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1 Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, Villeurbanne-Cedex, France, 2 Inria Team Dracula, Inria Center Grenoble Rhône-Alpes,
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Abstract

Dynamics of body weight and food intake can be studied by temporally perturbing food availability. This perturbation can
be obtained by modifying the amount of available food over time while keeping the overall food quantity constant. To
describe food intake dynamics, we developed a mathematical model that describes body weight, fat mass, fat-free mass,
energy expenditure and food intake dynamics in rats. In addition, the model considers regulation of food intake by leptin,
ghrelin and glucose. We tested our model on rats experiencing temporally variable food availability. Our model is able to
predict body weight and food intake variations by taking into account energy expenditure dynamics based on a memory of
the previous food intake. This model allowed us to estimate this memory lag to approximately 8 days. It also explains how
important variations in food availability during periods longer than these 8 days can induce body weight gains.
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Introduction

Body weight regulation has become a major concern in our

societies. A classical case of body weight dysregulation – obesity –

is characterized by an excessive accumulation of white adipose

tissue due to an energy imbalance between the energy derived

from consumed food and the energy expended to maintain life [1–

3]. Because obesity is recognized as an important health hazard

[4], the causes of this imbalance have been extensively investigated

in the past several years [5,6] with findings pointing out to

peripheral as well as central mechanisms controlling food intake

[7–9]. While feeding behavior – especially in human – can be

difficult to assess, food intake behavior can be modulated by

numerous factors, including but not restricted to nutrient signals –

meal size and composition – and also orexigenic and anorexigenic

hormones [10]. Among these hormones, ghrelin [11–13], chole-

cystokinin (CCK) [14], peptide YY [14], glucagon-like peptide-1

(GLP-1) [14] and leptin [15], have been identified as the main

endocrine regulators of food intake. Anorexigenic gut peptides

(CCK, GLP-1 and peptide YY) are produced in response to the

presence of nutrients in the gastro-intestinal tract; their production

is sensitive to changes in food composition such as an increase in

fat content [16,17]. An increased level of ghrelin triggers feeding

behavior and ghrelin production is decreased during the course of

a meal [18]. On the other hand, leptin, a hormone secreted by

adipose cells in proportion to white adipose tissue accretion, is

known to trigger satiety [19].

All these hormones control the energy input. Yet, adaptation of

the basal energy expenditure is another mechanism regulating

food intake. It aims at reducing the difference between energy

intake and the energy needed by the organism [20]. The latter can

be modified by changes in activity and/or by adaptive thermo-

genesis (particularly in brown adipose tissue) [8,21,22]. In cases of

overfeeding, thermogenesis is increased and ATP is wasted by

completing futile cycles [23], while when underfeeding, energy

expenditure is reduced to vital mechanisms [24]. This adaptation

can prevent weight loss despite a reduced energy intake [22].

However it is not instantaneous and can be sustained, leading to

important weight gains in individuals previously submitted to a

strict diet. This is observed in humans and explains why body

weight does not decrease linearly in time despite a constant

reduction in caloric intake [25].

In normal conditions, these mechanisms should control weight

variations. However some perturbations can destabilize this

control. Our objective is to investigate mathematically whether

variations in food availability could be the origin of such a

destabilization.

Numerous mathematical or computational models describing

metabolism regulation and body characteristics evolution exist in

the literature. These models focus on different modelling scales,

from cell to organism and from seconds to years [26]. Some

models have been applied to animal subjects. Tam et al. [27]

focused on physiological effects of leptin on energy homeostasis

and food intake in mice. Guo and Hall [28,29] predicted dynamics

of body weight and composition with respect to energy use in

mice. Van Leeuwen et al. [30] studied the effect of food restriction

on survival and body growth in mice. Other models have been

applied to humans and were focused on energy use [31,32] or

relationships between fat mass and fat-free mass [33,34]. These

models were used to describe either normal conditions, overfeed-

ing or starvation [35,36].
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From the modelling point of view, feeding behavior and hunger

have been relatively ignored. Although some results on the feeding

dynamics correlate with body mass index [37], no other modelling

work has ever studied the impact of food availability dynamics on

the feeding behavior and body weight regulation.

In this paper, we propose a mathematical model of body weight

dynamics (divided in fat mass and fat-free mass), taking into

account hunger, defined throughout this manuscript as the

amount of food needed by the organism, leptin, ghrelin and

glucose variations. Food intake is assumed to be regulated by the

available amount of food and by hunger. As we focus on the

influence of available and consumed food, we have chosen to

consider only leptin (as an indicator of fat storage), ghrelin

(representative of the volume of food intake) and glucose

(proportional to the energy content of the diet) amongst all the

factors influencing food intake. Unlike other published models, this

system includes a memory of past food intake to model the

adaptation of energy expenditure to caloric restrictions.

To challenge the model and find relevant parameter values, we

conducted a simple feeding experiment on rats. One group

received Ad libitum food. The time course of the available food for

the three other groups was modified with three different

frequencies, while maintaining an isocaloric diet during the entire

experiment. We show that low frequency perturbations are very

likely to induce weight gains and that our model is able to predict

this feature.

