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Regulation of off-network pricing in a

nonneutral network

Eitan Altman, Manjesh Kumar Hanawal, and Rajesh Sundaresan

Abstract

Representatives of several Internet service providerBg)l$iave expressed their wish to see a substantial
change in the pricing policies of the Internet. In particutaey would like to see content providers (CPs) pay
for use of the network, given the large amount of resourcey tise. This would be in clear violation of the
“network neutrality” principle that had characterized tihevelopment of the wireline Internet. Our first goal in
this paper is to propose and study possible ways of impleémgstich payments and of regulating their amount.
We introduce a model that includes the users’ behavior, titidas of the ISP and of the CPs, and the monetary
flow that involves the content users, the ISP and CP, and iicphar, the CP’s revenues from advertisements. We
consider various game models and study the resulting bgailithey are all combinations of a noncooperative
game (in which the ISPs and CPs determine how much they waligehthe users) with a “cooperative” one on
how the CP and the ISP share the payments. We include in ouelraqubssible asymmetric weighting parameter
(that varies between zero to one). We also study equililbiaa @arise when one of the CPs colludes with the ISP.

We also study two dynamic game models and study the conwezgeiprices to the equilibrium values.

Index Terms

Games, network neutrality, off-network pricing, proportal sharing, telecommunications policy, two-sided
market

I. INTRODUCTION

The initial growth of the Internet and e-commerce businessss in the backdrop of the following “neutrality”
principles of providing end-to-end connectivity: (1) cent providers (CPs) and end users paid only the Internet
service providers (ISPs) that connected them to the Intemeé not any other intermediate operator, and (2)

they need not know how their packets are transported in th&onke, but are guaranteed best effort delivery

without discrimination. Indeed, [1] wrote:

“Net neutrality has no widely accepted precise definitiout, isually means that broadband service
providers charge consumers only once for Internet accessiotl favor one content provider over

another, and do not charge content providers for sendirgrivdtion over broadband lines to end

users.”
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Fig. 1. Users-ISP-CP connections in the Internet

Arguably, these principles encouraged rapid innovatiothatedge of the network without any interference
from the network operators and made the content accessildenbndiscriminatory fashion.

Many last mile ISPs have opposed neutrality arguing thates@®Rs (deriving advertising revenue from
connections to customers) and applications (such as pgeer or P2P streaming) used their resources without
adequate compensation and that under the neutral policyShe would not have an incentive to invest in
network infrastructure upgrades or expansion. With a viewards encouraging investment and innovation in
broadband services, the Federal Communications Commi¢Bi©oC) ruled in 2002 in favor of annregulated,
or anonneutral, regime [2]. This decision was upheld by the courts in 200%his sparked a huge debate on
whether the Internet should be neutral or?not

In this paper, we shall study a nonneutral regime where a C{ lmage to pay the last-mile ISP, side
payment in addition to the ISP that connects the CP to the interneis i because the CPs often derive
advertising revenues from their connection to the end usecennection that is enabled by the ISP. This form
of nonneutrality has been variously called the oppositezafd-fee” in [6], “user discrimination” in [7], and
“off-network pricing” in [8]. We shall use the terminologyff-network pricing” borrowed from [8], and shall
study mechanisms for regulating this pricing.

Figure 1 shows the connection between ISPs, CPs, and ensl whker are consumers of content. In this
paper, we shall call such end usersiaternauts. The internauts are connected to the Internet backboneeby th
last-mile ISPs. Usually, internauts do not have much chofdbe ISPs — there is either a monopolistic ISP or

some times two ISPs (say ISP 1 and ISP 2). The CPs at the otHarerconnected to the Internet backbone

1The background leading to this ruling and the subsequenit aecision is somewhat nuanced and concerns the reguladital d
subscriber line services, regulated due to historicalar®sand the unregulated cable services. The ruling in 200&e unregulated
cable modem services. The 2005 court decision paved the avaynfegulated digital subscriber services as well. Seéof3inore details.

2Since 2005 however the FCC has been pursuing policies tewaeserving a free and open Internet. The FCC enforced ¢hisaiity
principle in the matter of a network operator’s interferengith P2P traffic. This was overturned in a judgement [4], thet courts did
not disagree to FCC'’s support for a free and open Internet;assubsequent statement by the FCC [5]. Several countries digeady
adopted legislation that guarantees neutrality, inclgddhile (the first country that adopted neutrality), the Nedinds, and Slovenia.
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Fig. 2. Monetary flow in a nonneutral network.

via transit ISP denoted as t-ISPs in Figure 1. The CPs usually have agréeméth the t-ISPs and make
payments in proportion to the bandwidth used. In the neuégime, CP 1 only pays t-ISP 1 for connectivity
to the internauts, and not to any other intermediate ISR {I8r ISP 2). In the nonneutral off-network pricing
regime a last-mile ISP (ISP 1 or ISP 2) can ask the CPs to pagrfabling connection to its internauts.

In order to focus on off-network pricing, we consider thetedased architecture in Figure 2, where there
is a last-mile ISP monopoly (without ISP 2 in Figure 1), and ttombination of CP, t-ISP, and the internet
backbone are combined into a single entity that is markedraéfGhere is only one CP as in Figure 2). If there
are several CPs, then the combination of CRISP 4, and the associated portion of the internet backbone are
combined into CPi (as in Section Il1), with CPi having a dedicated clientéiginternauts of class). As our
aim is limited to the study of regulations on off-networkgnig, and because these effects are best understood
when off-network pricing is studied in isolation, we do notiude in our models other important considerations
such as graded QoS, prioritization, investments, recuegpenses, technology aspects, other pricing schemes

such as flat-rate pricing, etc. Let us first set the stage byudgsng the related and most relevant wérks

A. Related works on off-network pricing

[6] model a nonneutral network as a two-sided médtkeith the CPs and a continuum of internauts connected
to each other by a monopoly ISP. They show that if the ISP dsatige CPs (side payments), then the ISP’s
profit increases, whereas the CPs’ profits reduce, and theréeaer CPs that remain active at equilibrium.
However, social welfare can be higher or lower than the feeccase depending on model parameters. Further,
if a social planner is to decide the payment from the CPs tdSRethe payment will be lower than that set by
the monopoly ISP. In a similar setting, [15] studies investinincentives for ISPs and CPs, and concludes in
favor of the neutral network arguing that there is higheemtévze for more CPs and internauts to be active in
this regime with greater investment and higher social welff8] consider a duopoly ISP market and bring in
several aspects such as investments by ISPs, pricing of CH%s,connection decisions, consumer pricing, etc.

Analyzing the resulting hierarchial 6-stage game, theyctate that in the nonneutral regime the investments

3These are ISPs that connect the smaller ISPs to the Intemmbbne. The last-mile ISPs connect to Internet backbormugh
transit-ISPs. To keep the diagram simple, these are notrsliowigure 1.

4In this context, one could view internauts as applicationgaal end users’ machines.

5Analysis of nonneutral networks with QoS differentiatiande found in [9], [10], [11], [12]. Discussions of legal gmalicy implications
of network neutrality regulation can be found in[1], [1314].

6This is a market where the CPs pay the last-mile ISPs with wktoey do not have a direct connection. The market is two-sided

because the payment is in addition to payments made to tspective t-ISPs.
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will be higher with increased participation of consumer &fek. [7] consider a finite number of CPs and ISPs.
They conclude that social welfare is higher in a nonneuergime if the ratio of the advertisement revenues to
user price sensitivity is either high or low, and for intediae values, a neutral regime is preferable. Closest
in spirit to our work, [16] consider two ISPs competing fotamauts interested in the content of a common
CP. If a regulator sets the off-networking price to maximsoeial utility, then everybody benefits.

