
HAL Id: hal-01087046
https://hal.archives-ouvertes.fr/hal-01087046

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-Selective Convertible Undeniable Signatures with
Short Conversion Receipts

Fabien Laguillaumie, Damien Vergnaud

To cite this version:
Fabien Laguillaumie, Damien Vergnaud. Time-Selective Convertible Undeniable Signatures with Short
Conversion Receipts. Information Sciences, Elsevier, 2010, pp.2458-2475. �hal-01087046�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49578466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01087046
https://hal.archives-ouvertes.fr

Time-Selective Convertible Undeniable Signatures with Short

Conversion Receipts ∗

Fabien Laguillaumie1 Damien Vergnaud2

1 GREYC, Université de Caen
Campus 2, Boulevard du Maréchal Juin, BP 5186

14032 Caen Cedex, France

2 École normale supérieure – C.N.R.S. – I.N.R.I.A.
Département d’informatique, 45 rue d’Ulm

75230 Paris CEDEX 05, France

Abstract

Undeniable signatures were introduced in 1989 by Chaum and van Antwerpen to limit the self-
authenticating property of digital signatures. An extended concept – the convertible undeniable
signatures – proposed by Boyar, Chaum, Damg̊ard and Pedersen in 1991, allows the signer to convert
undeniable signatures to ordinary digital signatures.

In this article, we present a new efficient convertible undeniable signature scheme based on bilinear
maps. Its unforgeability is tightly related, in the random oracle model, to the computational Diffie-
Hellman problem and its anonymity to a non-standard decisional assumption. The advantages of
our scheme are the short length of the signatures, the low computational cost of the signature and
the receipt generation. Moreover, a variant of our scheme permits the signer to universally convert
signatures pertaining only to a specific time period. We formalize this new notion as the time-
selective conversion. We also improve our original scheme from CT-RSA’05 by reducing the length
of the generated receipts: their size is now logarithmic in the number of time periods.

Keywords. Convertible undeniable signatures; bilinear maps; anonymity; exact security; time-
selective conversion.

1 Introduction

We present a new efficient convertible undeniable signature scheme based on bilinear maps. Its unforge-
ability is tightly related, in the random oracle model, to the computational Diffie-Hellman problem and
its anonymity to a non-standard decisional assumption. The advantages of our scheme are the short
length of the signatures, the low computational cost of the signature and the receipt generation. More-
over, a variant of our scheme permits the signer to universally convert signatures pertaining only to a
specific time period. We formalize this new notion as the time-selective conversion. Contrary to the
original scheme [24] where the size of the receipts grew linearly with the number of time periods, the size
of the generated receipts in the scheme proposed in this longer version is only logarithmic in the number
of time periods.

1.1 Previous work

Digital signatures aim at recover in silico the usual properties of the traditional in vivo signatures,
namely authentication, integrity, non-repudiation of the signed document and universal verifiability
of the signatures. However, unlike handwritten signatures, digital signatures can be copy-cloned and

∗This is the full version of “Time-Selective Convertible Undeniable Signatures” [24] presented at CT-RSA’05 by the
same authors, with augmented results.

1

therefore authenticated confidential documents (e.g. software certificates, contracts, dishonourable bills)
can easily be disseminated.

For privacy reasons, it is desirable, in many applications, that the verification of signatures be con-
trolled or (at least) limited by the signer. This remark justifies the concept of undeniable signatures,
introduced in 1989 by Chaum and van Antwerpen [13]. In this setting, the verification of a signature
requires the cooperation of the signer. The security of their protocol relies on the hardness of the
computational Diffie-Hellman problem, but suffers from the fact that the interactive protocols are not
zero-knowledge. One year later, Chaum improved significantly the initial proposal in [11] by providing
a zero-knowledge version.

There exist documents whose authentication must be limited at first, but which will require ordinary
digital signatures after some period of time. In 1991, the concept has been refined by giving the possibility
to transform an undeniable signature into a self-authenticating signature. These convertible undeniable
signatures, introduced in [6] by Boyar, Chaum, Damg̊ard and Pedersen, provide individual and universal
conversions of the signatures. Unfortunately, the seminal Elgamal-like scheme has been broken in 1996 by
Michels, Petersen, and Horster [26] who proposed a repaired version with heuristic security1. Since then,
many schemes have then been proposed, based upon classical signatures, such as Schnorr [27], Elgamal
[14] and RSA [18, 17, 16]. Convertible undeniable signatures have given rise to many applications in
cryptography [6, 7, 12].

In all these protocols, the universal conversion consists in revealing a part of the signer’s secret key.
This conversion makes all signatures, past as well as future, be universally verifiable. This property
may be undesirable in some context and furthermore the corresponding keys cannot be used to generate
undeniable signatures any more. As in a classical public key infrastructure the public key needs to be
certified by an authority (as well as in any asymmetric cryptographic protocol), this approach leads to
the registration of a large number of public/secret key pairs for the signer, and the need for the verifiers
to check the validity of these certificates.

1.2 Our contributions

In this article, we propose a new convertible undeniable signature scheme, in the spirit of both the
original paper of Chaum and van Antwerpen [13] and the short signatures from bilinear maps proposed
by Boneh, Lynn and Shacham [5]. The amusing fact is that the idea underlying these two papers is
actually the same. In both cases, a signature consists in an exponentiation of (a hash-value of) the
message by the signer’s secret key : h(m)s. In Chaum and van Antwerpen’s scheme, the anonymity
of signatures [16] comes from the difficulty of the decisional Diffie-Hellman problem in a prime order
subgroup of the multiplicative group of a finite field, whereas the efficiency of Boneh et al. signatures
comes from the ease of this problem on certain elliptic curves.

We combine the best of both worlds and, introducing Zhang–Safavi-Naini–Susilo and Boneh–Boyen’s
technique from [33, 3], we obtain a convertible undeniable signature protocol which is one of the most
efficient. Moreover, to overcome the difficulty mentioned above, we introduce and formalize the time-
selective convertible undeniable signatures which supports signers in gradually converting the undeniable
signatures in a controlled fashion. A slight variant of our new scheme permits the signer to universally
convert signatures pertaining only to a specific time period. The size of the receipt is only logarithmic in
the number of time conversions (whereas in our previous proposal [24], this size was linear in the number
of time periods).

The new convertible undeniable signature scheme is designed for devices with constrained computa-
tion capabilities or with low bandwidth. It can be embedded in smart cards for example, as the main
computation for a signature is a scalar multiplication on an elliptic curve, and the signature is essentially
one point (with some additional random salt). The unforgeability of our scheme is tightly related, in the
random oracle model, to the computational Diffie-Hellman problem and its anonymity to a non-standard
(non-interactive2) decisional assumption.

1The security of the scheme from [26] has recently been established in the generic group model [15].
2In [24], the assumption underlying the anonymity property was interactive.

2

1.3 Subsequent work

In [15], El Aimani and the second author provided a protocol for time-selective convertible undeniable
signatures (based on [26]) with an advanced feature which permits the signer to universally convert
achronously all signatures pertaining to a specific time period. The security is proven in the generic group
model assuming specific assumptions on the hash function. Unfortunately, the conversion properties is
ensured by using pseudo-random functions and are therefore not publicly checkable.

The technique introduced in [24] has had other applications. For instance, Paillier and the authors de-
signed a very efficient universally convertible directed signatures [23] – such a construction had remained
open since 1993.

1.4 Roadmap

The article is organised as follows: first we formally define the concept of time-selective convertible
undeniable signature scheme and its security model in Section 2. Then, we recall in Section 3 standard
techniques to (dis)prove the membership of group elements to some algebraic languages, we review the
cryptographic properties of bilinear maps and we describe the problems upon which depend our schemes.
In section 4, we describe our new scheme and its time-selective convertible variant. Eventually in Section
5 we prove their security in the random oracle model. In appendix, we present a time-selective convertible
variant of Huang, Mu, Susilo and Wei’s undeniable signature scheme from [20], since its security holds
under more classical assumptions.

2 Formal definition and security model

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n and the set of all finite binary strings is denoted by {0, 1}∗.
The empty word is denoted by $. Let A be a probabilistic Turing machine running in polynomial time
(a PPTM, for short), and let x be an input for A. The probability space that assigns to a string σ
the probability that A, on input x, outputs σ is denoted by A(x). The support of A(x) is denoted by
A[x]. Given a probability space S, a PPTM that samples a random element according to S is denoted

by x
R←− S. For a finite set X, x

R←− X denotes a PPTM that samples a random element uniformly at
random from X.

2.2 Definition

In this subsection, we formalise the concept of time-selective convertible undeniable signatures.