Materials and Methods

Experimental Procedures
Animal care. Animal experiments were performed under the

authorization n069-266-0501 (INSA-Lyon, DDPP-DSV, Direction

Départementale de la Protection des Populations - Services

Vétérinaires du Rhône), according to the guidelines laid down

by the French Ministère de l’Agriculture (n0 87–848) and the E.U.

Council Directive for the Care and Use of Laboratory Animals of

November 24th, 1986 (86/609/EEC). COS (n0 69266257) holds a

special license to experiment on living vertebrates issued by the

French Ministry of Agriculture and Veterinary Service Depart-

ment.

Thirty twelve-week-old Wistar rats were purchased from Janvier

SA (Le Genest-Saint-Isle, France) and housed in an air-

conditioned room at 24+10C with a LD (light/dark) 12:12 cycle

(light on at 6:30 am) with free access to food (2016C, 12.6 kJ/g,

66% carbohydrates, 12% fat, 22% proteins, Harlan, Gannat,

France) and water.

Rats were randomly separated into 5 groups (D0, AL, H0, H1

and H4) of 6 individuals (no significant difference of initial body

weight was found between these groups: p-value = 0.26). Each rat

was identified and housed individually throughout the protocol.

The group D0 was sacrificed on the first day of the experiment

(as described below), so the initial biometric data of the rats are

available, including body weight, body length, white adipose tissue

mass, brown adipose tissue mass, muscles and organs weights (see

Table 1). At the end of the experiment (i.e. 8 weeks) the other rats

were sacrificed to obtain the same data. Blood samples were

collected at the same time for further analyses. The total body lipid

content can easily and accurately be predicted from the

gravimetric determination of the retroperitoneal fat deposits

[38]. Thus the retroperitoneal fat pads weights (rWAT) were used

to estimate the total body lipid content (L in grams), using the

formula L~7:96rWATz3:13 [38].

Rats from groups AL, H0, H1 and H4 were individually housed

and received chow diet for 8 weeks in different quantities each day

(see Fig. 1). The control group AL received Ad libitum food

(approximately 25 g per rat per day). Ad libitum food also

corresponds to the diet before the beginning of the experiment in

each group. The other groups (H0, H1, H4) were submitted to a

restriction in caloric availability corresponding to 80% of Ad
libitum diet. This reduction should theoretically avoid leftovers, as

this amount is below normal consumption, in order to have a

better control on food intake.

The pattern of food distribution was not the same for these three

groups. Group H0 received the same amount of food every day for

8 weeks. For the H1 group the food was randomly allocated for

each week of the experiment. Group H4 was submitted to an

important restriction for 4 weeks followed by an excess of food for

the remaining 4 weeks. The amount of food given each day is

reported in Fig. 1. The remaining food was measured and

removed each day to determine the food really consumed (see

Fig. 2 B). Great care was taken to ensure that most of the food was

either eaten or removed and not wasted. In a preliminary

experiment, we determined that food spillage only accounts for

6:9+1,0% of the total food intake. Therefore it was considered to

be negligible.

During the experiment, the beginning of the week (the day the

food availability was changed) was set on Tuesday and rats were

weighted every Friday morning. This protocol tends to minimize

and to separate the effects of stress due to changes in food

availability and stress due to weighting.

Sacrifice, blood and tissue collection. Animals were

deeply anesthetized with sodium pentobarbital (60 mg/kg ip),

blood (*5 mL) was collected through puncture of vena cava on

heparinized syringe and centrifuged 2 min at 8000 g. Plasma

samples were snap frozen in liquid nitrogen and stored at 2800C

until analysis. Liver, heart, kidneys, gastrocnemius muscles,

epididymal, retroperitoneal and subcutaneous inguinal white

adipose tissue (WAT) were dissected out according to anatomical

landmarks, weighed to the nearest milligram, snap frozen in liquid

nitrogen and stored at 2800C. Total WAT mass was calculated as

the sum of the mass of epididymal, retroperitoneal and subcuta-

neous inguinal WAT deposits.

Individual data is freely available upon request.

Biochemical analysis. Plasma ghrelin and leptin assays were

performed using immunoassays (acylated rat/mouse ghrelin

#A05117 and rat/mouse leptin EIA #A05176, Cayman, SpiBio,

Montigny le Bretonneux, France) according to the manufacturer’s

recommendations. The detection limit and intra-assay coefficient

of variation for ghrelin were 0.2 pg.mL{1 and 11%, respectively.

The detection limit and intra-assay coefficient of variation for

leptin were 50 pg.mL{1 and 4%, respectively. Blood glucose was

measured using an automatic glucose monitor (Optium Xceed,

Abbott, Rungis, France). All assays were performed at least in

duplicate (see Table 2).

Individual data is freely available upon request.

Mathematical Model
In this section, the mathematical model is described (See Table 3

for a description of all variables and Fig. 3 for a schematic

representation of the system). This model focuses on fat mass and

fat-free mass evolutions regulated by hunger and available food.