The literature on the economics of off-network pricing isréfore inconclusive. There are arguments in favor
of off-network pricing, or against it, or there are mixedmiphs that swing one way or another depending on the
model parameters. This is perhaps as one might expect inensgs large and complex as the Internet. However,
if a nonneutral regime is to be considered, questions of howeatary interactions between ISPs and CPs should
take place, and their influence on the internaut behavierwarth consideration. [17] study revenue sharing
mechanisms between interconnected network operators loasa weighted proportional fairness criteria. [18],
[19] propose the use of the Shapley value (which is known te lsmme fairness properties [20]) for deciding
how revenues from internauts should be shared among the n8Rha CPs. However, these works do not

consider the sizable revenues to CPs’ from advertisements.

B. Objective, Organization, and Contributions

Our objective in this paper is to consider off-network prigi propose two ISP-CP revenue sharing mecha-
nisms, and characterize the ensuing equilibria.

We begin with a two player game (Section Il) where one agerthésCP and another agent is the ISP.
Both players can charge the internauts for content accesspan unit demand bagiswe study the single-CP
single-ISP game in two settings — regulation of the side mayn() before the above players set access prices
(ex ante regulation), and (ii) after the players set access priaasppst regulation). We then extend the results to
the case when there are multiple CPs in Section IIl. The denfiamction we consider in Section Il (single-CP
case) is a simple, linear, decreasing function of the neepth the multiple-CP case, demand for content from
a CP is linear and decreasing in the price of that CP’s conberttlinear and increasing in the price of other
CPs’ contents, reminiscent of the Bertrand oligopoly [28k study the equilibria foex ante regulation and
ex post regulation in Sections III-D and IlI-E. In Section IV, we siyithe impact of a CP having an exclusive
contract with the ISP. The paper concludes with a discussi@ection V. The paper comes with a fairly large
appendix. It includes (a) a discussion of an appropriateehfud the demand function in multiple-CP settings
when some flows may drop out thereby freeing ISP capacityhferremaining flows (Appendices A, B, and
C), (b) proofs of main results for the multiple-CP case allafich are quite elementary but at times tedious,
and (c) two dynamic models of the game studied in Sectionnd their convergence analysis (Section G).

Our main contributions may be summarized as the following:

(1) We propose and analyze the equilibria in the two regutathechanisms for revenue sharing that differ
in their timing. Our mechanisms are therefore differentrfrother proposed revenue sharing schemes in [7],
[17], [19]. Following [23], our regulation schemes atteripshare revenue according to a proportional sharing

paradigm.

“Some consider networks with a per unit demand pricing by $fslas being nonneutral. But then, many big ISPs alreadyersenji
demand pricing schemes, for example, $10 per gigabyte sfi2hj.
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(2) We find a model for the demand function in multiple-CPisgt. Our literature survey did not yield any
models for the demand function in multiple-CP settings wheme flows may drop out. The freeing up of ISP
capacity for the remaining flows requires careful consitiena

(3) We highlight some take-away messages that may be usefupdlicy maker. Though simple and stylized,
our models are tractable and capable of providing somedstieig insights to policy makers. This is our biggest

motivation to publish this work. Some interesting policypiigations are listed in Section Il in pages 6-7.

II. THE CASE OF ASINGLE CPAND A SINGLE ISP

We first begin with the simple case of a single CP and a singfe AHl the internauts are connected to the
ISP, and can access the content of the CP only through the&SEgPFigure 2 for a payment flow diagram. The

various parameters of the off-network pricing game are devis.

Parameter| Description

p° Price per unit demand paid by the internauts to the ISP. Tdwisbe positive
or negative, and when negative, ISP pays the internauts.

p° Price per unit demand paid by the users to the CP. This too egpobitive
or negative.

d(p®,p°) | Demand as a function of prices. We shall take this talbe, p©) = [Do —

a(p® + p%)]+, where[z] = max{z,0} is the positive part of.

p° Advertising revenue per unit demand, earned by the CP. Htisfiesp® > 0.
p? Price per unit demand paid by the CP to the ISP. This can bergitbsitive
or negative.

Usp The revenue or utility of the ISP, given hi(p*, p°)(p* + p?).
Ucp The revenue or utility of the CP, given bi(p®, p¢)(p¢ + p® — p?).

5 Relative weight of the ISP with respect to the QP& ~+ < 1.

[24] noted that ifp? is controlled by either of the players and is set jointly witlat player’s access price, then
the price competition between the ISP and the CP resultsrondemand at equilibrium, which is not favorable
to any of the agenfs This motivates us to study the case whehis set by a neutral third party whom we
refer to as ‘regulator’. The regulator can be a law enfor@ggncy which decides the side payment taking into
account the market powers of the players as described b&#fewconsider two interesting games.

The timing for the first game, undex ante regulation, is as follows.
(i) The regulator sets the paymeptt from the CP to the ISP.
(i) The CP sets the pricg®. Simultaneoulsy, the ISP sets the price
(i) The internauts react to the prices and set the dealig’, p°) = [Do — a(p® + p°)]+.

80n October 5, 2005, an ISP named Level 3 unilaterally tertaihits “settlement free” peering agreement with anothéityenalled
Cogent. They restored peering several days later basenrotirgoing negotiations, but not before making 15% of therimet inaccessible
to their internauts. (See [18]). Perhaps Level 3 believdthit more control ovepd and did not agree to p¢ = 0. The “settlement free”
agreement was not binding, and the configuration was not aifitetum.

9The ISP and the CP set prices for their roles in the servicdered to the internauts. The resulting demand for contepérntés on

the joint prices only through the sum, which is the total @rger unit demand seen by the internauts.
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In the second game, undex post regulation, the timing is as follows.

(i) The CP and the ISP set their respective access ppicesidp® simultaneously.
(i) The internauts react to the prices and set the demand.

(i) The regulator sets the paymept from the CP to the ISP.

The first game arises when the charges per unit demand cageloaer a comparatively faster time-scale
while the CP-ISP price? changes over a slower time-scale. The second one is anstitgrease when the
prices per unit demand charged to the internauts variesagtwer time-scale, but the CP-ISP price changes
over a faster time-scale. We analyze both models via backimaiuction and identify the equilibria.

For a fixedp® andp®, the mechanism used by the regulator to decide paypfefrom the CP to the ISP is
as follows?:

d* 0% 1—v
pT € argn;%x UspxUgp .

The parametety relates the market power of the ISP to that of the!*CRote that in both the games only
p¢ is set according to the above regulation mechanisms, whéeother prices are set simultaneously and are
strategic actions.

In the ex ante regulation game, the regulator set$ knowing thatp® and p¢ will be chosen subsequently
by the playerslisp and Ucp are then taken to be theguilibrium utilities at side payment level® (with an
appropriate selection if there are many equilibria). In¢heost regulation game, the players choggeand p©
knowing how the regulator will sgt? subsequently. The following is a motivating list of poliapplications

stemming from the results for the single-CP single-ISP game

1) In both cases, there exists a pure strategy Nash equilibiin a sense that will be made precise, with
strictly positive demand and strictly positive utilitiesrfthe agents. While it is possible that demand
can be zero in thex ante regulation game, it is always positive in tleg post regulation game with
unique equilibrium prices. For a policy maker, such a cosiolu is very useful -ex post regulation never
produces a stalemate zero-demand outcome where no playexr pasitive revenuesx ante regulation
may*?.