Definition 1 (Time-selective convertible undeniable signature). Let T be a positive integer. A time-
selective convertible undeniable signature scheme with T time periods Σ is a 9-tuple

Σ = (Setup,SKeyGen,VKeyGen,Sign,Control,Confirm,Deny,Convert,Verify)

such that:

• Σ.Setup, the common parameter generation algorithm, is a PPTM which takes an integer k as input.
The output are the public parameters P. The integer k is called the security parameter.

• Σ.SKeyGen, the signer key generation algorithm, is a PPTM which takes the public parameters as
input. The output is a pair (sks,pks) where sks is called a signing secret key and pks a signing
public key.

• Σ.VKeyGen, the verifier key generation algorithm, is a PPTM which takes the public parameters
as input. The output is a pair (skv,pkv) where skv is called a verifying secret key and pkv a
verifying public key.

• Σ.Sign, the signing algorithm, is a PPTM which takes the public parameters, a message, an integer
in [[1, T]] and a signing secret key as inputs and outputs a bit string.

3

• Σ.Control, the controlling algorithm, is a PPTM which takes the public parameters, a message m, a
bit string σ, an integer p ∈ [[1, T]] and a signing key pair (sks,pks) as inputs and outputs a bit. If
the bit output is 1 then the bit string σ is said to be a signature on m for pks for the time period
p.

• Σ.{Confirm.Deny}, the confirming/denying protocols (respectively), are two-party protocols (Prove,Verify)
such that:

– Prove and Verify take as input the public parameters, a message m, an integer p ∈ [[1, T]], a
bit-string σ, a signing public key pks and a verifying public key pkv and the public parameters;

– Prove takes as input sks the signing secret key corresponding to pks;

– Verify takes as input skv the verifying secret key corresponding to pkv;

Confirm.Verify (resp Deny.Verify) outputs an element in {⊥, 1} (resp
{⊥, 0}).

• Σ.Convert, the conversion algorithm, is a PPTM which takes as input the public parameters, an
integer in [[1, T]], a signing key pair and a bit string Υ (either a pair message/signature or the
empty string $) and outputs a bit string.

• Σ.Verify, the verifying algorithm for converted signature, is a PPTM which takes as input the public
parameters, a message m, and a bit string σ, an integer p ∈ [[1, T]], a signing public key pks and a
bit string Λ and outputs a bit. If the bit output is 1 then the bit string Λ is said to be a receipt of
the validity of σ.

where the protocols Σ.Confirm and Σ.Deny are designated verifier proof of membership systems for the
languages (respectively):

{(P,m, σ, p, (sks,pks)) ∈ Σ.Setup[k]× {0, 1}∗2 × [[1, T]]× Σ.SKeyGen[P]

such that Σ.Control[P,m, σ, p, (sks,pks)] = {1}}
{(P,m, σ, p, (sks,pks)) ∈ Σ.Setup[k]× {0, 1}∗2 × [[1, T]]× Σ.SKeyGen[P]

such that Σ.Control[P,m, σ, p, (sks,pks)] = {0}}
and for all k ∈ N, for all P ∈ Σ.Setup[k], for all S = (pks, sks) ∈ Σ.SKeyGen[P], for all m ∈ {0, 1}∗

and for all p ∈ [[1, T]], we have:

∀σ ∈ Σ.Sign[P,m, p, sks],Σ.Control[P,m, σ, p,S] = {1}

∀σ ∈ Σ.Sign[P,m, p, sks],∀Λ ∈ Σ.Convert[P, p,S, (m,σ)],
Σ.Verify[P,m, σ, p,pks,Λ] = {1}

∀σ ∈ Σ.Sign[P,m, p,pks],∀Λ ∈ Σ.Convert[P, p,S, $],
Σ.Verify[P,m, σ, p,pks,Λ] = {1}

∀σ,Λ ∈ {0, 1}∗,Σ.Verify[P,m, σ, p,pks,Λ] = {1}
⇒ Σ.Control[P,m, σ, p, (sks,pks)] = {1}.

Remark 1. Informally, the fact that the protocols Σ.Confirm and Σ.Deny are designated verifier proof
of membership systems implies the following security properties [22]:

1. completeness and soundness: the confirming and denying protocols and the verifying algorithms
are complete and sound, where completeness means that valid (invalid) signatures can always be
proved valid (invalid), and soundness means that no valid (invalid) signature can be proved invalid
(valid);

2. non-transferability: a verifier participating in an execution of the confirming/denying protocols does
not obtain information that could be used to convince a third party about the validity/invalidity of
a signature.

Our definition generalises the definition of traditional convertible undeniable signature since:

Definition 2 (Convertible Undeniable Signature). A convertible undeniable signature scheme is a time-
selective convertible undeniable signature scheme with one time period.

4

2.3 Security model

In this subsection, we define the quantitative notions of unforgeability and anonymity of a time-selective
convertible undeniable signature scheme. The proofs of security are carried in the random oracle model
proposed by Bellare and Rogaway [1]. In this model, hash functions are idealised as oracles which output
a random value for each new query.

2.3.1 Registered public key model.

In public key cryptography, the notion of anonymity is to be handled with great attention. For instance,
in order to ensure anonymity, it is important that users register their public key by a certifying authority.
Hence, in our security analysis, it is assumed that the users’ keys have been already registered to an
authority. The registration procedure would always contain a proof of knowledge of the associated
private key. To further simplify the security analysis, we will assume that this procedure will be the
direct registration of the keys3.

2.3.2 Security against existential forgery under chosen message attack

The standard notion of security for digital signatures was defined by Goldwasser, Micali and Rivest
[19] as existential forgery against adaptive chosen message attacks (EF-CMA). In [24], the corresponding
notion for time-selective convertible undeniable signatures is defined along the same lines. The definition
of resistance to forgery for time-selective convertible undeniable signatures that we propose is similar. In
fact, we suppose that the adversary has access to the universal receipts for every time period p ∈ [[1, T]]
and is allowed to query a converting oracle Cv, a confirming oracle C and a denying oracle D on any
couple message/signature of its choice. As usual, in the adversary answer, there is the natural restriction
that the returned message/signature has not been obtained from the signing oracle.

Definition 3 (Unforgeability - EF-CMA). Let T be a positive integer, let

Σ = (Setup,SKeyGen,VKeyGen,Sign,Control,Confirm,Deny,Convert,Verify)

be a time-selective convertible undeniable signature scheme with T time periods and let A be an PPTM.
We consider the following random experiment, where k is a security parameter:

Experiment Expef−cma
Σ,A (k)

P R←− Σ.Setup(k),

(sks,pks)
R←− Σ.SKeyGen(P)

for j = 1 to T do Λj ← Σ.Convert(P, j, (sks,pks), $)

(m?, σ?, p?)
R←− AS,Cv,C,D(P,pks, {Λj}j∈[[1,T]])∣∣∣∣∣∣∣∣

S : (m, p) −→ Σ.Sign(P,m, p, sks)
Cv : (m, p, σ) −→ Σ.Convert(P, p, (sks,pks), (m,σ))
C : (m, p, σ,pkv) −→ Σ.Confirm(P,m, p, σ,pkv,pks)
D : (m, p, σ,pkv) −→ Σ.Deny(P,m, p, σ,pkv,pks)

return 1 if and only if the following properties are satisfied:
- Σ.Verify[P,pks,m

?, σ?, p?,Λp?] = {1}
- σ? was not obtained from S

We define the success of A, via Succef-cma
Σ,A (k) = Pr

[
Expef-cma

Σ,A (k) = 1
]
.

Given (k, t) ∈ N2 and ε ∈ [0, 1], the scheme Σ is said to be (k, t, ε)-EF-CMA secure, if no EF-CMA-
adversary A running in time t has Succef-cma

Σ,A (k) ≥ ε.
The scheme Σ is said to be EF-CMA secure if, for any security parameter k ∈ N, any polynomial

function t : N→ N, and any negligible function ε : N→ [0, 1], it is (k, t(k), ε(k))-EF-CMA secure.

3It is often necessary to require the security of the schemes even if the adversary is the key registration centre. In this
case, one must replace the proof of knowledge associated to the key registration by a zero-knowledge one [29].

5

2.3.3 Anonymity

We state the precise definition of anonymity under a chosen message attack (Ano-CMA) which captures
the notion that an attacker cannot determine under which key a signature was performed [16]. We
consider a Ano-CMA-adversary A that runs in two stages. In the find stage, it takes as input two
signing public keys pks0 and pks1 and outputs a message m?, a time period p? together with some state
information I. In the guess stage, A gets a challenge time-selective convertible undeniable signature σ?

formed by signing at random the message m? under one of the two keys for the time period p? and it must
say which key was chosen. In both stages, the adversary has access to a signing oracle S for both signing
key pairs, to a converting oracle Cv, to a confirming oracle C and to a denying oracle D. The attacker
is also given the universal receipts of both potential signers for all time period p ∈ [[1, p? − 1]]. The only
restriction on A is that it cannot query the triple (m?, σ?, p?) on the converting and confirming/denying
oracles.