Hunger is defined as the amount of food the system would

consume were there no constraint on food availability. There exist

multiple factors influencing food intake [7–10,14,39], yet we focus

on 3 of them: leptin, ghrelin and glucose (which is highly

correlated with insulin) as they regulate hunger at different time

scales [8].

Dynamics of Body Weight and Food Intake in Rats
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Fat mass (S, in grams) and fat-free mass (W , in grams) are

assumed to be produced depending on the instantaneous

difference (DE ) between energy intake and energy expenditure.

To model this phenomenon we adapted the equations in [28,29]

previously developed for a mouse model and we used the same

notations: rS and rW denote the energy densities for fat mass and

fat-free mass respectively (kJ.g{1) and DE the instantaneous

difference of energy (kJ.min{1). Evolutions of S and W are given

by:

dS

dt
~

DE

rW xzrS

, ð1Þ

dW

dt
~

DEx

rW xzrS

, ð2Þ

where x:dW=dS~fzy: exp (k:S) [28,29].

Energy intake (EI ) is supposed to be a function of the caloric

content of the diet. This food consumption per minute, denoted by

c(a,h) (kJ.min{1), is assumed to be a function of hunger h (kJ) and

available food a (kJ). We assume c(a,h) is equal to the minimum of

a and h per unit of time. Hunger was defined as the amount of

food needed by the system (see above). Hence, food consumption

is either equal to hunger, when enough food is available or to the

available food a.

Several formulae describe energy expenditure [34,40], using

linear dependencies on body weight, fat mass and fat-free mass. In

the current model, the energy expenditure (EE) is assumed to be a

function of the caloric content of the body (expressed as a function

of fat mass and fat-free mass) with a rate of energy expenditure R.

The result is the amount of Joules lost per minute. We then define

the energy balance DE as:

DE~EI{EE~c(a,h){R(rW WzrSSzj),

where EI~c(a,h) and EE~R(rW WzrSSzj).

One can note that fat-free mass has a negative feedback on itself

and that fat-mass may have either a positive or negative feedback

on itself, depending on the value of DE . Fat mass can have a

positive feedback on fat-free mass, via x (see equation (2)), since

creation of fat mass leads to the creation of lean mass [33].

The evolution of the amount of available food a (in kJ) depends

on the input of food in the system f (usually a given amount each

day) and the consumption c. The available food a satisfies

da

dt
~f (t){c(a,h): ð3Þ

In order to describe variations in appetite, the model should

take into account the evolution of factors influencing hunger. As

previously mentioned, we focus on leptin, glucose and ghrelin

concentration. The total plasma leptin l (in ng) is assumed to be

produced proportionally to the fat mass [27],

dl

dt
~c2S{c1l: ð4Þ

Table 1. Biometric data.

D0 AL H0 H1 H4

Body weight (g) 333:8+15:9 493+46:7 410:5+24:1 404:8+40:5 444:5+16:4

Body length (cm) 22:9+0:53 26:4+0:51 25:4+0:66 25:1+0:75 26+0:67

rWAT (g) 4:24+1:49 9:77+2:30 8:82+3:80 7:63+1:56 9:58+2:61

Total WAT (g) 17+4:6 33:3+9:4 29:2+9:7 28:2+4:7 32:9+5:4

iBAT (mg) 287+39 425+199 365+71 367+64 390+153

Kidneys (g) 2:37+0:59 3:11+0:22 2:56+0:04 2:69+0:35 2:70+0:34

Heart (g) 0:96+0:09 1:40+0:13 1:16+0:05 1:24+0:12 1:19+1:13

Soleus (g) 235+48 248+37 172+33 203+24 183+45

EDL (g) 110+37 165+44 193+18 188+12 192+51

Each column gives biometric data for the 5 groups: for all groups except D0 (group sacrificed on the first day of the experiment), data have been obtained at the end of
the experiments.
WAT = White Adipose Tissue, rWAT = retroperitoneal White Adipose Tissue, iBAT = interscapular Brown Adipose Tissue, EDL = Extensor digitorum longus.
doi:10.1371/journal.pone.0100073.t001

Figure 1. Daily available food per rat in each group. Changes of quantities occur each week, except for group AL which was not submitted to
caloric restriction. At the end of the 8-weeks experiment, each rat in groups H0, H1 and H4 will have received 1120 g of food. Consumed food is not
always equal to this amount but is recorded every day.
doi:10.1371/journal.pone.0100073.g001

Dynamics of Body Weight and Food Intake in Rats
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Total glucose u (g) and ghrelin concentration e (pg.mL{1) in

plasma depend on the diet composition [18]. The glucose level

increases with food intake as follows:

du

dt
~m1c(a,h){m2u: ð5Þ

Ghrelin production is inhibited in the presence of food in the

stomach [41],

de

dt
~

n2

1zn1c(a,h)
{n3e: ð6Þ

The hunger h is regulated in the central nervous system,

integrating signals from the rest of the body via circulating

hormones [7,8]. Regulation of hunger is a complex system. The

amount of circulating leptin as an indicator of body adiposity leads

to a decrease in hunger [8], so we assume hunger decreases when

leptin increases. The ghrelin concentration decreases when the

stomach is full and the hunger follows the same variations [12] so

we assume hunger increases when ghrelin increases. The effect of

leptin and ghrelin is opposite, though they both have an action in

the arcuate nucleus [18]. The hunger h is also supposed to be a

decreasing function of glucose level u [42]. The hunger h was

defined as the amount of Joules required by the system at any time,

so the evolution of h is given by:

dh

dt
~

a1e

1za2l
{b(a3zu)h: ð7Þ

System (1)–(7) takes regulations at short and long time scales

into account. Variables directly linked to daily food intake such as

ghrelin concentration and glucose level have an influence on a

daily basis whereas leptin has an influence on a longer time scale.