2) In all cases with strictly positive demand, the interisgody the ISP. But the internauts pay the CP only
if the advertising revenue is small. Otherwise the CP subsédthe internauts. This is natural, of course,
yet pleasing to see that the model bears this out.

3) If either of the agents has control oyt and sets it jointly with its access price, the equilibriurmaad

is zero [24]. None of the parties benefit from this situatiom. the contrary, ifp? is under the control of

10Even though we say the regulator set§, this value could arise out of a negotiation between the CiPtha ISP, resulting in a
binding agreement. The regulator could merely facilitéte agreement and then enforcesitmay indicate the relative strength of the ISP
with respect to the CP during the negotiation~lf= 1/2, then the maximization is equivalent to that of the producthe utilities of
the ISP and the CP. This is then standard Nash bargainingroet¢25] for resource allocation, known in networking as pheportional
fair allocation [26]. Ultimately, undeex post regulation, we shall see that ISP getdraction of the total revenue, thereby justifying its
interpretation as market power. The quantitcan also be interpreted as measuring the “degree of coap€rasee [27].

11The Spanish ISP “Telefonica” announced on 8 February 2026 ithconsidered charging Google. This is an indication tiat
bargaining power of Google was weaker than that of Telefoimicthe Spanish telecommunications market in 2010.

2However, see the multiple-CP case where the outcome igetifférom the single-CP case.
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a disinterested regulator, with timing as in either #xeante or the ex post regulation game, there is an
equilibrium where every one benefits. This is the key insggihed from our analysis, that some sort of
regulation can bring benefits to all.

4) Interestingly, if the regulator appliez ante regulation and the strictly positive demand equilibriunsees,
the payments by the internauts and resulting utilities bfagkents are independent of the actual value
of p? and~. Any p? paid by the CP is collected from the internauts and is furte@rned back to the
internauts by the ISP. This lack of sensitivity of the outeota the value op? is a robustness property
that can be quite reassuring to a policy maker who may worgutimarket distortions arising from
the regulation. It only matters that there is some regutatibe actual value of the regulated prigéis
irrelevant.

5) For theex ante regulation game, the demand settles at a lower value anatiauts pay a higher price
per unit demand, when compared with tepost regulation game which results in greater welfare (if
welfare is determined by the price that the internauts pagain, this is an observation of value to the
policy maker that is interested in maximizing internautlfare.

6) For theex ante regulation game, both the players end up with equal reverligis attributes equal
importance to both players. For tlee post regulation game, they share the net revenue in the proportio
of their relative weights.

7) If v € [£,3], then both agents prefex post regulation. Fory > 5/9, only the ISP preferex post
regulation, and fory < 4/9, only the CP prefersx post regulation.

8) Finally, in view of the fourth point above, one recovers tieutral regime in ougx ante regulation game
by settingp? = 0. The internauts are thus indifferent to the neutral regimethe nonneutral off-network
regime undeex ante regulation.

The choice ofex ante regulation game oex post regulation game in this single-CP single-ISP depends
on societal prioritiesEx ante regulation is robust, makes internauts insensitive to ratmal versus neutral
regimes, but has the possibility of a stalemate zero-demsgndibrium or an equilibrium with lower welfare
for internaut$®. Our goal in this paper is not to discuss societal priorjtieg merely to provide conclusions
as above that will aid a policy maker in his decision making.

With these motivating remarks, we shall now proceed to stegse claims in a precise fashion and to prove
them. In subsequent sections we shall study the extensitmeadibove results to the case of multiple CPs and

to the case of an exclusive contract between one of the CPshan®P.

A. Ex ante regulation

We first consider the case where the regulator gétsknowing that the players will subsequently play a
simultaneous action game where the ISP and CP will chpbsand p°, respectively. Our main result here is
summarized as follows.

Theorem 1: In the ex ante regulation game, we have the following complete charazaéicn of all pure

strategy Nash equilibria.

B3we will later see in Section IlI that for multiple CPs, tie post regulation game may have no pure strategy Nash equilibriadme
parameter ranges.

November 26, 2014 DRAFT



(a) Among profiles with strictly positive demand, there israquie pure strategy Nash equilibrium with the
following properties:
« The uniqueness is up to a free choicepdf

« At equilibrium, we have:

s Dgy + ap®
po= —415——51-—-pd, (1)
(6%
Do — 20p°
o= _JL?;__21_4,pd_ (2)
«

« The net internaut payment per demasfd+ p¢ is unique and is given by
P4t = 2D03; Oépa.
Any p? paid by the CP is collected from the internauts and furthemrned back to the internauts by the
ISP.
» The demand is unique and is given b, + ap®)/3 > 0.
« The utilities of the ISP and CP are equal and given by

(Do + ap®)?

Uisp = Ucp = 9%

(b) For each choice gf?, a strategy profilép®, p°) constitutes a Nash equilibrium with zero demand if and
only if the following two inequalities hold:

S

p

Y

Do/a+p® —p?, ©)

(&

p

Y

Do/a + p?. (4)

Proof: We first observe that at equilibriundsp and Ucp are both nonnegative. If not, the ISP (resp. CP)
has strictly negative utility. He can raise the prige (resp.p®) to a sufficiently high value so that demand
becomes zero, and therefotgsp = 0 (resp.Ucp = 0). Thus a deviation yields a strict increase in utility and
therefore cannot be an equilibrium. It follows that at edpuilim, we may take the revenues per demand for
the ISP and CP to be nonnegative, i;&.4 p? > 0, andp® + p® — p¢ > 0.

We next deduce (b), which is a characterization of all theemirategy NE with zero demand. Consider a

fixed p?. If a pair (p*, p¢) were an equilibrium with zero demand, then clearly
Dy < a(ps +pc)7
and
Usp = d(p®,p°) x (p° +p?) = 0.

Moreover, the ISP should not be able to make his utility pessiti.e., anyp® that makes demand strictly
positive, p* < Dy/a — p°, must also render price per unit demand zero or negative; p? < 0. This can
happen only if(Dg/a — p¢) + p? < 0 which is the same as (4). Similarly, the CP should not be abl@ake
his utility positive, i.e., any® that makes demand strictly positives, < D/« — p*, must render CP price per

unit demand nonpositivey® + p® — p? < 0. This can happen only ifDy/a — p*) + p* — p? < 0 which is the
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same as (3). This proves the necessity of (3) and (4). We now Sfficiency. Let (3) and (4) hold. Then

addition ofp¢ to both sides of (3) and some rearrangement yields
pe+p" —p? <p° +p° — Do/a. (5)

Since the left side is the revenue per unit demand for thet@R)st be nonnegative, and heng€etp°— Do/ >

0, which upon rearrangement yield¥, — a(p® + p¢) < 0. The demandi(p?®, p°) is therefore zero. Let us now
consider a deviation by the CP for a fixed ISP pricethat satisfies (3). We will show that the least deviation
(decrease in price) that sets the demand at the thresholdsifvity results in a negative revenue per demand

for the CP. Indeed, this critical prieg that sets the demand at the threshold of positivity satigfiesquation
Dy — a(¢® +p°) = 0.
Again, addition ofg® to both sides of (3) yields, by the same steps above that I1€8)fo
¢ +p* —p? <p°+¢° — Do/a = 0.

Further reduction in price to make demand strictly positiméy results in negative revenue and negative utility.
Consequently, the CP does not have a deviation that yieldgheehrevenue. A similar argument shows that,
under (4), the ISP can make demand strictly positive onlysifrevenue is negative. It too does not have a
deviation with a strictly greater utility. Thus (3)-(4) cstitute zero demand equilibrium prices.