Definition 4 (Anonymity - Ano-CMA). Let T be a positive integer, let

Σ = (Setup,SKeyGen,VKeyGen,Sign,Control,Confirm,Deny,Convert,Verify)

be a time-selective convertible undeniable signature scheme with T time periods and let A be an PPTM.
We consider the following random experiments, for r ∈ {0, 1}, where k is a security parameter:

Experiment Expano-cma−r
Σ,A (k)

P R←− Σ.Setup(k)

(sks0 ,pks0)
R←− Σ.SKeyGen(P)

(sks1 ,pks1)
R←− Σ.SKeyGen(P)

(m?, p?, I)
R←− AS,Cv,C,D(find,P,pks0 ,pks1)∣∣∣∣∣∣∣∣

S : (m, p, i) −→ Σ.Sign(P,m, p, sksi)
Cv : (m, p, σ, i) −→ Σ.Convert(P, p, (sksi,pksi), (m,σ))
C : (m, p, σ,pkv, i) −→ Σ.Confirm(P,m, p, σ,pkv,pksi)
D : (m, p, σ,pkv, i) −→ Σ.Deny(P,m, p, σ,pkv,pksi)

σ? R←− Σ.Sign(P,m, sksr , p
?)

for j from 1 to p? − 1 do
Λ0
j ← Σ.Convert(P, j,pks0, sks0, $)

Λ1
j

R←− Σ.Convert(P, j,pks1, sks1, $)
d← AS,Cv,C,D(guess, I, {Λ0

j ,Λ
1
j}j∈[[1,p?−1]])

Return d

We define the advantage of A, via

Advano−cma
Σ,A (k) =

∣∣∣Pr
[
Expano−cma−1

Σ,A (k) = 1
]
− Pr

[
Expano−cma−0

Σ,A (k) = 1
]∣∣∣ .

Given (k, t) ∈ N2 and ε ∈ [0, 1], the scheme Σ is said to be (k, t, ε)-Ano-CMA secure, if no Ano-CMA-
adversary A running in time t has Advano−cma

Σ,A (k) ≥ ε.
The scheme Σ is said to be Ano-CMA secure if, for any security parameter k ∈ N, any polynomial

function t : N→ N, and any negligible function ε : N→ [0, 1], it is (k, t(k), ε(k))-Ano-CMA secure.

Remark 2. To obtain the security results, the executions of the confirming-denying protocols must
be simulated in the random oracle model. In our scheme, these protocols are achieved by interactive
zero-knowledge proofs of equality/inequality of (root of) discrete logarithms. More precisely, we use
designated-verifier proofs [21]. By definition of these proofs, the adversary gains no information other
than the validity/invalidity of the signature from its interaction with the signer. As the adversary can
obtain this conviction by querying the receipt generating oracle, there is no loss of generality to suppose
that it does not have access to the confirming/denying oracles.

6

3 Background

3.1 Proof of equality or inequality of two discrete logarithms

Let (G,+) and (H, ·) be two groups of the same prime order q and let P and g be generators of G and
H (respectively). To confirm or deny that a bit string is a signature in our undeniable signature scheme,
it is necessary to prove that a given quadruple (U1, V1, u2, v2) ∈ G2 × H2 is a Diffie-Hellman quadruple
(or not), i.e. belongs to the set

EDL(G,H) = {(U1, V1, u2, v2) ∈ G2 ×H2, logU1
(V1) = log u2(v2)},

(or to the set IDL(G,H) = (G2 ×H2) \ EDL(G,H)).
We denote, as in [10], the zero-knowledge proof of equality of the discrete logarithm (EDL) of V1 ∈ G

in base U1 and the one of v2 ∈ H in base u2 by

PK(x : V1 = xU1 ∧ v2 = ux2).

We use the notation
PK(x : V1 = xU1 ∧ v2 6= ux2).

for the proof of inequality of the discrete logarithms (IDL). We refer the reader to Chaum and Pedersen’s
paper [12] for the proof of equality, and the one of Camenisch and Shoup [9] for the proof of inequality.

In the design of the time-selective convertible undeniable signature scheme, we also need zero-
knowledge proofs of equality/inequality of a root of a discrete logarithm: given p ∈ N,

PK(x : V1 = xU1 ∧ v2 = u2
xp

) and PK(x : V1 = xU1 ∧ v2 6= u2
xp

).

Techniques to design efficient protocol can be found in [10, 8].

To face blackmailing or man in the middle (or mafia) attacks against our undeniable signatures, we
use interactive designated verifier proofs, as introduced in [21] by Jakobsson, Sako, and Impagliazzo, in
Chaum’s proofs of equality and inequality of discrete logarithm of [9]. The idea is to replace the generic
commitment scheme by a trapdoor commitment [21] and using classical techniques, the proofs are readily
seen to be complete, sound, and above all non-transferable. The protocols involve a point Y = yU1

where y is the secret key of the verifier, and the prover must be convinced that Y is well-formed (in the
registered public key model, the registration procedure is used to force the users to know the secret-key
corresponding to their public key). Such a proof is naturally non-transferable since the designated-verifier
could have produced a given proof. The previously mentioned proofs of equality/inequality of a root of
a discrete logarithm can be found in [32, p. 262].

Eventually, Fig. 1 and 2 represent respectively a designated verifier proof of equality of two discrete
logarithms and its simulation. Fig. 3 and 4 represents respectively a designated verifier proof of inequality
of two discrete logarithms and its simulation.

3.2 Bilinear maps

Admissible bilinear maps have allowed the opening up of new territories in cryptography, making possible
the realisation of protocols that were previously unknown or impractical.

Definition 5 (Admissible bilinear map [4]). Let (G,+) and (H,×) be two groups of the same prime
order q and let us denote by P a generator of G. An admissible bilinear map is a map e : G×G −→ H
satisfying the following properties:

• bilinear: e(aQ, bR) = e(Q,R)ab for all (Q,R) ∈ G2 and all (a, b) ∈ Z2;

• non-degenerate: e(P, P) 6= 1.

• computable: there exists a polynomial time algorithm to compute e.

Definition 6 (prime-order-BDH-parameter-generator [4]).
A prime-order-BDH-parameter-generator is a probabilistic algorithm which takes as input a security
parameter k and outputs a 5-tuple (q, P,G,H, e) where q is a prime with 2k < q < 2k+1, G and H are
groups of order q, P generates G, and e : G2 −→ H is an admissible bilinear map.

Usually G can be considered as a subgroup of points on a (hyper)elliptic curve over a finite field, H
as a subgroup of the multiplicative group of a related finite field and e as the Weil or Tate pairing [4].

7

EDL.Prove
Prover Verifier

(a, b, k)
R←− [[1, q − 1]]3

C1 = kU1

c2 = uk2

C3 = aU1 + bY
C1, c2, C3−−−−−−−−−−−−−→

r←−−−−−−−−−−−−− r ∈R [[1, q − 1]]

c = k − x(r + b) mod q
a, b, c−−−−−−−−−−−−−→

C1
?
= cU1 + (r + b)V1

c2
?
= uc2 · vr+b

2

C3
?
= aU1 + bY

V1 = xU1 ∧ v2 = ux2

Verifier: (pk, sk) = (Y, y) with Y = yU1

Figure 1: Designated verifier proof of membership in EDL(G,H) – Prove protocol

3.3 The xyz-Decisional Diffie-Hellman problem

The unforgeability of our scheme is related to the classical Diffie-Hellman problem:

Computational Diffie-Hellman (CDH): Let (G,+) be a group of prime order q, and let a, b be in
[[1, q − 1]]. Given (P, aP, bP) ∈ G3, compute abP .

The design of the new scheme is connected to the following decisional problem:

xyz-Decisional Diffie-Hellman problem4 (xyz-DDH):
Let (G,+) be a group of prime order q, and let x, y and z be in [[1, q−1]]. Given (P, xP, yP, zP,Q) ∈ G5,
decide whether Q = xyzP .

At first glance, this may seem very similar to the classical decisional Diffie-Hellman (DDH) problem
(in fact, the associated computational problem is equivalent to the CDH problem). The DDH assumption,
underlying the security of many cryptographic protocols does not hold in the bilinear setting. Even if
it is easier than the DBDH problem [4], the xyz-DDH problem seems intractable. Considering the xyz-
DDH problem and assuming its difficulty (combined with the ease of the DDH problem), we are able to
design cryptographic protocols achieving a trade-off between authenticity and privacy. The time-selective
convertible undeniable signature scheme is based on the following observations:

• Assuming the computational intractability of the xyz-DDH problem, given (P, xP, yP, zP,Q) ∈ G5,
no one can efficiently decide whether Q = xyzP .