Adaptation of Energy Expenditure
The previously described model is well adapted when food is

available Ad libitum. As the food consumed is always equal to

hunger, the organism does not need to change relatively to

environmental conditions and its rate of energy expenditure R is

therefore constant. In the case of caloric restrictions, energy

expenditure is lowered to maintain the energy balance [43]. To

take this phenomenon into account, we assume that the rate of

energy expenditure R depends on the food consumed, with a

memory effect.

The rate of energy expenditure R is known to adapt to the past

food intake c(a,h) [24]. As the food is supposed to be available on

Figure 2. Body weight and food intake evolution. A) Temporal evolution of body weights (in grams) for each group (mean+ sd): AL (black), H0
(red), H1(blue) and H4 (green). A small offset has been added to the time points to ease the reading. B) Evolution of consumed food (straight lines,
mean + sd) weekly by each rat (in each group: AL (black), H0 (red), H1(blue) and H4 (green)) compared to the available food (dashed lines). Group H0
consumed all its available food for the duration of the experiment while groups H1 and H4 had leftovers.
doi:10.1371/journal.pone.0100073.g002

Table 2. Plasma hormones and glucose assays.

D0 AL H0 H1 H4

Ghrelin (pg.mL{1) nd 43.30 + 17.75 25.66 + 14.65 78.48 + 97.96 18.01 + 9.88

Leptin (ng.mL{1) 4:34+1:78 7:53+2:72 3:60+1:66 5:19+1:66 7:07+3:66

Glucose (mg.dL{1) 140:7+11:6 148:7+24:1 132:2+8:9 121:4+14:8 144:3+21:2

Ghrelin, leptin and glucose concentrations in plasma in the control group and at the end of the experiment for groups AL, H0, H1 and H4 (mean + sd, nd: not
determined).
doi:10.1371/journal.pone.0100073.t002

Dynamics of Body Weight and Food Intake in Rats
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a daily basis, the mean food intake in the last t days is compared to

the mean food intake in the last t’ days (with t’wt) to define the

value of R. The ‘‘reference’’ food (food consumed between times

t{t’ and t) is slowly modified accordingly, so R is constant if the

food intake doesn’t change for at least t’ days. When food intake

varies on short periods of time, the rate of energy expenditure R is

progressively modified to reduce the difference between these

mean food intakes, with a rate of adaptation equal to E, as follows:

dR

dt
~E

1

t

ðt

t{t

c(a(v),h(v))dv{
1

t’

ð t

t{t’
c(a(v),h(v))dv

� �
: ð8Þ

This equation needs an initial condition R0 which corresponds

to the value of the rate of energy expenditure with a constant food

intake equal to hunger (Ad libitum case).

Other factors influence energy expenditure [20,39] such as

plasma leptin, environment and aging [43,44]. Nevertheless this

model focuses only on the effect of caloric variations as it is the

easiest parameter to measure and manipulate experimentally.

Parameter Estimation
System (1)–(8) use 21 parameters whose values are essential to

the relevance of the simulation results. Amongst these, the 4

Figure 3. Schematic representation of the model. Positive influences are represented by straight lines with arrows and negative influences by
bar-headed lines. Relations whose effect can vary in time are represented by dashed lines with a dot at the end.
doi:10.1371/journal.pone.0100073.g003

Table 3. Model variables.

Name Symbol Unit

food available a kJ

hunger h kJ

plasma ghrelin e pg.mL21

plasma glucose u g

plasma leptin l ng

fat mass S g

fat-free mass W g

rate of energy expenditure R min21

Variables of the model with associated units and symbols.
doi:10.1371/journal.pone.0100073.t003

Dynamics of Body Weight and Food Intake in Rats
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parameters of hormone production and degradation are taken

from the literature (see Table 4 for a summary of units and origins

of parameters of the model). Food-relative parameters depend on

the composition of the chow diet.

To estimate the 12 remaining parameters, we used the final fat

mass and the evolution of body weight of each individual rat from

groups AL and H1. Parameter values were obtained by

minimizing the residual sum of squares (RSS) of observed data

compared to simulation results using the Nelder-Mead algorithm

[45]. We then used these parameter values to test the predictive

capacity of our model against data from groups H0 and H4.

In the AL case, Ad libitum food implies that food intake c is

always equal to h and the rate of energy expenditure R is constant.

Consequently, energy expenditure only depends on fat mass S and

fat-free mass W . We have access to the experimentally consumed

food, so we use this value to explicitly determine the evolution of h.