Let us now search for an equilibrium with a strictly positdlemand. Such &?, p¢) must lie in the interior
of the set of all pairs satisfyind, > a(p® + p°). As Uysp is concave inp® for a fixed p¢ and p?, and Ucp

is concave inp° for a fixedp® andp?, the equilibrium point must satisfy the following first ordeptimality

conditions
OUsp 0 S eV (S 1 pd) —
o aps(DO a(p® +p°))(p* +p) =0
— Do — s c c a —0.
e ap,:( o —a(@®+p9))p°+p*—p") =0

Solving these two simultaneous equations in the variableand p©, we see thap® andp® are given by (1)
and (2), respectively. Note that is free parameter. Once this is chosen, the choice fixesgfoimd p°. This
proves the second item. We shall return to prove the first éfter proving the others.

Adding (1) and (2), we see thaf + p° is a constant for any such equilibrium. Choicepdffixes bothp*
andp®. This is true for any Nash equilibrium with a strictly poséidemand. Furthermore, ap§ that is paid
reducesp® by that amount and increasg$ by the same amount. This proves the third item.

The last two items follow by direct substitutions indép®, p®), Uisp, and Ucp.

As a consequence of the observation thigl> = Ucp at any equilibrium regardless of the valueof, we
have

Y 1—ry
Uisp % Ucp
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10

is independent of? at any equilibrium, for any fixed relative weighte (0,1). The regulator may thus pick
any p?. This proves the first item. (This observation holds everztmo-demand equilibria). The proof is now
complete. ]

Remarks 1) Every choice ofp? can also result in the undesirable zero-demand equililand, not just the
desirable equilibrium with strictly positive demand.

2) For this strictly positive demand equilibrium, the nauchoices ofp? are those that makg? = 0, i.e.,
there is no payment from CP to ISP, gt = 0, there is no payment from the internauts to the CPy®o& 0,
there is no payment from the user to the ISP.

3) If one places the additional restriction thgt> 0, the only effect of this constraint is that the choice of

p? is restricted top? < (Dy + ap®)/(3c), and the above theorem continues to hold.

B. Ex post regulation

We next consider the case when the CP and ISP decide on tlspieatdse prices first, knowing that the
regulator will set the side payment subsequently.
Theorem 2: In theex post regulation game, there is a unique pure strategy Nash kguith with the following
properties:
« The uniqueness is up to a free choice of eitheor pc. Without loss of generality, we may assume a free
p*
« At equilibrium, the net user payment per demand is uniquétgrgby

» The demand is unique and is given b, + ap®)/2 > 0.
« The regulator will sep? so that the net revenue per demasfd+ p° + p® = D“%{jpa is shared in the
proportiony and1 — v by the ISP and the CP, respectively.

Proof: As in the previous section, it is clear that the revenues pearaihd and the utilities for both agents
are nonnegative. If this is not the case, the aggrieved CPRet3P guarantees himself a strictly larger zero
utility by raising the price under his control so that demaeduces to O.

Let us now perform a search for equilibria with strictly gog demand. Such &?°, p°) is an interior point
among all those pairs that satisly, — «(p® + p©) > 0. Consider a fixed interior poir(p®, p©). The regulator

setsp? to
1— N .
arg max Ugp x Ucp” = argmax [ log(p® + p%) + (1 = 7) log(p" + 5" —p%)]

where the equality follows because the demand can be puliedfdhe optimization. The optimization is over
the set ofp? that ensure that the arguments inside the logarithm rentdatlys positive. It is easy to see that
the latter function is concave ipf!, and thus the maximizing? satisfies
y o L=y
ps+pd pc+pa7pd
which yieldsp? = v(p® + p®) — (1 — v)p®.

)
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Substitution of thisp? yields

ps +pd ,y(ps +p(: +pa)
PPt —p’ = (=70 +1p°+p)
Clearly, p® + p© + p® is the net revenue per demand for both ISP and CP put togetheithe ISP and the CP

share this booty in the fraction of their relative weights.

Knowing this action of the regulator, the ISP responds toGRes p¢ by maximizing

Ussp = d(p®, p°)(p° + p") = (Do — a(p® + p°) x v(p° + p° +p*).

This is a concave function gf*, and the maximum is at

. Do —ap® .
pé:OTp—p- (6)
(6%

Similarly, for an ISP’sp®, the CP’s best response is
Do —ap®

C S

)

2c
which is the same equation as (6).
At equilibrium, we thus have® + p° uniquely determined and given by the second item. A sulbistitu
yields that the demand is given by

d(p®,p%) = Do — a(p® +p°) = M,
which proves the third item.

The revenue per demand is easily seen tdBg+ ap®)/(2a). Further substitution yields that net revenue
is d(p®, p©) (p* +p° +p*) = (Do +ap®)?/(4a), a strictly positive quantity shared in proportion of thestative
weights by the ISP and CP. This proves the last item.

Finally, for any p*, the regulator will sep? to ensure this proportion, and thpé may be taken as a free
variable. Eachp® andp® satisfying the above conditions is a Nash equilibrium. Tgrisves the first item.

Finally, it still remains to prove that there is no zero-demh&quilibrium. Suppose th&p®, p©) is such that

we get a zero-demand, i.€)y < a(p® + p°). With e = (Do + ap®)/2 > 0, the ISP can set his new price to
q*=Do/a—p°—¢/a
yielding a demand)y — a(¢® + p°) = ¢ > 0 and a revenue
Y(q® +p° +p") =v(Do/a —e/a+p*) =ve/a >0,

and therefore a strictly positive utility. A unilateral dation yields the ISP a strict increase in his utility. Thus
a (p®,p°) with zero demand cannot be a pure-strategy equilibriums Tbhincludes the proof. ]
Remarks: 1) The equilibrium utility for the ISP undesx post regulation is easily seen to I$e//4 fraction
of that underex ante regulation. Clearly then, the ISP prefezspost regulation ify > 4/9.
2) Similarly, the equilibrium utility for the CP undex post regulation is9(1 — +)/4 fraction of that under
ex ante regulation. The CP preferx post regulation ifl —~v >4/9 ory < 5/9.
3) Thus, ifv € [%, g] both preferex post regulation. Fory > 5/9, ISP prefersex post regulation while CP
prefersex ante regulation. Opposite is the case wherc 4/9.
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I1l. THE CASE OF MULTIPLE CONTENT PROVIDERS

We now consider the case when there are several CPs. Intercaunect to each of the CPs through the

single ISP. See Figure 3. The parameters of this game ara givhe following table.

Parameten Description

n Number of CPs.
s Price per unit demand paid by the users to the ISP for cororetti CPs.

This can be positive or negative.

s Price per unit demand paid by the users to Fhis too can be positive or
negative.

p¢ Advertising revenue per unit demand, earned by the CP. Hiisfigsp? > 0.

pd Price per unit demand paid by the CP to the ISP. This can bergitbsitive
or negative.

p* Vectors of aforementioned prices, wherds one ofs, ¢, a, d.

d;(p*,p°) | Demand for CR as a function of the prices. See (7) below and the following

discussion.
rCPi The revenue per unit demand of GPgiven byp¢ + p¢ — p?.
TISP, The revenue per unit demand of ISP coming from content peavidy CPi,

given byp; + pd.
Uisp The revenue or utility of the ISP, given By, d;(p®, p°)(p§ + p%).
Ucp: The revenue or utility of the CP, given k¥ (p®, p°)(p$ + p¢ — p?).

