that the issues
associated with software analysis and
evolution have been solved, but the
reality is little has been accomplished.

3.New development techniques such as
Agile Development, Test Driven
Development, Service-Oriented Archi-
tecture and Software Product Lines
cannot solve the problems that have
accumulated over years of maintenance
on legacy systems and it is impossible
to dream of redeveloping even a small
fraction of the enormous quantity of
software that currently exists today.

4.Software evolution is universal: it
happens to any successful software,
even in projects written with the latest
and coolest technologies. The produc-
tivity increases that have been

achieved with more recent technolo-
gies will further complicate the issue
as engineers produce more complex
code that will also have to be main-
tained. There are tools that propose
some basic analyses in terms of the
“technical debt” (i.e., that put a mon-
etary value on bad code quality),
however, knowing that you have a
debt does not help you take action to
improve code quality.

Typical software quality solutions that
assess the value of some generic metrics
at a point in time are not adapted to the
needs of the developers. Over the years
we have developed Moose, a data and
software analysis platform. We have
previously presented Moose [3], but in
this article, we want to discuss some of
the aspects we learnt while selling tools
built on top of Moose. In conjunction
with the clients of our associated com-
pany Synectique, we identified that an
adequate analysis infrastructure
requires the following elements.

The first is dedicated processes and
tools which are needed to approach the
specific problems a company or system
might face. Frequently software sys-
tems use proprietary organization
schemes to complete tasks, for example,
to implement a specific bus communi-
cation between components. In such
cases, generic solutions are mostly use-
less as they only give information in

terms of the “normal”, low-level con-
cepts available in the programming lan-
guage used. Large software systems
need to be analyzed at a higher abstrac-
tion level (e.g., component, feature or
sub-system). This supports reverse
engineering efforts. In Moose, we offer
a meta model-based solution where the
imported data is stored independently of
the programming language. This
approach can be extended to support
proprietary concepts or idioms, and new
data can be supported by merely
adapting the model and defining the
proper importer. Once the information
is imported, analysts can take advantage
of the different tools for crafting soft-
ware analyses that are tailored to meet
their needs.

The second element is tagging. End
users and/or reengineers often require a
way to annotate and query entities with
expert knowledge or the results of an
analysis. To respond to this need, end
users and reengineers are provided with
a tagging mechanism which allows
them to identify interesting entities or
their groups. An interesting case which
highlights the use of this mechanism is
the extraction of a functional architec-
ture from structural model information.
Once experts or analyses have tagged
entities, new tools and analyses (such as
a rule-based validation) use it (by
querying) to advanced knowledge and
create more results.

Al Forms. - v

» ® apporteur/BA_SumCommercial §
> B typesituat’STO StockUC2 §
» B typestuat/WF _demarrage |

® ContravAvance2 §

u typestuat/BiE2Detad §

& typesituaticone ParamProdut §

® Contrat/Chargement §
8 typesituatRechBxCommvahdé § 11 B

x -0 4D Tree Browser
Groups Y -
All Forms v B project method ™ Form FormObject ® squTable ™ Tree Root ™ o Providers *

>

.

» @ apporteur/Liste § PRAD SETLF
» B commInspectMCO_comm §
> B typesituat/VvL_BILAN §

» 8 typesituat/BoiteConfrmPWD §
» ® apporteur/ListeTiers §

» @ Contrat/Sasie_Contrat §

» ® typesituatPMA_ChomUC §

» ® Contrat/AR Pourcent §

» ® Contratp 1 §

> B typestuatSasieElemfin |

» B typesituatBIES Principal_Rech §
» B typesituat/Cit_Personne §

Figure 1: A dependency analyzer for legacy code.

ERCIM NEWS 99 October 2014



The third element is the dependency
nightmare analysis and remediation
tool. Large and/or old software systems
have often suffered from architectural
drift for so long that there is little or no
architecture left. All parts of a software
system are intrinsically linked and fre-
quently, loading three modules can
mean loading the complete system. The
challenge is how to deal with this fine
grained information at a large grain
level. We propose an advanced cyclic
dependency analysis and removal tools
as well as a drill-down on architectural
views. Figure 1 shows the tool revealing
recursive dependencies for impact
analysis.