Hence equations (1) and (2) are decoupled from the other

equations and we consider them as an independent subsystem.

In a first step, applying the minimization algorithm to this

subsystem leads to an estimation of the 4 parameter values relative

to equations (1) and (2). Then, in a second step, we estimate the

remaining parameter values using equations (1), (2), (4), (5), (6) and

(7) and the previously determined parameters. To estimate the

parameters relative to h in equation (7) we once again use data

from group AL. However, this time, c was determined by the

values of a corresponding to Ad libitum food and h is given by (7).

As R is supposed to be constant over group AL, the system used

here was composed by all equations except (8). Finally, those

parameters relative to the rate of energy expenditure R, were

estimated in a third step, using experimental data from hypoca-

loric group H1. We then used the whole system of equations and

parameter values previously estimated for AL.

Parameter estimation is detailed as follows:

Step 1. Only equations (1) and (2) are used. The input of the

system is the experimentally determined consumed food c for

group AL. We assume R is equal to R0 when Ad libitum food is

Table 4. Model parameters.

Parameter Value Unit

n1 1.52 min.kJ21 experiments

n2 0.4025 pg.mL21.min21 experiments

n3 0.007 min21 [46]

m1 0.039 g.kJ21 diet composition

m2 0.007 min21 [47]

c1 0.074 min21 [48]

c2 0.126 ng.g21.min21 [48] and experiments

rW 7.5 kJ.g21 [29]

rS 39.3 kJ.g21 [29]

j 1964.4 kJ fit step 1

f 2.2 – fit step 1

y 1.6 |10{9 – fit step 1

k 0.269 g21 fit step 1

R0 2.525 |10{5 min21 fit step 1

a1 4.02 |10{8 mL.kJ.min21.pg21 fit step 2

a2 1.66 |10{4 ng21 fit step 2

a3 5.03 |10{4 g fit step 2

b 5.99 |10{6 min21.g21 fit step 2

E 9.05 |10{9 kJ21 fit step 3

t 1 day fit step 3

t’ 8 day fit step 3

Values of the parameters used in the model and associated units. When the parameter is taken from the literature, the corresponding reference is indicated.
doi:10.1371/journal.pone.0100073.t004

Table 5. Approximate bayesian computation of parameters.

E (kJ21) t (day) t’ (day)

mean 1.01|10{8 1.3 8.4

standard deviation 0.74|10{8 0.9 6.1

Mean and standard deviation of selected runs of the ABC (RSSv1.3 RSSopti ) for parameters relative to the memory of the system (E, t and t’). Mean values are close to
parameter values estimated with the optimisation process but with an important standard deviation around these values.
doi:10.1371/journal.pone.0100073.t005

Dynamics of Body Weight and Food Intake in Rats
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available. As we have a value for c, it is not necessary to describe

the variations of hunger and hormones so the only dynamical

variables of the subsystem are S and W . The RSS between

outputs of the model (predicted body weight and fat mass) and

experimental data (body weight and fat mass) is minimized for

each individual rat from group AL. This leads to an estimation of

the parameters j, k, y, f and the basal rate of energy expenditure

R~R0.

Step 2. Equations (1), (2), (4), (5), (6) and (7) are used with

experimental data from group AL. Parameter values determined

at step 1 are used at this step. The rate of energy expenditure R is

still supposed to be constant as the food is Ad libitum, with R~R0

determined in the previous step. In this step, c(a,h) is supposed to

be equal to h as a is always higher than h (to take unlimited food

into account). This leads to an estimation of the parameter values

relative to the hunger h: a1, a2, a3 and b.

Step 3. For the last step, the whole system is used. Both the pattern

of food availability and experimental data from group H1 are

used, with five initial days of Ad libitum food to be consistent with

the experiment. Parameters determined at steps 1 and 2 are used.

As the H1 rats are supposed to adapt to the reduced and varying

amount of food available, this allows to estimate the parameters

associated with energy expenditure variations: E, t and t’ in

equation (8). Initial condition for R is chosen to be equal to R0

determined at step 1 as initial food is Ad libitum.

Akaike Information Criteria (AIC) was computed to compare

the ability of the current model and of a model without memory

(using equations (1)-(7) and R constant as for the AL case) to

Figure 4. Final experimental body weight and food intake. A) Final body weights at the end of the experiment for all groups. All hypocaloric
groups (H0, H1, H4) are significantly different from group AL. Within hypocaloric groups, H4 is significantly different from H0. B) Total amount of food
consumed in grams at the end of experiment (8 Weeks) for all groups (mean + standard deviation). All hypocaloric groups (H0, H1, H4) consumed
significantly less food than group AL. Within hypocaloric groups, H4 is significantly different from H0 and H1. Dashed line is the amount of the total
food that was available for the hypocaloric group. C) Variation of body weight from the start to the end of the experiment versus the total amount of
food consumed. Crosses indicate individual points, open circles are the averages and the whole group is described by its convex hull. The dashed line
is the linear regression for the group AL (p~0:005 and R2~0:88). The slope is 0.3, indicating that the weight gain is equal to 30% of the weight of the
consumed food.
doi:10.1371/journal.pone.0100073.g004
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reproduce the data. AIC~n ln (RSS=n)z2k with n the number

of points used to evaluate the results, RSS the residual sum of

squares and k the number of estimated parameters.