¥ Relative weight of the ISP with respect to the CP.

A. Demand function: Strictly positive demands

The demand function for content from GPFis such that it depends opf and p¢ only through the sum
p® + p°, the vector of net payment per unit demand from the intesadih interesting feature we wish to
model is apositive correlation in demand with respect to others prices. Assume that the ISP has a fixed
capacity/bandwidth of?/. If CP ¢ and ISP increase their prices for content from {CBemand for this content
naturally goes down. On the other hand, when the price forj €Bntent increases, wheje# i, the decrease
in demand for content from CpPfrees up some capacity. This provides a marginally bettlydexperience for
the internauts of other CPs, and particularly internaut€®fi. This positive effect creates a marginal increase
in the demand for content from the other CPs, and in particala increase in the demand for content from
CPi. We model this correlation effect by setting the demand fions to be

di(p*,p°) = Do — o(p} +15) + B Y (95 +p5) (7
Jui#
provided each of the demands are strictly positive. Heigthe sensitivity parameter for the increase in demand
for CP ¢ content per unit increase in price of GRecontent, whery # i.
While (7) is justifiable when all demands are positive, fartthought suggests that it must be refined a little

to account for the following. When the prig¢ + p$ charged to CR internauts is such that it forces dematd
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Fig. 3.  Monetary flow in a nonneutral network with multiple £P

to be zero, then any additional increasejn-p$ simply continues to hold this demawg at zero. The capacity
freeing and the consequent phenomenon of increase in defoanther CPs’ contents no longer occurs, and
additional price rise for CR content will have no further tangible effect on other insauts’ behavior. We shall
return to this refinement in the next subsection after addrgssome points on the positive demand case.
Let the evaluations in (7) be strictly positive for eachf this is placed as a requirement, one could view
it as a joint constraint on the actions of the ISP and CPs:ngilie other prices, CP will not set too high a
price that maked; zero; neither will the ISP. We may writé; (p®, p°) > 0 for everyi as
Do —op; +p§)+B Y (P +p5) >0, i=1,...,n, (8)
Jui#i
which is compactly summarized as follows. Define the mattjx= (a + 8)I,, — 5.J, wherel, is the identity
matrix of sizen x n, andJ, is the square matrix with all-one entries of size n. The matrixA,, has diagonal
entriesa and all off-diagonal entries-3. Also defineE,, to be the all-one vector of size x 1. Then the
constraint (8) in matrix notation is
DyE, — An(p® +p°) > 0. 9

Sum up the components in (8) over alhnd set the sum pric® = >, (p? + p§), and we see that the total
demand is
nDy— (a— (n—1)B)P

under the assumption that ea¢his strictly positive. For this total demand to be negativetyrelated with the

average price per unit demadtyn, we must have that
(n—-1)B<a, (10)

an assumption that we make from now!tms before we assume that andp¢ can be negative, i.e., the ISP
and CP can pay the internauts for their usage, with a conséfuerease in demand.

Under the constraint (8)/sp given by

Use =Y di(p®,0°)(p] +p{)

i=1
14This condition also arises from assumption (D) in [28].
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is a concave quadratic functibhof the vector of ISP priceg®.

B. General demand function

As alluded to above, the demands in (7) have to be refined touatdor the lack of further positive
correlation after a demand reaches zero. See the discussiba paragraph following the one containing (7).
We present the detailed derivation of the general demanctibmin Appendix A. For a given price vector

p = (p1,p2,-..,pn), Wherep; = ps + p¢, the demand for conteritis defined as follows:

DO —ap; + 6 (Zj<k*+17j¢ipj) + (n — ]{?*)BT(]{?* + 1), 1= 1, Ceey k*

di(p) = (11)
0, > k*
where
Do+ Z iick Pj
T(k) := < k=1,2,...
( ) o — (n _ k/’)ﬁ 3 3 ) 7n5
and k* is the smallest index among= 0,1, ..., n for which

pi < T@), i=1,....k
pri1 > T(k+1).

In the study of problems with linear demand functions of thef (7), the analysis is usually restricted to
the price vectors that results in positive demand from edaliep. To the best of our knowledge, the above
demand function that completely characterizes the demfamdsy price vector is new. The considerations that
lead to this demand function are given in Appendix A. Thiseagaitization is an another modest contribution
of this paper.

To get more insight into the general demand function we surz@ahe demands for the case of two CPs.
In Figure 4 we plot all the possible demands as a function t@rivaut prices{ = (p1, p2)). As shown, we

can divide the set of prices into four regions. A descriptidrihe regions is given below.

(i) Denote the vector of net prices y= (p1,p2). If it lies in the interior of the region bounded by lines
AO and BO, denoted as Regioh, demands for contents from both the CPs are strictly pesitiv

(i) In the rectangular region enclosed between liigS and OD, denoted as Regio®, the demands for
contents from both CPs are zero.

(iii) In the region enclosed between the lind® andOC, denoted as Regidsy demand of CP 1 content is zero
and that of CP2 content is positive. Any point that lies on the linedO is such thap, = (Dg + p2)/«
with ps < Do/(a — B).

(iv) In the region enclosed between the linB® and OD, denoted as Regio#, demand of CR2 content is
zero and that of CR is positive. Any pointp that lies on lineBO is such thatp, = (Do + Bp1)/a with
p1 < Do/(a— ).

15simple calculations show that the Hessian matrix-&A,,. To see that it is negative semidefinite, observe that,, = —2a x [(1 —
p)In + pJn] wherep = —B/a. The matrix(1 — p)In + pJn hasl — p as an eigenvalue repeated— 1 times andl + p(n — 1) once,
and is therefore positive semidefinite by our assumption. (I0is positive definite if there is strict inequality in@}). Consequently, the
Hessian—2A,, is negative semidefinite, arldisp is a concave function of®.

November 26, 2014 DRAFT



15

P2

Region 2

710

Region 4

Do
a—j3

Region 3

Fig. 4. Characterization of the demand region. (Scales stiaba and ordinate are different).

C. Timing of actions

The timing of actions for the games are as follows. Forékante regulation game:

(i) The regulator sets the side payment from each CP to theskgfarately and simultaneously. This can be
positive or negative. In deciding the amount paid by <CEhe regulator shall bring only that revenue into
consideration which is generated by internauts connectédPt;.

(i) All the CPs choose their pricgf. The ISP chooses the veciot. All these actions are taken simultaneously.

(i) The internauts react to the prices and set their deraasdper the discussion in the previous subsection.

For theex post regulation game:

(i) The CPs and the ISP set their respective access prjcaadp® simultaneously.

(i) The internauts react to the prices and set their demands

(iii) The regulator sets the paymep¢ from the CPi to the ISP. This can be positive or negative. Yet again,
the regulator shall be able to bring only that revenue intosateration which is generated by internauts
connected to CR.

The case wher = 0 is easily handled in either scenario. The actions of theouariCPs (prices) do not
influence each other. Though the ISP’s utility is the sum @lerevenues accrued from access to each CP, in
setting thep¢ the regulator takes into account only the revenue genetsteatcesses to content of GPThe
ISP’s utility is thus separable, and the problem separat®sni single-CP single-ISP problems. The results of
Theorems 1 and 2 then apply. We shall henceforth assumestival.

D. Ex ante regulation

Here, we characterize only those equilibrium prices thatilten strictly positive demands for content from
all the CPs. It is however possible that there are equiliita some demands being zero. Using the general
demand function (11), we characterize all such equilibmi&ections A-A and A-B of Appendix A.