• Everyone can be convinced by someone knowing either x, y or z that Q = xyzP . This can be done
thanks to the proofs of equality of two discrete logarithms mentioned above, and the equalities

e(Q,P) = e(yP, zP)x = e(xP, zP)y = e(xP, yP)z.

• After the publication of xyP , everyone can decide whether Q = xyzP .

Our new protocol is designed according to this idea but relies on a stronger assumption.

3.4 A new decisional problem

Recently, Boneh and Boyen [2] proposed an efficient digital signature scheme whose security (in the
standard security model) relies on the so-called `-Strong Diffie-Hellman problem (`-SDH). This compu-
tational problem is slightly weaker than the `-CAA problem5 introduced by Mitsunari, Sakai, Kasahara

4a.k.a. the Triffie-Hellman problem
5collusion attack algorithm with ` traitors

8

EDL.Fake
Prover Verifier

(c, d, k)
R←− [[1, q − 1]]3

C1 = cU1 + dV1

c2 = uc2 · vd2
C3 = kU1

C1, c2, C3−−−−−−−−−−−−−→
r←−−−−−−−−−−−−− r ∈R [[1, q − 1]]

b = d− r mod q

a = k − by mod q
a, b, c−−−−−−−−−−−−−→

C1
?
= cU1 + (r + b)V1

c2
?
= uc2 · vr+b

2

C3
?
= aU1 + bY

V1 = xU1 ∧ v2 = ux2

Verifier: (pk, sk) = (Y, y) with Y = yU1

Figure 2: Designated verifier proof of membership in EDL(G,H) – Fake protocol

in 2002 in relation with the security of a traitor tracing scheme [28]. Like the DDH problem, thanks
to the bilinear map, the decisional problem associated to `-CAA is easy. Therefore, we introduce a
decisional variant of `-CAA, similar to the xyz-DDH problem which runs in 3 stages:

(`, T)-xyz Decisional CAA Problem ((`, T)-xyz-DCAA): Let (G,+) be a group of prime order q,
let x, y and z be in [[1, q − 1]] and ` and T be in N.

Input:

[
(xiP)i∈[[0,2T−1]], yP, zP, h,

(
xT y

x+ hk
P, hk

)
k∈[[1,`]]

]
in G2T+2 × [[1, q − 1]]× (G× [[1, q − 1]])

`
, with h /∈ {h1, . . . , h`}

Oracle: for a request t? ∈ [[1, T]], the oracle answers
[
(xiyP)i∈[[1,t?−1]], Q

]
∈ Gt?

Output: decide whether (x+ h)Q = xt
?

yzP

The anonymity of our convertible undeniable signature scheme (i.e. with one time period) is related
to the (`, 1)-xyz-DCAA problem. The link between this problem and the `-CAA problem from [28] is
analogous to the one between the xyz-DDH problem and the CDH problem. We want to stress that,
though non-standard, these problems achieve generic security (as defined by Shoup [30]). The proof is
similar to the one of the generic security of `-SDH [2].

To conclude this section, we quantify the new algorithmic assumption.

Definition 7 ((`, T)-xyz-DCAA assumption). Let Gen be a prime-order-BDH-parameter-generator and
let ` and T be two integers. Let D be an adversary that takes on input (q, P,G,H, e) a 5-tuple generated
by Gen and [

(Xi)i∈[[1,2T−1]], Y, Z, h, (Rj , hj)j∈[[1,`]]

]
∈ G2T+1 × [[1, q − 1]]× (G× [[1, q − 1]])

`

and returns a bit. We consider the following random experiments, where k is a security parameter, for
r ∈ {0, 1}:

9

IDL.Prove
Prover Verifier

(a, b, k0, k1, k2)
R←− [[1, q − 1]]5

c0 = vk0
2 /uxk0

2

C1 = k1U1 − k2V1

c2 = uk1
2 /v

k2
2

C3 = aU1 + bY
c0, C1, c2, C3−−−−−−−−−−−−−→

r←−−−−−−−−−−−−− r ∈R [[1, q − 1]]
c = k1 − xk0(r + b) mod q

d = k2 − k0(r + b) mod q
a, b, c, d−−−−−−−−−−−−−→

c0
?

6= 1H

C1
?
= cU1 − dV1

c2
?
= c0u

c
2/v

r+b
2

C3
?
= aU1 + bY

V1 = xU1 ∧ v2 6= ux2

Verifier: (pk, sk) = (Y, y) with Y = yU1

Figure 3: Designated verifier proof of membership in IDL(G,H) – Prove protocol

Experiment Exp
(`,T)−xyz−dcaa−r
Gen,D (k)

P = (q, P,G,H, e) R←− Gen(k)

x
R←− [[1, q − 1]]

For i from 1 to 2T − 1 do Xi ← xiP

(y, z)
R←− [[1, q − 1]]2, Y ← yP , Z ← zP

h1, . . . , h`, h
R←− [[1, q − 1]]

For j from 1 to ` do Rj = xT y(x+ hj)
−1P

t? ← D(P, (Xi)i∈[[1,2T−1]], Y, Z, h, (Rj , hj)j∈[[1,`]])
For k from 1 to t? − 1 do Yk ← xkyP

If r = 0 then Q← xT yz(x+ h)−1P else Q
R←− G

d← D(P, t?, (Xi)i∈[[1,2T−1]], Y, Z, h, (Rj , hj)j∈[[1,`]], (Yk)k∈[[1,t?−1]], Q)
Return d

We define the corresponding advantage of D in solving the (`, T)− xyz-DCAA problem via:

Adv
(`,T)-xyz-dcaa
Gen,D (k) =

∣∣∣Pr
[
Exp

(`,T)-xyz-dcaa-0
Gen,D (k) = 1

]
− Pr

[
Exp

(`,T)-xyz-dcaa-1
Gen,D (k) = 1

]∣∣∣ .
Given (k, t) ∈ N2 and ε ∈ [0, 1], Gen is said to be (k, t, ε)-(`, T)-xyz-DCAA-secure if no adversary D

running in time t has advantage

Adv
(`,T)−xyz−dcaa
Gen,D (k) ≥ ε.

The generator Gen is said to be (`, T)-xyz-DCAA-secure if, for any security parameter k ∈ N, any
polynomial function t : N → N, and any negligible function ε : N → [0, 1], it is (k, t(k), ε(k))-(`, T)-xyz-
DCAA-secure.

10

IDL.Fake
Prover Verifier

(c, d, k1, k2)
R←− [[1, q − 1]]4

c0
R←− H \ {1H}

C1 = cU1 − dV1

c2 = c0u
c
2/v

k1
2

C3 = k2U1
c0, C1, c2, C3−−−−−−−−−−−−−→

r←−−−−−−−−−−−−− r ∈R [[1, q − 1]]
b = k1 − r mod q

a = b− k2y mod q
a, b, c, d−−−−−−−−−−−−−→

c0
?

6= 1H

C1
?
= cU1 − dV1

c2
?
= c0u

c
2/v

r+b
2

C3
?
= aU1 + bY

V1 = xU1 ∧ v2 6= ux2

Verifier: (pk, sk) = (Y, y) with Y = yU1

Figure 4: Designated verifier proof of membership in IDL(G,H) – Fake protocol

4 A new convertible time-selective undeniable signature scheme

4.1 The new convertible undeniable signature scheme: CUSBM

In this section, we describe the new convertible undeniable signature scheme CUSBM, based on bilinear
map. It is designed as follows:

Setup and Key Generation

Setup: Let k be a security parameter, Gen be a prime-order-BDH-parameter-generator and (q, P,G,H, e)
some output of Gen(k). Let fr : N→ N be a function. We denote nr = fr(k). Let [{0, 1}∗×{0, 1}nr −→
G] be a hash function family, and H be a random member of this family. Let [{0, 1}∗ × {0, 1}nr −→
[[1, q − 1]]] be a hash function family, and h be a random member of this family. The public parameters
are [(q, P,G,H, e), H, h]

SKeyGen: Alice picks randomly two integers a1, a2 ∈ [[1, q − 1]] and computes the points P1 = a1P and
P2 = a2P . Alice’s public key is the pair (P1, P2) and her secret key is (a1, a2).

VKeyGen: the verifier Bob picks randomly an integer y ∈ [[1, q − 1]] and computes the point Y = yP .
Bob’s public key is Y and his secret key is y.