Approximate bayesian computation (ABC) was used to calculate

a distribution of the computed parameter values, starting with

uniform sampling around optimized parameters. Runs with a

residual sum of squares smaller than a certain level RSSopti

(defined using the result of the optimization process) were selected;

here the threshold was equal to 1.3 RSSopti (see Table 5 for means

and standard deviations of these distributions).

Predictions
Following the estimation procedure (see previous paragraphs),

the model was tested with the patterns of food input corresponding

to the two other groups of rats (H0 and H4) to evaluate its

predictive capacity. Parameter values determined for groups AL

and H1 were used. As all the rats were supposed to be similar

(same origin and age), we used the same parameter values for each

group.

If another group (H0 or H4) was chosen at step 3 of the

estimation procedure instead of H1, the set of parameters

associated with R was different. However the RSS for each set

of parameters were close from one another. Hence, the simulated

data will be better for the chosen group than it will for the other

groups. The data from each group could be fitted individually to

have better results but this would suppress the predictive capacity

of the model.

Statistical Analysis
All results are presented in the form: mean + standard

deviation.

Normality of the samples was tested using Shapiro-Wilks test.

Statistical comparison was performed using Mann-Whitney test

for two groups, and an analysis of variance (ANOVA) for more

than two groups. All analyses were performed using the R software

(www.R-project.org).

Results

Food Availability Modifies Body Weight Dynamics
We present in this section the results of the experiments

performed on rats – see the ‘‘Materials and Methods’’ section for

details. In addition to a control group (called AL for Ad libitum,

n~6), three groups of 6 rats had their food availability modified

during the 8 week long experiment. All rats experienced Ad
Libitum feeding conditions prior to the experiment. Fig. 1

describes the available food time course for groups H0, H1 and

H4 characterised by periods of variations of 0, 1 and 4 weeks

respectively. In order to ensure a controlled total food intake, these

groups were hypocaloric (around 80% of AL’s average intake).

Group H0 was daily fed with a constant amount of food with no

variations. Group H1 was daily fed with random and uncorrelated

amounts of food around the average. The feeding pattern of group

H4 basically corresponds to a fasting experiment for 4 weeks (less

than 60% of the AL’s average intake) followed by a refeeding in

the following month. In the three hypocaloric groups, the total

Figure 5. Simulated evolution of body weight (red line) compared to experimental data (mean + standard deviation in black). In
each group, the food input matches the experimental patterns and the first 5 days of the simulation were conducted with Ad libitum diet to be closer
to the experiment. Parameter values were estimated with data from groups AL and H1 and predictions were made with these parameter values on
groups H0 and H4. Top left: AL; top right: H0; bottom left: H1; bottom right: H4.
doi:10.1371/journal.pone.0100073.g005
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amount of food provided to each rat during the whole experiment

was the same (1120 g in 8 weeks corresponding to 14.07 MJ – see

Fig. 1).

At the end of the experiment, individuals were sacrificed and fat

mass, muscles masses and some organ masses were collected and

weighted. Table 1 displays the values along with an initial control

group sacrificed on the first day of the experiment (called D0 for

‘‘day 0’’). As expected, body weight is smaller for the groups with

reduced food (H0, H1 and H4) compared to group AL

(p~0:00086) and different between the 4 groups (p~0:0008 for

the ANOVA). There is no significant evidence that distributions of

body weights in each group are not normal (p{values between

0.21 and 0.97).

As shown on Fig. 4 A, a difference in final body weight exists

within hypocaloric groups H0, H1 and H4, the corresponding

p{value is slightly above the 5% threshold (p{value~0:0636).

Pairwise comparison yields significant differences between H0 and

H4 (p{value~0:02056) whereas total food consumption (see

Fig. 4 B) is significantly different between the two groups

(p{value~0:005), in the opposite direction. Rats in group H4

have a higher body weight although they ate less food than rats

from group H0. No such differences are observed for group H1.

These results suggest that an energy expenditure adaptation

occurs according to the amount of food consumed. This is

summarized on Fig. 4 C which shows the variations of body weight

during the experiment as a function of the total amount of food

consumed. All data points are plotted and the convex hull has

been coloured according to each group. Data for group AL closely

follows a linear pattern with slope 0:3 which indicates that each

gram of food consumed turns into 0:3 grams of body weight. The

other groups do not follow the same pattern. Strikingly group H4

is well above the line indicating that its individuals ate less food but

Figure 6. Evolution of cumulated food intake predicted by the model (red curve) compared to experimental data (black crosses:
mean + sd). Available food in the simulation corresponds to experimental patterns in each group, with Ad libitum diet in each group at the
beginning. Results from groups AL and H1 correspond to the parameter estimation process while results for groups H0 and H4 correspond to
predictions. Top left: AL; top right: H0; bottom left: H1; bottom right: H4.
doi:10.1371/journal.pone.0100073.g006

Table 6. Akaike Information Criteria.