Recall the definition of the matrid,, and the vecto#7,,, given after (8). The matri¥,, has diagonal entries

« and off-diagonal entries-3. E,, is then x 1 vector of all 1s.
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Theorem 3: Assumea > (n — 1)8 > 0 and consider thex ante regulation game. Among profiles with
strictly positive demand, a strictly positive pure stratddash equilibrium exists if and only if the matrix
(A, +2al,) Y [DyE, + A,p? is made of strictly positive entries. When this conditioridso the pure strategy
Nash equilibria have the following properties.

« The uniqueness is up to a free choice of the veptor

« At equilibrium, for eachi, there exist constantg and h,; that depend only op*, Dgy, «, 8 such that

p; = gi*pzc'l
pi = hi+pf.

» For each CR, the net internaut payment per unit demand is unique andvenddy p; + p$ = g; + h;.
Any paymenty¢ paid by CPi is collected from the internauts, and this in turn is retdrtethe internauts
by the ISP.

« The demand vector is unique and does not depengon

« The revenues per unit demand, and therefore the total regerullected by the CPs and the ISP, does not
depend omp?.

The recipe for the proof is identical to that of Theorem 2 yomlth some matrix algebra. See Appendix D.
Remarks: 1) Yet again, as in point (4) in page 6, we notice that the aathoice ofp? does not affect the
net cost per unit demand to the internauts; neither doedettathe equilibrium demand. It merely affects the
way in which the payment by the internauts is split between; @Rd the ISP. The mere fact that the regulator

fixed somep? (underex ante regulation) suffices to get an equilibrium more favorablentithe case whep?
is under the control of one of the players and is jointly sethvthat player's access price (as in point (3) of
implications in page 6).

2) For concreteness, we give specific results for the case whe 2; see (60) in Appendix D. Let = §/a.

The negative definiteness condition is ther: 1, and thusr € (0,1). The equilibrium prices turn out to be

s 1 1 7/3 " Do

o= 30-72/9) | 773 1 |© MR T (12)
. 2 L o7/3 Dy

o= s 30-72/9) | 73 1 |" T 3= /3 (13)

An interesting observation from (12) is that when< 1, any increase in CP 2 price causes a reduction in
demand for that content, but results in nearly similar in niagle increase in demand for content 1, and vice-
versa. The ISP resources thus remain nearly fully utilizéitivencourages the ISP to charge a high price, as
evidenced by the appearancelof 7 in one of the denominators fgr*. The price charged by the CP in (13)

remains bounded.

E. Ex post regulation

As done previously, the ISP and the CPs will choose theireetsge prices knowing that the revenue they
earn will depend on the side payment set by the regulator. Nl present our results for = 2, due to

combinatorial complexity reasons.
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As in then = 1 case, the ISP and CPwill sharep; + p$ + p¢, the revenue coming from internauts accessing
content from CPi, in the proportiony; and1 — ~;. One immediate observation is that at equilibrium, this
revenue should be nonnegative if demand is strictly pasitgcause otherwise GRcan raise price and force
demand to be zero, change his loss to zero, and strictly meprsnother observation is that all utilities and the
constraints depend qif andp$ only through the sum? + p§. While this sum is bounded if the demand vector
is to be strictly positive, neithes; nor p; need be bounded, and so the action sets for each of the agents i
unbounded. We shall present our main result forekgost regulation game fon = 2 and under a condition

on the relative weights, namely, the matdik with entries

Hij = o (14)
—(B8/2) (vi +v5) i #J,
is positive definite. This condition arises to keep the tytitif the ISP a concave function of in Region 1 of
Figure 4.

Proposition 1: Let 7 = 8/a andn = 2. Then H is positive definite if and only if

Vmax {m/72,72/m} < (1+V1—172)/7. (15)

Under this condition, the Hessian disp in Region 1, given by-2aH, is negative definite, and dG,sp is a
concave function ofp;,p3) in Region 1.

Proof: H is a2 x 2 matrix and the statement is straightforward to verify byedirevaluation of eigenvalues
and requiring that they be positive. The expressionlfgp immediately yields that the Hessian42«aH. We
omit the details. ]

This condition (15) holds, for example, when thgs are equal andv > .

Our main result of this section is the following mixed bagcRethat the cas@ = 0 was already considered
and disposed; so we shall consider ogly 0.

Theorem 4: Considern = 2. Let the matrix H given by (14) be positive definite. Also let > g > 0.

Without loss of generality, assumg > p§. For theex post regulation game, the following hold.
« If p§ is large enough so that

pY > (2a/B)p5 + (2a/ B — 1) Do, (16)

then there exists a pure strategy Nash equilibtfuwith d; > 0 andd, = 0. Such an equilibrium satisfies
all the properties of a single-CP and single-ISP equiliirigiven in Theorem 2 withDy and « replaced
by D} = Do(a + 8)/a anda’ = (a?® — 3%)/a. There is no other pure strategy Nash equilibrium.

« If (16) does not hold, there exists no pure strategy Nashlibguim.

See Appendix E for a proof.

Remarks: 1) Thus even thouglex post regulation in the single-CP single-ISP case always gaveigquan
Nash equilibrium with the desirable strictly positive derdathe desirable feature disappears when there are
multiple CPs,a > 5 > 0, andp$ is not high enough to satisfy (16). In particular, whehare equal, there is
no equilibrium in theex post regulation gameEx ante regulation continues to yield a unique Nash equilibrium

among those profiles with strictly positive demand vectors.
16This result corrects an error in [29, Th. 4] where the eqiilim under (16) was missed.
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2) When there is indeed aax post regulation equilibrium, under (16), CP 2 is shut out by CP JpoWwerful
CP with a high advertising rate could exclude smaller CPmftbe market.
3) Based on the above remarks and point (4) in pagex@&nte regulation may be preferred ovex post

regulation in multiple-CP settings.

IV. EXCLUSIVE CONTRACT

In this section we study thex ante regulation game in a setting where one of the CPs (say CP &jseinto
an exclusive contract with the 1S We do not consider thex post regulation game in this section because
ex ante regulation seems preferable é® post regulation, as remarked in the previous section.

We refer to the pair of ISP and the colluding CP 1 asdbiéuding pair and denote itSP. They make a joint
decision on the priceg; = pj + p{ charged to the internauts of class 1. We denote the sum of uliliies
as Ugp. The objective of the colluding pair is to maximize theirrjpirevenue. How they share it between
themselves shall not concern us here.

The utilities obtained by the players in the resulting game are as follows:

UisplBi + 15,95 D5 5) = [Do— alp +p5) + 8 (05 + )| (05 + 5 + )
j#1
+> [Do —a(p} +p5) + 8 (P +p§)} (p; +p),
i#1 G#i
and fori =2,3,...,n,

Ucpi(P] + P1sP3s -3 Py D5 -, Dy) = [Do —a(p] +p5)+ 8 (0 + p?)} (p§ + 1 — p).
J#i
Itis easy to verify thal/jgp is a concave function gf* := (pj+p§,p3, ..., p}) for agivenp® := (p{,ps,...,p%)
andp? := (p4,pg,...,p%), and for each = 2,3,...,n, Ucp; is a concave function gf¢. Indeed, the Hessian
of Usp is —2A4,, which is negative semidefinite (negative definite when (n — 1)0).
We now establish the existence of equilibrium prices andysits properties.

Theorem 5: Let & > (n — 1)3. In the ex ante regulation game with collusion, there is a unique Nash
equilibrium with the following properties.