Signing and controlling algorithm

Sign: Given a message m ∈ {0, 1}∗, Alice picks at random r ∈ {0, 1}nr and computes the point

σ =
a1a2

(a2 + h(m||r))
H(m||r).

The convertible undeniable signature of the message m is (σ, r).

Control: Given a message m and a putative signature (σ, r), Alice checks that

e(σ, P2 + h(m||r)P) = e(H(m||r), P1)a2 .

Confirmation / Denial protocols

11

Confirm: Given a message m and a signature (σ, r), Alice can confirm (σ, r) with the following interactive
proof of knowledge:

PK(a2 : e(σ, P2 + h(m||r)P) = e(H(m||r), P1)a2 ∧ P2 = a2P).

Deny: Given a message m and an invalid signature (σ, r), Alice can deny (σ, r) with the following
interactive proof of knowledge:

PK(a2 : e(σ, P2 + h(m||r)P) 6= e(H(m||r), P1)a2 ∧ P2 = a2P).

Receipt generation and verification

Convert

- On input $, Alice publishes the point I = a1a2P .

- Given a message m ∈ {0, 1}∗ and a putative signature (σ, r) on m, Alice checks the validity of the
signature thanks to the Control algorithm and then computes the point σ̃ = a2H(m||r) ∈ G. The
individual receipt with respect to σ is σ̃.

Verify:

- The validity of the universal receipt I is decided by verifying that

e(P1, P2) = e(I, P).

If it is valid, given a signature (σ, r) on a message m ∈ {0, 1}∗ and I, everyone checks the validity
of this signature by verifying that

e(σ, P2 + h(m||r)P) = e(H(m||r), I).

- Given a message m ∈ {0, 1}∗, a putative signature (σ, r) on m and a putative individual receipt σ̃
on (σ, r), the validity of the receipt is decided by checking whether

e(σ̃, P) = e(P2, H(m||r))

or not. If σ̃ is valid, then the validity of (σ, r) is decided by checking whether

e(σ, P2 + h(m||r)P) = e(σ̃, P1)

or not.

Remark 3. Note that the designated verifier interactive proofs used in the confirm/deny protocols can
be made non-interactive using the Fiat-Shamir paradigm (at the expense of the use of another random
oracle). In addition, the scheme will gain in efficiency since the overall communication complexity will
be reduced.

Remark 4 (Efficiency considerations). Comparing with previous convertible undeniable signature schemes,
CUSBM has a number of advantages. The signature only consists in an element of G and some addi-
tional random salt. In practise, the size of an element of G can be reduced by a factor 2 with compression
techniques and the random salt has size nr = 60. Therefore, the size of the signature is only 231 bits.
Furthermore, a receipt (individual and universal) is also an element of G, and therefore has bit size 171.
From an efficiency point of view, the signature generation and the individual and universal receipts gener-
ation algorithms require only one exponentiation as the most expensive operation. Unfortunately, it turns
out that the signature verification is slightly more time consuming, as it requires 2 pairing evaluations.

12

4.2 A time-selective convertible undeniable signature scheme: TSCUSBM

TSCUSBM is a time-selective convertible undeniable signature scheme which is a variant of CUSBM.

Setup and Key Generation

TSCUSBM.Setup = CUSBM.Setup

SKeyGen: Alice picks randomly two integers a1, a2 ∈ [[1, q − 1]], and computes the points P1 = a1P and
P2 = a2P . She chooses a number of time periods T ∈ N. Alice’s public key is the pair (P1, P2, T) and
her secret key is (a1, a2).
TSCUSBM.VKeyGen= CUSBM.VKeyGen

Signing and controlling algorithm

Sign: Given a message m ∈ {0, 1}∗ and a time period t, Alice picks at random r ∈ {0, 1}nr and computes
the point σ = a1a

t
2(a2 + h(m||r))−1H(m||r). The signature of the message m is (σ, r, t).

Control: Given a message m and a putative signature (σ, r, t), Alice checks that

e(σ, P2 + h(m||r)P) = e(H(m||r), P1)a
t
2 .

Confirmation / Denial protocols

Confirm: Given a message m and a signature (σ, r, t), Alice can confirm (σ, r, t) with the following
interactive proof of knowledge:

PK(a2 : e(σ, P2 + h(m||r)P) = e(H(m||r), P1)a
t
2 ∧ P2 = a2P).

Deny: Given a message m and an invalid signature (σ, r, t), Alice can deny (σ, r, t) with the following
interactive proof of knowledge:

PK(a2 : e(σ, P2 + h(m||r)P) 6= e(H(m||r), P1)a
t
2 ∧ P2 = a2P).

Receipt generation and verification

Convert:

- On input $, and an integer t ∈ [[1, T]], this protocol consists for Alice in publishing the t-tuple

It = (a1a2P, a1a
2
2P, . . . , a1a

t
2P) ∈ Gt.

- Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗, a putative signature (σ, r) on m for the
time period t, Alice checks the validity of the signature thanks to the Control algorithm and then
computes the t-tuple

σ̃ = (a2H(m||r), a2
2H(m||r), . . . , at2H(m||r)).

The individual receipt with respect to σ is σ̃.

Verify

- Given an integer t ∈ [[1, T]], the validity of the universal receipt It = (I(1), . . . , I(t)) is decided by
verifying that

e(P1, P2) = e(I(1), P) and e(I(i−1), P2) = e(I(i), P) for i ∈ [[2, t]].

If it is valid, given a signature (σ, r) on a message m ∈ {0, 1}∗ for a time period t′ ≤ t and It,
everyone checks the validity of this signature by verifying that

e(σ, P2 + h(m||r)P) = e(H(m||r), I(t′)).

13

- Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗, a putative signature (σ, r) on m for the time
period t and a putative individual receipt σ̃ = (σ̃(1), . . . , σ̃(t)) on (σ, r), the validity of the receipt is
decided by checking whether e(σ̃(1), P) = e(P2, H(m||r)) and e(σ̃(i), P) = e(P2, σ̃

(i−1)) for i ∈ [[2, t]]
or not. If σ̃ is valid, then the validity of (σ, r) is decided by checking whether

e(σ, P2 + h(m||r)P) = e(σ̃(t), P1)

or not.

Remark 5. In a sequential use of these signatures (i.e. signatures for the time period t are individually
converted only after the publication of It−1), the verification processes can be considerably improved (as
in the CUSBM scheme). Otherwise, the signer’s operations are still efficient, but the verifier has more
computations to perform. The scheme remains nevertheless reasonable.

4.3 An improved scheme with logarithmic size of the receipts: TSCUSBM+

To reduce the size of the receipts, we adapt an idea of Bresson and Stern from [8], and therefore we reach
a logarithmic size of the receipts. The technique is essentially similar to a “double-and-add” algorithm
and is described in the following figures. The whole TSCUSBM+ scheme is the same as TSCUSBM but
the two following procedures which must be modified using the ReceiptGen and ReceiptVerif of the Fig.
5 and described below:

TSCUSBM+.Convert:

- On input $, and an integer t ∈ [[1, T]], this protocol consists for Alice running ReceiptGen(P1, a2, t).

- Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗, a putative signature (σ, r) on m for the time
period t, Alice checks the validity of the signature thanks to the Control algorithm and then runs
ReceiptGen(H(m||r), a2, t).

TSCUSBM+.Verify

- Given an integer t ∈ [[1, T]], the validity of the universal receipt It = (I(1), . . . , I(t)) is decided by
running ReceiptVerif(P1, P2, t, It) and checking that

e(σ, P2 + h(m||r)P) = e(H(m||r), I(t)).

- Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗, a putative signature (σ, r) on m for the time
period t and a putative individual receipt σ̃ = (σ̃(1), . . . , σ̃(t)) on (σ, r), the validity of the receipt is
decided by running ReceiptVerif(H(m||r), P2, t, σ̃). If σ̃ is valid, then the validity of (σ, r) is decided
by checking whether

e(σ, P2 + h(m||r)P) = e(σ̃(t), P1)

or not.

5 Security results

5.1 Unforgeability

The theorem below states that TSCUSBM is EF-CMA secure assuming the intractability of the CDH
problem in the random oracle model (we replace the hash function H by random oracle H; there is no
need to do ideal assumptions on h).