H0 H4 H1

AIC with memory 375 368 445

AIC without memory 382 413 448

AIC (Akaike Information Criteria) for groups H0, H4 and H1 to compare results of the model with and without memory. AIC~n ln (RSS=n)z2k with n the number of
points used to evaluate the results, RSS the residual sum of square and k the number of parameters estimated. AIC is smaller in the model with memory, even if there
are more parameters: this model is more adapted to explain these data.
doi:10.1371/journal.pone.0100073.t006
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that a bigger fraction of it turned into body weight. The H1

pattern is somewhat similar but less significantly.

Body weight evolution is displayed on Fig. 2 A and is consistent

with the food intake in Fig. 2 B albeit with a delay, as the increase

or decrease is associated with the food intake in the previous week.

As observed in previous studies, when presented with various

amounts of food, rats adapt their eating pattern depending on past

eating behavior. Our main experimental result is that rats adapt

their energy expenditure by taking efficiently advantage of the

available food when in fasting conditions and using more energy

when overfed. This behavior results in different body weights for

the same caloric intakes.

Mathematical Model of Food Intake and Body Weight
Evolution

We show in this section the predictive power of our model of

feeding behavior and food intake dynamics. The model and the

equations are presented in details in the ‘‘Materials and Methods’’

section.

Our model describes the evolution of hunger, leptin, ghrelin,

plasma glucose which is correlated with insulin, energy expendi-

ture and body weight, composed of fat and lean mass (see Table 3

for a list of the variables and their units). This model allows to

describe hunger, defined as the amount of food needed by the

organism, by computing the dynamics of food intake in the short

term. Energy expenditure is described as a function of the rate of

energy expenditure, fat-mass and fat-free mass. It includes a delay

equation describing the variations of the rate of energy expendi-

ture R. The evolution of R depends on the comparison of short-

term food intake with long-term food intake (see equation (8)).

Fig. 3 describes the components of the model and Table 4

describes the parameters as well as their units. The fitting

procedure used to determine some parameter values is fully

described in the ‘‘Materials and Methods’’ section. It uses only AL

and H1 as training data sets.

Fig. 5.AL and 5.H1 show the results of the parameter estimation

on groups AL and H1, illustrated on body weight evolution.

Simulations are accurate for both groups, as expected from the

parameter estimation process. In addition, the model correctly

predicts the results on the validating data sets: good matches are

obtained for both H0 (Fig. 5.H0) and H4 (Fig. 5.H4). Variations of

predicted body weight for group H4 correlate with modifications

of food availability and are close to experimental values. Small

daily oscillations are observed in groups H0, H1 and H4,

especially when available food is below hunger. These oscillations

correspond to a daily pattern of food intake: while food is

available, it is consumed, resulting in an increase in body weight,

then the consumption is equal to 0 and the body weight decreases.

In the case of group H4, the predicted body weight at the end of

the period of restriction (week 4) is slightly higher than the actual

data. As the amplitude of the restriction is important, the

adaptation could be less efficient in reality than it is in the model.

There are also other phenomena such as environmental condi-

tions, excluded here for simplicity, that could influence this

adaptation.

Food availability is the only input of the model (see ‘‘Materials

and Methods’’ section). It is defined according to the experimental

Figure 7. Predicted body weight with a constant rate of energy expenditure R compared to experimental results. Simulation for group
H1 corresponds to the parameter estimation without memory (estimation of R0 and other parameter values obtained for group AL). Predicted body
weight in this case does not match experimental results. In particular, body weight is slightly overestimated for group H0 while in cases H1 and H4,
the amplitude of variations is too important due to the absence of adaptation to food intake.
doi:10.1371/journal.pone.0100073.g007
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pattern, including the five days of Ad libitum diet at the beginning.

Our model correctly predicts food intake pattern, as shown on

Fig. 6. In particular, for groups H1 and H4, the model predicts

leftover food as observed in reality. In all cases, predicted food

intake is a close match to the experimental data.

A Metabolic Memory is Necessary to Explain the
Observed Data

The hypothesis that adaptation of the rate of energy expendi-

ture is performed with a memory is included in equation (8) –

namely the variable R is modified with a memory of the food

intake in the past. As explained in the previous section, this model

leads to an accurate reproduction of the experimental data. To test

the relevance of this memory in the system, simulations were run

with a constant value of R equal to the initial value R0 of the rate

of energy expenditure. The value of R0 was obtained using the

estimation procedure described in the section ‘‘Materials and

Methods’’ without any memory of the past food intake and data

from group H1. The model without memory was then applied to

groups H0 and H4.

The values of the residual sum of squares are higher without

memory than in the simulations with a non-constant R for groups

H0, H1 and H4. Moreover the data are no longer well explained

and predicted without memory (see Fig. 7). Akaike Information

Criteria allows us to objectively compare these two different

models (see Table 6). For each group, AIC is lower with memory

than without, indicating that this model better explains our data

despite the extra parameters to estimate. One may notice that

better results could be obtained for the model without memory, by

evaluating R0 in each group separately, but the model would not

be predictive anymore. For group AL, the memory did not impact

the score, as expected: the rats are not submitted to caloric

restrictions so they don’t need to adapt their rate of energy

expenditure to avoid weight variations.