The fourth element is a trend analysis
solution. Instead of a punctual picture of
a system’s software state, it is desirable
to understand the evolution of the
quality of entities. As the source code
(and thus the software entities) typically
evolve in integrated development envi-
ronments, independently from the dedi-
cated, off-the-shelf, software quality
tools, computing quality analysis trends
requires changes (e.g., add, remove,
move or rename) of individual software
entities identified. We propose a tool
that computes such changes and the
metric evolutions. Figure 2 shows the
changes computed on two versions
(green: entity added, red: entity
removed) and the evolution of quality
metrics for a change. Queries may be

x - O Local Trends

Mon, 25 Nov 2013 18:12:59 +0100 v
Mon, 25 Nov 2013 18:13:37 +0100 v
= APP_valope

- ARA_MAJTabGara

= inet_charge_contratGestion
%+ SETUP_VAR_batchapp _

- »
Metric Delta value
Number of outgoing links +1

Number of incoming links +1
Cyclomatic complexity +8

Number of lines of code +57

Full Name SETUP_VAR_

Figure 2: Trends analysis.

expressed in terms of the changes (i.e.,
“all added methods™) or in terms of the
metric variations (i.e., “increase of
CyclomaticComplexity > 57).

Conclusion

Software evolution and maintenance is,
and will continue to be, a challenge for
the future. This is not because a lack of
research advances but rather because
more and more software is being cre-
ated and that software is destined to last
longer. In addition, any successful soft-
ware systems must evolve to adapt to

Mining Open Software Repositories

by Jesus Alonso Abad, Carlos Lopez Nozal and Jesus M. Maudes Raedo

global changes. Our experience shows
that while problems may look similar
on the surface, key problems often
require dedicated attention (e.g., pro-
cessing, analyses and tools). There is a
need for dedicated tools that can be cus-
tomized at different levels, such as
models, offered analyses and the level
of granularity.

Links:
http:// www.moosetechnology.org
http://www.synectique.eu

References:

[1]C. Jones: “The Economics of
Software Maintenance in the Twenty
First Century™, 2006,
http://www.compaid.com/caiinternet/ez
ine/capersjones-maintenance.pdf

[2] B. Briggs et al.: “Tech Trends
2014, Inspiring Disruption”, White
Paper, Deloitte University Press, 2014,
http://www.deloitte.com/assets/Dcom-
Luxembourg/Local%20Assets/Docume
nts/Whitepapers/2014/dtt_en wp techt
rends_10022014.pdf

[3] O. Nierstrasz, S. Ducasse, T. Girba:
“The story of Moose: an agile
reengineering environment”,
ESEC/SIGSOFT FSE 2005: 1-10.

Please contact:

Stéphane Ducasse

Inria, France

E-mail: stephane.ducasse@inria.fr

With the boom in data mining which has occurred in recent years and higher processing powers,
software repository mining now represents a promising tool for developing better software. Open
software repositories, with their availability and wide spectrum of data attributes are an exciting
testing ground for software repository mining and quality assessment research. In this project, the
aim was to achieve improvements in software development processes in relation to change control,
release planning, test recording, code review and project planning processes.

In recent years, scientists and engi-
neers have started turning their heads
towards the field of software reposi-
tory mining. The ability to not only
examine static snapshots of software
but also the way they have evolved
over time is opening up new and
exciting lines of research towards the
goal of enhancing the quality assess-
ment process. Descriptive statistics
(e.g., mean, median, mode, quartiles of

ERCIM NEWS 99 October 2014

the data-set, variance and standard
deviation) are not enough to gener-
alize specific behaviours such as how
prone a file is to change [1]. Data
mining analysis (e.g., clustering,
regression, etc.) which are based on
the newly accessible information from
software repositories (e.g., contribu-
tors, commits, code frequency, active
issues and active pull requests) must
be developed with the aim of proac-

tively improving software quality, not
only reactively responding to issues.
Open source software repositories like
Sourceforge and GitHub provide a rich
and varied source of data to mine. Their
open nature welcomes contributors with
very different skill sets and experience
levels and the absence or low levels of
standardized workflow enforcement
make them reflect ‘close-to-extreme’
cases (as opposed to the more structured

23