« The equilibrium is unique up to a free choicef,

« The equilibrium price set by the colluding pair is

—pf Dy

s e 17
P = S L = DB) A7
and fori = 2,3, ..., n, the equilibrium prices are
s __ d c __ d
p; =gi—p; and p;=h; +p;, (18)

where the constantg and h; depend only orp®, Dy, o, and 5.
« The demand vector, the revenue per unit demand, and thertifertotal revenues collected b$P and

the other CPs do not depend pf.
See Appendix F for a proof.

1"The same situation also arises when the ISP itself is als@vder of content.
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Remarks: 1) From (17), the equilibrium price charged by the collgdpair depends on only its advertisement
revenues and is independent of other price quantities. Tdre the number of CPs, the higher the price charged
by the colluding pair on internauts of class 1.

2) As beforep? has no influence on the price rates seen by the internauts.

A. Price of Collusion

Is collusion beneficial to the colluding pair? How does itaffthe noncolluding CPs? We specialize Theorem
5 to case of two CPs, exploit the tractability of our modeld gmovide some explicit answers.

It can be straightforwardly checked that the equilibriuricgs of Theorem 5 are

pi+pi 0 —-1/2 0 »s 3/(1=7)
Dy
3 =| -1 /6 13 |1t |+to, | @+n)/0-1) | (19)
S 1 —7/3 —2/3 s 2
wherer = §/a € [0,1). The net price per unit demand is then
T+ pf —1/2 0 ¢ D 3
b1 T D1 _ / | P n 0 7 (20)
p3 + pj —-7/6 —1/3 e 6a(l—7) | 41

independent op¢ as we had observed earlier.

When there is no collusion between the ISP and CP 1, the kduith prices in (12) and (13) yield

pitpi | 1 LT3 | 2D0(1 — 7/2)
Liﬂ)%] 3“‘72/9){7/3 1 ] Ls]+3a<1—r><1—7/3>E2' @)

[30] proposed two performance measures: the individualsicollusion price (ISCP) and single collusion

externality price (SCEP). When there is only one coalititve, ISCP is defined as the ratio of the total utilities
of the colluding players before and after collusion. The 8G&defined as the ratio of the total utilities of the
noncolluding players before and after collusion. Lgt, p¢) and (p®,p°) denote the equilibrium prices under

no collusion and under collusion, respectively. Then

ISCP = [Uisp(p®, %) + Ucr1(p*, p°)] /Usp(P®, P°), (22)
SCEP = Ucp2(p®,p°)/Ucp2(P’,D°). (23)
Substitution of (20) and (21) in (22) and (23) provides a wWeaf information:
1) SCEP> 1 if and only if
p< 2 g+ 2T

2T
When (24) holds, collusion between the ISP and CP 1 resulisl@ss in revenue for CP 2.

+

(24)

2) Under (24), both classes of internauts pay lower prices.tBe demand for CP 2 content is lower.

3) For a specific choice of parameters, see Figure 5 for a plilB©P and SCEP versus the advertisement
revenue parameter for CP 2. The colluding pair benefits Bxadten the noncolluding CP has lower
revenue.

4) The colluding pair does not always benefit, for e.g., what) (s violated. For the same phenomenon in

a load balancing problem, see [30].
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Fig. 5. Individual Single collusion price for ISP

V. DISCUSSION

In this paper, we studied a model of a nonneutral network wifimetwork pricing and investigated mech-
anisms for regulating the payments between the ISP and tse @# main observation is that a mild form of
regulation can bring benefits to all players. We proposed nvezhanisms based on a weighted proportional
sharing criterion to regulate the side payments between3Reand the CPs. In thex ante regulation game,
where the regulator decides the side payment before thesagriees are set competitively, the internauts do
not get affected by the actual regulated prices between3Rednd the CPs. In particular, when the access
prices result in positive demand, the equilibrium demand e access prices are the same as in the case of
the no off-network pricing (whep? = 0). From the internauts’ perspective, the mere presence egalator
who regulates side payments in tBeante regulation game makes the internauts indifferent to theérakand
the nonneutral regimes. In thex post regulation game, where the regulator sets the side paynaftetsthe
prices are set competitively, price competition can reBultero demand equilibria when there are multiple
CPs. All these observations appear to tilt the balance iorfaf ex ante regulation, though in the single-CP
single-ISP setting it leads to higher prices.

In the nonneutral regime vertical monopolies can be foridéglconsidered a simple case of vertical monopoly
where CP 1 colludes with the ISP. Such a collusion is benéficithe CP only if its advertising revenues are
higher than a certain threshold.

To keep our analysis tractable, we have used linear demamtdidus that are popular in the inventory
management literature. The biggest benefit of using lineanathd function is that it is tractable, as evidenced
by the obtained expressions in this paper. It is naturallyntdrest to see the extent to which more nuanced

demand functions may change the qualitative conclusioteiredd in our paper.
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APPENDIXA

DERIVATION OF GENERAL DEMAND FUNCTION

With a suitable reindexing, we may assume that the vegterp® 4+ p° has components in the increasing
order, i.e.p1 <p2 < ... < py, Wherep; = p + pS. For brevity, we shall abuse notation and refetii(p®, p°)
as d;(p). Common sense suggests that if demand foriGfdntent is zero, then demand for GPcontent
for a j > i must also be zero since its price is higher. It will be illuating to study the evolution of the
demand function as the price vector increases from theeadl-zector top via min{xF,, p}, wherex is a
scalar parameter that increases from G+so and themin operation is taken component-wise.

For z € [0, p1], we havemin{zF,,p} = xE,; all internauts are charged the same (net) price gkr unit
demand. It is then immediate that all demands are equal,rand (7), this value is strictly positive if and only
if
_ Do
a—(n-18"

In particular, demand for CP 1 is strictly positiveat= p; if and only if
Dy
a—(n—-1)8

If (25) does not hold, the demand for the cheapest conterdris, and our common sense conclusion suggests

r <

p1 < =:T(1). (25)

that all other demands are also zero. If (25) holds, then atp;, demand for CP 1 is strictly positive. For
z € [0,p1), the demandl; for content from CP 1 decreased with But further increase in: leaves the price
for CP 1 content unchangedat, and our observations about positive correlation with eespo others’ prices
indicates thatl; must now begin to linearly increase withfor « > p;. This is illustrated in Figure 6. Thus

for « € [p1,p2], we see
di = Dy—ap1+ (n—1)px, for CP1
di = Do—(a—(n—-2)8)x+ Bp1, for CPi > 2. (26)

At z = po, the demand from CP 2, given by (26) foe 2, is positive if and only if

Do+ Bp1
P < o T = 1), 27)

When (27) holds¢; is linear inz with positive slopg(n — 1) for z up to p2, and all otherd; are linear and
decreasing inc with negative slope-(« — (n — 2)3). Again see Figure 6. If (27) does not hold, = 0 for

i > 2, butd; is set up to the valu®, — ap; + (n — 1)5z* wherez* = T'(2). All demands are thus set in this
latter case. If (27) holds, the former case, then one pracaether in a similar fashion untit* = p,, and all
demands are set, or untif* € (pg«, pr-41] for somek*, when demandd; = 0 for all j > k£*, and demands
d; are set with pricesnin{z*E,,, p}. To get an explicit expression for the demands, let us define

L D0+Bz<kp3
T(k) i D,

Let k* be the smallest index amorig= 0, 1, ...,n for which

k=1,2,....,n. (28)

pi < T@), i=1,....k

prt1 = T(k+1). (29)
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(n-2)B
8o
ol (n-1)B
60
=
E ol ~(a—(n-2)B)
a
40
sor Demand CP1 n-2)B
20r Demand CP2
101 Demand CP3 —(a—(n-3)B)
ot L L i T
o 5 10 15 20

Price

Fig. 6. Demand functions. Abscissa is the parameter

To further clarify (29), ifp; > T'(1) thenk* = 0; if p; < T(3) for i = 1,...,n, thenk* = n. In all other

cases, the definition in (29) is unambiguous. Straightfodwaanipulations show that
T(k)>T(k+1)ifandonly if p, < T'(k), k=1,...,n— 1.
It follows from the definition ofk* that
T >T2)>...>Tk)>TE"+1) <T(k"+2), (30)

where the last two inequalities hold if the correspondirgdjdas are between 1 and Let us now get back to
identifying the demands. Giveh*, we setz* such that
Dy —azx*+ 0 Z pj + B(n—k*—1)z" =0;
J<k*+1

the solution isz* = T'(k* + 1). The demands are now specified by

0i(p) = Do —api+ B perr jpili + (= k)BT(R* +1), i=1,... k" 31)
0, i > k.