Hypothesis to Explain Body Weight Differences
The main result here is derived from the evolution of the rate of

energy expenditure. The variations of R are subjected to a delay

equation that takes memory of past food intake into account. The

model predicts the memory to be around 8 days (see Table 4).

The important weight gain in group H4 during the last 4 weeks

is then explained by the lag in the refeeding period when energy

expenditure is still low (see Fig. 8) while food intake is at its highest

(see Fig. 2 B). Due to the delay in the adaptation of the rate of

energy expenditure, the difference between energy intake and

energy expenditure is maximal during this period. In the H1 case,

also submitted to important caloric variations, the period of 1 week

is too short to modify the rate of energy expenditure in the same

way as for group H4. The adaptation is then mitigated and the

observed weight gain is less important than it is for group H4.

The model was applied for 16 weeks (see Fig. 9), with H0 food

pattern following H0, H1 or H4 experiment. With the same

amount of food during the last 8 weeks for the three groups, the

final predicted body weight tends to the same value regardless of

the food pattern in the first 8 weeks. The lower food consumption

for groups starting with H1 or H4 patterns does not impact this

Figure 8. Predicted rate of energy expenditure variations in the cases H0 (red), H1(blue) and H4 (green), starting from the same
initial condition. R value is stabilizing to a different value after a few days if the food pattern is followed for a long enough time (w8 days).
Changes occur when the food availability is modified.
doi:10.1371/journal.pone.0100073.g008
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evolution. The adaptation to a constant amount of food intake

leads to a fixed body weight after some time. Applying twice the

same pattern (meaning the H1 diet for 16 weeks or the H4 diet for

16 weeks) leads to increases in body weights and fat mass, which

reach elevated values(see Fig. 9). These variations with large

amplitudes could have deleterious effects on the biological system,

such as development of leptin or insulin resistances.

Discussion

In this work, we showed that food availability fluctuations can

trigger body weight variations that cannot be explained by

differences in the overall energy intake. In our experiment, rats

submitted to the same quantity of food but distributed differently

over time exhibited significant weight differences. These differ-

ences were strongest when the period of variation was high – one

month of low food availability followed by one month of important

food availability.

In order to explain these results, we presented a new model of

body weight dynamics, describing hunger (defined as the amount

of food needed by the organism), hormones and food availability

dynamics. This model includes a delay equation describing

variations of the rate of energy expenditure, which is adapting

according to the memory of food intake. This delay equation was

shown to be crucial.

After estimating the parameter values that best fit our

experimental data, we showed that our model was able to both

explain and predict food intake and body weight dynamics from

our experimental results. We also showed that without the

memory of food intake, the model cannot correctly reproduce

the experimental data, which stresses that this adaptation is

essential, in particular when food availability is low. Indeed, our

model predicts that a period of caloric restriction leads to an

increase in hunger and a decrease in the rate of energy

expenditure. Ending these restrictions triggers a higher food

consumption and a larger energy storage, with an increased rate of

energy expenditure matching the food intake pattern. However

this increase takes time to occur and during this delay period, a

high amount of food is consumed while the energy expenditure

remains low. We estimated a lag of 8 days which explains why

quicker variations did not lead to any increase in weight. This

provides a simple explanation for weight variations. A similar

phenomenon is observed in humans and could explain why people

submitted to very strict diets tend to gain more fat when they stop

dieting, as their bodies have adapted to the reduced food

consumption [25].

Although individual variability may play an important role

when describing body weight variations and food intake dynamics,

we did not focus on this aspect and rather considered an average

behavior. The model proved its efficiency to describe the data.

From the experimental results (Fig. 2), one may note that

individual variability is globally initially low and increases with

the duration of the experiment. Consequently, validation of the

model’s predictions on the evolution of body weight during a

period of time greater than 8 weeks should be supported by

additional experiments and could benefit from considering

variability.

Figure 9. Predicted body weight for a 16 week experiment with different combinations of food availability patterns. In blue H1
followed by H0 (line) or H1 (squares), in green H4 followed by H0 (line) or H4 (squares) and in red twice H0. In cases with H0 in the last 8 weeks (lines),
the body weight tends to the same value, whatever the past variations.
doi:10.1371/journal.pone.0100073.g009
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The model has largely ignored some phenomena such as aging

processes which affect the rate of energy expenditure, appetite or

sensitivity of the system to stimuli. Indeed feeding behavior can be

extremely complex especially regarding food content and palat-

ability. Also, leptin and insulin resistances are not included in this

model but are known to have an influence on the regulation of

appetite and storage of fat mass following an important weight

gain. Including some of these phenomena could result in a better

description of the system and help enhancing our understanding of

the mechanisms behind these adaptations. Nevertheless, the

approach developed in this work, based on innovative mathemat-

ics and the use of a simple model, proved to be relevant to describe

this physiological system.
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