Theorem 1 (Unforgeability of TSCUSBM). Let Gen be a prime-order-BDH-parameter-generator, let
fr : N → N and let A be an EF-CMA-adversary against TSCUSBM in the random oracle model, that
produces an existential forgery with probability ε = Succef−cma

TSCUSBM,A, within time τ , making qH, qΣ and

14

ReceiptGen
Input P, Q, v, t

Output ~T
[λ`−1, . . . , λ0]← BinaryExpansion(t)
i← `− 1
α← 1
while i ≥ 0 do
α← α2 mod q
Ri ← αQ
if λi = 1 then α← α · v mod q

Si ← αQ
else Si ← ε

i← i− 1
It ← [(R`−1, S`−1), . . . , (R0, S0)]

ReceiptVerif
Input P, Q, V , t,

and [(R`−1, S`−1), . . . , (R0, S0)]
Output b
[λ`−1, . . . , λ0]← BinaryExpansion(t)
i← `− 1 ; S0 ← Q
b← Valid
while i ≥ 0 do
A← e(Ri, Q)
if Si−1 = ε then B ← e(Ri−1, Ri−1)

else B ← e(Si−1, Si−1)
if A 6= B then b← Invalid
if λi = 1 then

A← e(Si, Q)
B ← e(Ri, S0)
if A 6= B then b← Invalid

Figure 5: Description of ReceiptGen and ReceiptVerif

qΥ queries to the random oracle, to the signing oracle and to the receipt generating oracle. Then there
exist ε′ ∈ [0, 1] and τ ′ ∈ N verifying{

ε′ ≥ ε− qΣ(qH + qΣ)

2nr

τ ′ ≤ τ + (qH + qΣ +O(1))TExp−G + (qΣ +O(1))TExp−q

such that CDH can be solved with probability ε′, within time τ ′, and where TExp−G (resp. TExp−q) denotes
the time for an exponentiation in G (resp. modulo q) and nr = fr(k).

Proof: The proof is very similar to Boneh, Lynn and Shacham’s unforgeability proof in [5].
We define a sequence of games Game0, . . . , Game3 starting from the actual EF-CMA adversary A

and modify it step by step, until we reach a final game whose success probability has an upper bound
related to solving CDH. All the games operate on the same underlying probability space: the public and
private keys of the signature scheme, the coin tosses of the adversary A and the random oracle H. Let k
be a security parameter, let (q, P,G,H, e) be a 5-tuple generated by Gen(k) and let (X,Y) be a random
instance of the CDH problem.

Game0 We consider an EF-CMA-adversary A with success Succef−cma
TSCUSBM,A, within time τ . The key gen-

eration algorithm is run and produces a pair of keys (pk, sk, T). The universal receipt generation
algorithm produces the information (I1, . . . , IT). The adversary A is fed with pk and (I1, . . . , IT)
and, querying the random oracle H, the signing oracle Σ, and the receipt generating oracle Υ,
outputs a couple (m?, (σ?, r?, t?)).
We denote by qH, qΣ and qΥ the number of queries from the random oracle H, from the signing
oracle Σ and from the receipt generating oracle Υ. The only requirement is that the output signa-
ture (σ?, r?, t?) has not been obtained from the signing oracle. For a signing query on a message
m, we first ask an hash value of m with some additional random salt r and when the adversary
outputs its forgery (m?, (σ?, r?, t?)), we ask a hash value of (m?, r?). Therefore at most qH+qΣ +1
queries are asked to the hash oracle during this game.

In any Gamej , we denote by Forgej the event

TSCUSBM.UVerify(m?, (σ?, r?, t?), pk, IT) = 1.

By definition, we have Pr[Forge0] = Succef−cma
TSCUSBM,A.

Game1 In this game, we pick an element a2 ∈ [[1, q − 1]] at random, and we modify the simulation by
replacing pk by (X, a2P) and the T -tuple (I1, . . . , IT) by (a2X, a

2
2X, . . . , a

T
2 X). The distribution

of pk is unchanged since (X,Y) is a random instance of the CDH problem and a2 is picked at
random. From now on, thanks to the knowledge of a2, we can simulate the receipt generating
oracle Υ. We have

Pr[Forge1] = Pr[Forge0].

15

Game2 In this game, we simulate the random oracle H. For any fresh query (m, r) ∈ {0, 1}∗ × {0, 1}nr

to the oracle H, we pick at random u ∈ [[1, q − 1]] and compute Q = (a2 + h(m||r))uY . We store
(m, r, u,Q) in the H-List and return Q as the answer to the oracle call. In the random oracle model,
this game is clearly identical to the previous one. Hence, we get

Pr[Forge2] = Pr[Forge1].

Game3 In this game, we simulate the signing oracle Σ: for any message m, whose signature is queried
for the time period t, we pick at random two elements r ∈ {0, 1}nr , v ∈ [[1, q − 1]], and compute
σ = at2v(a2 + h(m||r))−1X. If the H-List includes a quadruple (m, r, ?, ?) we abort the simulation,
else we store (m, r, v, vP) in the H-List and output σ as the signature. As we abort with probability
at most (qH + qΣ)2−nr , summing up the inequalities for all signature queries, we have

|Pr[Forge3]− Pr[Forge2]| ≤ qΣ(qH + qΣ)2−nr .

When the game Game3 terminates, outputting a valid pair message/signature
(m?, (σ?, r?, t?)), by definition of existential forgery, the H-List includes a quadruple (m?, r?, u?, Q?)
with Q? = (a2 + h(m||r))u?Y . By the simulation, we have e(σ?, P2 +h(m||r)P) = e(Q?, at

?

2 P1), and the
point R = (u?at

?

2)−1σ? is a solution to our instance of the Computational Diffie-Hellman Problem.
This concludes the proof.

Corollary 1 (Unforgeability of CUSBM and TSCUSBM+). Under the
CDH assumption, the schemes CUSBM and TSCUSBM+ are EF-CMA secure in the random oracle model.

Remark 6. In order to shorten the public keys, we can modify the key generation of CUSBM as follows
: the key generation algorithm produces a public/private pair of keys (aP, a). This variant of CUSBM
(setting a1 = a2 = a) is unforgeable under the `-CAA [28] assumption.

5.2 Anonymity

The next theorem claims TSCUSBM’s anonymity against a chosen message attack under the (`, T)-xyz-
DCAA assumption in the random oracle model (the hash functions h and H are replaced by random
oracles h and H):

Theorem 2 (Anonymity of TSCUSBM). Let Gen be a prime-order-BDH-parameter-generator, let fr
: N → N and let A be an Ano-CMA-adversary against TSCUSBM in the random oracle model, that
breaks anonymity with advantage Advano−cma

TSCUSBM,A, within time τ , making qH, qh , qΣ and qΥ queries to
the random oracles, to the signing oracles and to the receipt generating oracles. Then there exist T ∈ N,
ε′ ∈ [0, 1] and τ ′ ∈ N verifying{

ε′ ≥ ε

2
− (qΣ + 1)(qH + qh)

2nr−1
− 1

2k
τ ′ ≤ τ + (qH + 2qΣ + TqΥ +O(1))TExp−G + (qΣ + TqΥ +O(1))TExp−q

such that (qH, T)-xyz-DCAA can be solved with probability ε′, within time τ ′, and where TExp−G (resp.
TExp−q) denotes the time for an exponentiation in G (resp. modulo q) and nr = fr(k).

Proof: Our method of proof is inspired by Shoup [31]: we define a sequence of games Game0, . . . ,
Game5 starting from the actual Ano-CMA adversary A and modify it step by step, until we reach a final
game whose success probability has an upper bound related to solving the (qH, T)-xyz-DCAA problem.
All the games operate on the same underlying probability space: the public and private keys of the
signature scheme, the coin tosses of A and the random oracles.

Let k be a security parameter, T and ` be two integers and let (q, P,G,H, e) be a 5-tuple generated by

Gen(k) and
[
(Xi)i∈[[1,2T−1]], Y, Z, h), (Rj , hj)j∈[[1,`]]

]
in G2T+1× [[1, q− 1]]× (G× [[1, q − 1]])

`
be a random

instance of the (qH, T)-xyz-DCAA problem. We denote X0 = P . We construct a simulation which solves
this instance.

16

Game0 We consider an Ano-CMA-adversary A with advantage Advano−cma
TSCUSBM,A(k), within time τ . The

key generation algorithm is run twice and produces the following pairs of keys (sk0, pk0, T0), and
(sk1, pk1, T1). The adversary A is fed with pk0, pk1, T0 and T1 and, querying the random oracles
H and h , the signing oracles Σ0 and Σ1, and the receipt generating oracles Υ0 and Υ1, outputs
a message m? and a time period t? ∈ [[1,min(T0, T1)]]. A challenge signature is then produced by
flipping a coin b ∈ {0, 1} and signing the message under the key skb. The adversary is given this
challenge signature (σ?, r?, t?), and outputs a bit b? at the end of the guess stage.

We denote by qH, qh , qΣ, and qΥ the number of queries from the random oracles, from the signing
oracles, and from the receipt generating oracles and we assume that T ≥ min(T0, T1) and qΣ ≤ `.
The only requirement is that the challenge signature (σ?, r?, t?) cannot be queried to a receipt
generating oracle.

In any game Gamei, we denote by Guessi the event b? = b. By definition,

|2 Pr[Guess0]− 1| = Advano−cma
TSCUSBM,A(k).

Game1 First, we pick (α, β) ∈ [[1, q−1]]2 at random and modify the simulation by replacing pk0 by (X1, Y1)
and pk1 by (αX1, βY1). The distributions of pk0 and pk1 are unchanged since we consider a random
instance of the (qH, T)-xyz-DCAA problem. Therefore we have

Pr[Guess1] = Pr[Guess0].

Game2 In this game, we simulate the random oracles H and h and maintain appropriate lists, which we
denote by H-List and h-List. For any fresh query (m, r) ∈ {0, 1}∗ × {0, 1}nr

– to the oracle H, we pick at random s ∈ [[1, q − 1]], compute sP ∈ G, store (m, r, s, sP, T) in
the H-List and return sP as the answer to the oracle call;

– to the oracle h , we pick at random u ∈ [[1, q− 1]], store (m, r, u) in the h-List and returns u as
the answer to the oracle call.

In the random oracle model, this game is clearly identical to the previous one. Hence, we obtain

Pr[Guess2] = Pr[Guess1].

Game3 Now we simulate the signing oracles. We initialise a counter to i = 1, and for each new request
m ∈ {0, 1}∗, t ∈ [[1, T]] we pick r ∈ {0, 1}nr at random. If there exists a triple (m, r, ?) in the h-List
or a 5-tuple (m, r, ?, ?, ?) in the H-List, we abort the simulation. We pick at random s ∈ [[1, q − 1]],
compute sXT−t ∈ G and store (m, r, s, sXT−t, t) in the H-List.

If the query is to Σ0, the signature is (sRi, r, t), we refresh the h-List with (m, r, hi), then we
increment the counter. If the query is to Σ1 the signature is (sαt−1βRi, r, t), we refresh the h-List
with (m, r, αhi), then we increment the counter. This game perfectly simulates the signing oracle
if we do not abort. As we abort with probability at most (qH + qh)2−nr , we have

|Pr[Guess3]− Pr[Guess2]| ≤
qΣ(qH + qh)

2nr

Game4 We simulate the receipt generating oracles. When the adversary requests a couple message/putative
signature (m, (σ, r, t)) onm to Υ0 with t ∈ [[1, T]], we look in the H-List for a 5-tuple (m, r, s, sXT−t′ , t

′),
then the answer is the t-tuple (sXT−t′+1, . . . , sXT−t′+t). If this request is on Υ1, we answer with
(sαT−t′+1XT−t′+1, . . . , sα

T−t′+tXT−t′+t) This simulation is perfect, therefore we have

Pr[Guess4] = Pr[Guess3].

Game5 Finally, in this game, in the challenge generation: once the adversary A asks for a signature
on a message m? for a time period t?, we query the problem challenger with t?. It outputs
(Yj)j∈[[1,t?−1]] ∈ Gt?−1 and Q ∈ G. We pick a bit b ∈ {0, 1} and r? ∈ {0, 1}nr at random. If
there exists a 5-tuple (m?, r?, ?, ?, ?) in the H-List or a triple (m?, r?, ?) in the h-List, we abort
the simulation, else we update the H-List by storing (m?, r?,⊥, Z,⊥) and the h-List by storing
(m, r, αbh). We output ((αt?−1β)bQ, r?, t?) as the challenge signature and (Yj)j∈[[1,t?−1]] as the
universal receipts for the challenge..

17

If Q = Qreal = xT yz(x + h)−1P , this game perfectly simulates the challenge generation if we do not
abort (which happens with probability at most (qH + qh)2−nr). Therefore

|Pr [Guess5|Q = Qreal]− Pr [Guess4]| ≤ qH + qh

2nr

If Q = Qrandom is a random element from G, the adversary gains no information on b, in an information
theoretic sense, therefore

Pr [Guess5|Q = Qrandom] ≤ 1

2
+
qH + qh

2nr
+

1

2k
.

The last term accounts for the probability that Qrandom = Qreal. By definition, the advantage in the
Game5 simulation in solving the (qH, T)− xyz-DCAA problem is:

Adv
(qH,T)−xyz−dcaa
Gen,Game5

(k) = |Pr [Guess5|Q = Qreal]− Pr [Guess5|Q = Qrandom]| .

A simple computation gives the claimed bounds for ε′ and τ ′.

Remark 7. Using Boneh-Boyen’s technique [2], it is possible to avoid the ideal hypothesis of perfect
randomness of the hash function h.

Corollary 2 (Anonymity of CUSBM and TSCUSBM+). Under the (`, 1)-xyz-DCAA assumption, the
schemes CUSBM and TSCUSBM+ are Ano-CMA secure in the random oracle model.

6 Final remarks and conclusion

Time-selective convertible signatures are introduced to eliminate the burden of registration of new pub-
lic keys after the universal receipt publication. We formalised the security notions of a time-selective
convertible undeniable signature scheme and thanks to a new technique to design cryptographic proto-
cols achieving a tradeoff between authenticity and privacy, we proposed the first scheme meeting this
definition.

The new schemes offer the advantage of issuing short signatures. Moreover, the computational costs
for the signer in the signature generation, the confirmation/denial protocols and the receipt generation
algorithms, are the lowest of all known convertible undeniable signature schemes.

The xyz-trick might have other applications: the use of this trick to design distributed contract
signing and verifiable signature sharing protocols seems to be an interesting topic for further research.

Acknowledgements We express our gratitude to Pascal Paillier for his helpful comments.

References

[1] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols., Proceedings of the First ACM Conference on Computer and Communications Security
(D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby, eds.), ACM Press, 1993, pp. 62–73.

[2] D. Boneh and X. Boyen, Short Signatures Without Random Oracles., Advances in Cryptology -
Eurocrypt 2004 (C. Cachin and J. Camenisch, eds.), Lect. Notes Comput. Sci., vol. 3027, Springer,
2004, pp. 56–73.

[3] , Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups.,
J. Cryptology 21 (2008), no. 2, 149–177.

[4] D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing., SIAM J. Comput.
32 (2003), no. 3, 586–615.

[5] D. Boneh, B. Lynn, and H. Shacham, Short Signatures from the Weil Pairing., J. Cryptology 17
(2004), no. 4, 297–319.

18

[6] J. Boyar, D. Chaum, I. B. Damg̊ard, and T. B. Pedersen, Convertible undeniable signatures., Ad-
vances in Cryptology - Crypto’90 (A. J. Menezes and S. A. Vanstone, eds.), Lect. Notes Comput.
Sci., vol. 537, Springer, 1991, pp. 189–205.

[7] C. Boyd and E. Foo, Off-line Fair Payment Protocols using Convertible Signatures., Advances
in Cryptology - Asiacrypt’98 (K. Ohta and D. Pei, eds.), Lect. Notes Comput. Sci., vol. 1514,
Springer, 1998, pp. 271–285.

[8] E. Bresson and J. Stern, Proofs of Knowledge for Non-Monotone Discrete-Log Formulae and Appli-
cations., Information Security, ISC 2002 (A. H. Chan and V. D. Gligor, eds.), Lect. Notes Comput.
Sci., vol. 2433, Springer, 2002, pp. 272–288.

[9] J. Camenisch and V. Shoup, Practical Verifiable Encryption and Decryption of Discrete Logarithms.,
Advances in Cryptology - Crypto 2003 (D. Boneh, ed.), Lect. Notes Comput. Sci., vol. 2729,
Springer, 2003, pp. 126–144.

[10] J. Camenisch and M. Stadler, Efficient Group Signature Schemes for Large Groups., Advances in
Cryptology - Crypto’97 (B. S. Kaliski Jr., ed.), Lect. Notes Comput. Sci., vol. 1294, Springer,
1997, pp. 410–424.

[11] D. Chaum, Zero-Knowledge Undeniable Signatures., Advances in Cryptology - Eurocrypt’90
(I. Damg̊ard, ed.), Lect. Notes Comput. Sci., vol. 473, Springer, 1991, pp. 458–464.

[12] D. Chaum and T. P. Pedersen, Wallet Databases with Observers., Advances in Cryptology -
Crypto’92 (E. F. Brickell, ed.), Lect. Notes Comput. Sci., vol. 740, Springer, 1993, pp. 89–105.

[13] D. Chaum and H. van Antwerpen, Undeniable Signatures., Advances in Cryptology - Crypto’89
(G. Brassard, ed.), Lect. Notes Comput. Sci., vol. 435, Springer, 1990, pp. 212–216.

[14] I. B. Damg̊ard and T. P. Pedersen, New Convertible Undeniable Signature Schemes., in Maurer [25],
pp. 372–386.

[15] L. El Aimani and D. Vergnaud, Gradually Convertible Undeniable Signatures., Applied Cryptogra-
phy and Network Security, ACNS 2007 (J. Katz and M. Yung, eds.), Lect. Notes Comput. Sci., vol.
4521, Springer, 2007, pp. 478–496.

[16] S. D. Galbraith and W. Mao, Invisibility and Anonymity of Undeniable and Confirmer Signatures.,
Topics in Cryptology - CT-RSA 2003 (M. Joye, ed.), Lect. Notes Comput. Sci., vol. 2612, Springer,
2003, pp. 80–97.

[17] S. D. Galbraith, W. Mao, and K. G. Paterson, RSA-based Undeniable Signatures for General Mod-
uli., Topics in Cryptology - CT-RSA 2002 (B. Preneel, ed.), Lect. Notes Comput. Sci., vol. 2271,
Springer, 2002, pp. 200–217.

[18] R. Gennaro, T. Rabin, and H. Krawczyk, RSA-Based Undeniable Signatures., J. Cryptology 13
(2000), no. 4, 397–416.

[19] S. Goldwasser, S. Micali, and R. L. Rivest, A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks., SIAM J. Comput. 17 (1988), no. 2, 281–308.

[20] X. Huang, Y. Mu, W. Susilo, and W. Wu, Provably secure pairing-based convertible undeniable
signature with short signature length, Pairing 2007 (T. Takagi, T. Okamoto, E. Okamoto, and
T. Okamoto, eds.), Lect. Notes Comput. Sci., vol. 4575, Springer, 2007, pp. 367–391.

[21] M. Jakobsson, K. Sako, and R. Impagliazzo, Designated Verifier Proofs and Their Applications., in
Maurer [25], pp. 143–154.

[22] C. Kudla and K. G. Paterson, Non-interactive Designated Verifier Proofs and Undeniable Signa-
tures., Cryptography and Coding, 10th IMA International Conference (N. P. Smart, ed.), Lect.
Notes Comput. Sci., vol. 3796, Springer, 2005, pp. 136–154.

19

[23] F. Laguillaumie, P. Paillier, and D. Vergnaud, Universally Convertible Directed Signatures, Advances
in Cryptology - Asiacrypt 2005 (B. Roy, ed.), Lect. Notes Comput. Sci., vol. 3788, Springer, 2005,
pp. 682–701.

[24] F. Laguillaumie and D. Vergnaud, Time-Selective Convertible Undeniable Signatures., Topics in
Cryptology - CT-RSA 2005 (A. J. Menezes, ed.), Lect. Notes Comput. Sci., vol. 3376, Springer,
2005, pp. 154–171.

[25] U. M. Maurer (ed.), Advances in Cryptology - Eurocrypt’96, International Conference on the The-
ory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding,
Lect. Notes Comput. Sci., vol. 1070, Springer, 1996.

[26] M. Michels, H. Petersen, and P. Horster, Breaking and Repairing a Convertible Undeniable Signature
Scheme., Proceedings of the Third ACM Conference on Computer and Communications Security
(L. Gong and J. Stern, eds.), ACM Press, 1996, pp. 148–152.

[27] M. Michels and M. Stadler, Efficient Convertible Undeniable Signature Schemes., Selected Areas in
Cryptography, 4th Annual International Workshop, SAC’97, 1997, pp. 231–244.

[28] S. Mitsunari, R. Sakai, and M. Kasahara, A New Traitor Tracing., IEICE Trans. Fundamentals
E85-A (2002), no. 2, 481–484.

[29] T. Ristenpart and S. Yilek, The Power of Proofs-of-Possession: Securing Multiparty Signatures
against Rogue-Key Attacks, Advances in Cryptology - Eurocrypt 2007 (M. Naor, ed.), Lect. Notes
Comput. Sci., vol. 4515, Springer, 2007, pp. 228–245.

[30] V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems., Advances in Cryptology -
Eurocrypt’97 (W. Fumy, ed.), Lect. Notes Comput. Sci., vol. 1233, Springer, 1997, pp. 256–266.

[31] , OAEP Reconsidered., J. Cryptology 15 (2002), no. 4, 223–249.

[32] D. Vergnaud, Approximation diophantienne et courbes elliptiques. Protocoles asymétriques
d’authentification non-transférable., Ph.D. thesis, Université de Caen, november 2006.

[33] F. Zhang, R. Safavi-Naini, and W. Susilo, Efficient Verifiably Encrypted Signature and Partially
Blind Signature from Bilinear Pairings., Progress in Cryptology - Indocrypt 2003 (T. Johansson
and S. Maitra, eds.), Lect. Notes Comput. Sci., vol. 2904, Springer, 2003, pp. 191–204.

A Time-Selective Conversion for Huang et al.’s scheme

Let’s first give a rough description of Huang, Mu, Susilo and Wei’s scheme from [20].

Setup and Key Generation

Setup: Let k be a security parameter, Gen be a prime-order-BDH-parameter-generator and (q, P,G,H, e)
some output of Gen(k). Let fr : N→ N be a function. We denote nr = fr(k). Let [{0, 1}∗×{0, 1}nr −→
G] be a hash function family, and H0 and H1 be two random members of this family. The public
parameters are [(q, P,G,H, e), H0, H1]

SKeyGen: Alice picks randomly two integers a1, a2 ∈ [[1, q − 1]] and computes the points P1 = a1P and
P2 = a2P . Alice’s public key is the pair (P1, P2) and her secret key is (a1, a2).

VKeyGen: the verifier Bob picks randomly an integer y ∈ [[1, q − 1]] and computes the point Y = yP .
Bob’s public key is Y and his secret key is y.

Signing and controlling algorithm

Sign: Given a message m ∈ {0, 1}∗, Alice picks at random r ∈ {0, 1}nr and computes the point

σ = (a1a2)H0(m||r) + a1H1(m||r).

The convertible undeniable signature of the message m is (σ, r).

20

Control: Given a message m and a putative signature (σ, r), Alice checks that

e(σ, P)e(H1(m, r),−P1) = e(H0(m||r), P1)a2 .

Confirmation / Denial protocols

Confirm: Given a message m and a signature (σ, r), Alice can confirm (σ, r) with the following interactive
proof of knowledge:

PK(a2 : e(σ, P)e(H1(m, r),−P1) = e(H0(m||r), P1)a2 ∧ P2 = a2P).

Deny: Given a message m and an invalid signature (σ, r), Alice can deny (σ, r) with the following
interactive proof of knowledge:

PK(a2 : e(σ, P)e(H1(m, r),−P1) 6= e(H0(m||r), P1)a2 ∧ P2 = a2P).

Receipt generation and verification

Convert

- On input $, Alice publishes the point I = a1a2P .

- Given a message m ∈ {0, 1}∗ and a putative signature (σ, r) on m, Alice checks the validity of the
signature thanks to the Control algorithm and then computes the point σ̃ = a2H0(m||r) ∈ G. The
individual receipt with respect to σ is σ̃.

Verify:

- The validity of the universal receipt I is decided by verifying that

e(P1, P2) = e(I, P).

If it is valid, given a signature (σ, r) on a message m ∈ {0, 1}∗ and I, everyone checks the validity
of this signature by verifying that

e(σ, P)e(H1(m, r),−P1) = e(H0(m||r), I).

- Given a message m ∈ {0, 1}∗, a putative signature (σ, r) on m and a putative individual receipt σ̃
on (σ, r), the validity of the receipt is decided by checking whether

e(σ̃, P) = e(P2, H0(m||r))

or not. If σ̃ is valid, then the validity of (σ, r) is decided by checking whether

e(σ, P)e(H1(m, r),−P1) = e(σ̃, P2)

or not.

To obtain a logarithmic size of the time-selective receipts, the following procedures must be included:

Sign: Given a message m ∈ {0, 1}∗, and a time period t ∈ [[1, T]]. Alice picks at random r ∈ {0, 1}nr and
computes the point

σ = (a1a
t
2)H0(m||r) + a1H1(m||r).

The convertible undeniable signature of the message m is (σ, r).

Convert

- On input $, and an integer t ∈ [[1, T]], this protocol consists for Alice running ReceiptGen(P1, a2, t).

- Given an integer t ∈ [[1, T]], a message m ∈ {0, 1}∗, a putative signature (σ, r) on m for the time
period t, Alice checks the validity of the signature thanks to the Control algorithm and then runs
ReceiptGen(H(m||r), a2, t).

21