This describes the behavior of the internauts for any giviceprectorp = p* + p¢ and models the positive
correlation of demand with other internauts’ prices. Feg6rdepicts the procedure outlined above to evaluate
the demands when there are= 3 CPs. The other parameters abg = 100, o = 10, 5 = 2, and the price
vectorp = (5,10, 20). The slope of demand functions in different intervals aso aharked. Heré* = 2. The

demand of each CP is obtained by noting the respective vdltlees demand curve at* = 7(3).

A. Equilibria with all demands being zero

We now study the case of equilibria with all demands being z&hbviously (25) must not hold; additional
conditions are also needed.

Theorem 6: A price vector(p®, p©) is an equilibrium with all demands being zero if and only i ttollowing

conditions hold for alk = 1,2,...,n:
, Dy p
s> ¢ — pf 2
i = a*meﬂ+m P (32)
, Dy J
¢ >
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Proof: See Appendix B. ]
Remarks: 1) Equations (33) and (32) are the same as saying that resemer unit demand due to GP
content, to CR and to the ISP, are at least
Dy
a—(n—1)B

and this holds for each In such a case, all the CPs and the ISP are charging too higicearpsulting in a

+pi =T(1) + pf,

deadlock equilibrium with all demands zero.

2) Whenn = 1, (32) and (33) reduce to (3) and (4), as they should.

B. Equilibria with mixed demands with n = 2

In order to avoid combinatorial complexities, and for eabexposition, we focus on the case when= 2
and now characterize all equilibria where demand for ondertris strictly positive and demand for the other
is zero.

Theorem 7: (a) A price profile((ps, p5), p§, ps) is an equilibrium withd; > 0 andd, = 0 if and only if

s DI + a/pa

b = % - p’f (34)

Q

c D(I) 7 2a/pl11 d

pvo= T +Pp1 (35)
s Do + B(p] + p§ “

Dy = % - pg + D (36)
. Do + B(p +pf)

py > DorPRIEN) 37)

where Dy = Do(a + 8)/a anda/ = (o — ?) /a.
(b) A price profile ((p$,p5),p$,p5) is an equilibrium withd, > 0 andd; = 0 if and only if the same
conditions as above hold with indices 1 and 2 interchanged.

Proof: See Appendix C. ]
Remarks: 1) Region 1 equilibria are characterized in Theorem 3. &ed equilibria are characterized in
Theorem 6. Equilibria in Regions 3 and 4 are characterizetheorem 7. We have therefore characterized all

equilibria in then = 2 case.
2) Conditions (34) and (35) together constitute an equilirin case of a single CP withy and« replaced
by D{ anda’, respectively.

3) Conditions (36) and (37) may be interpreted as
nsp2 > T'(2) +p5 andps > T'(2)

whererisps = pj + p¢ is the revenue to the ISP from CP 2 content.

APPENDIXB

PROOF OFTHEOREM 6

We first prove the necessity of these conditions. (g€t p¢) be an equilibrium with all demands being zero;
it must be the case that (25) is violated, and so

s c DO
vz (et ) B
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CP should not be able to reduce his price, increase dematmla strictly positive value, and derive a strictly
positive utility. It must therefore be the case that evenl#ast reduced pricgS that keeps the demant] on

the threshold of positivity is too low a price bringing him agative revenue. More precisely, a price

¢ s Do
when demand for CR content is on the threshold of positivity should imply
g5 —pi + i <0, (39)

a negative revenue per unit demand for CBubstitution of (38) in (39) yields necessity of (32).

We next verify necessity of (33) by contraposition. Ldbe a content index for which (33) does not hold,

and so
P = pi < Do/(a=(n—1)B). (40)
Take
e (s - - a)) >0 (41)

and setg; so thatg; + p¢ = ¢ > 0, i.e., the ISP revenue from CPcontent ise > 0. Also set all othep; for
j # i to high values so that demand for these other contents is Permandd; for CP i content is however

strictly positive because, by using= ¢ + p¢, (40) and (41), we get

@+ = (¢ +p)—p!
= e+pf—pf

= % <ﬁ = (f p?)) + (1§ —pf)
_ Do

a—(n-1)8

Thus (25) holds, and s@; > 0. (All other demands are zero). The ISP now has a strictlytpesitility, and
the profile cannot be a Nash equilibrium. By contrapositimegessity of (33) is established.

We now argue sufficiency of (32) and (33). Take a profile thaisBas these conditions. A glance at the
proof of necessity of (32) indicates that there is no desiafor CPi to derive a positive utility. To see that
there is no deviation for the ISP that will yield a positiveeaue, lety® be any vector of ISP prices. Without
loss of generality, reorder the prices= ¢} + p§, i = 1,2,...,n, so thatg; < g2 < ... < g,. If ISP revenue

for contentj were strictly positive, then

D
s d s c 0
0<gq;+p5<q;+pj— a—(n—1)8
where the second inequality follows from (33), and so
S C D
4 =q; +pj > 7@_(n()_1)ﬁ =T(1) (42)

for any suchj with strictly positive ISP revenue for contept (7'(1) is defined in (25)). However, from (30)
and (29), any index with strictly positive demand satisfies< 7'(¢) < T'(1). Comparing this with (42), we
deduce that indices with strictly positive demand have wositjye revenue per unit demand. The ISP revenue
is therefore nonpositive, and there is no deviation that yidld a better revenue. This proves sufficiency of

the stated conditions, and the characterization of all Naglilibria with all demands being zero is complete.
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APPENDIXC

PROOF OFTHEOREM 7

We shall prove only (a). Proof of (b) is similar and is omitted
We first prove necessity of the stated conditions. Uet, p5), p$, p5) be an equilibrium withd; > 0 and

do = 0. Then, from the discussion on demands, we must have

Dy
S C
= <
D1 p1 +pI a—g
Dy + p1
p2 = py+p5 > — (43)

Necessity of (37) is immediate from (43).

We next prove the necessity of (36). Sinte= 0, the current utility for CP 2 is zero. No unilateral deviatio
of CP 2 should yield him a strictly positive utility. For a istty positive utility, he must reduce his price to
make the demand for his content strictly positive. But evenléast reduction in his price that puts the demand
for his content on the threshold of positivity, a prigesuch thatg§ + p5 = (Do + Sp1)/a should already yield
him a net nonpositive revenug + p$ — p¢ < 0. Substitution of the former equality in the latter inequali
yields (36) as a necessary condition.

We now consider deviations of the ISP. We first observe thRtsI8tility must be nonnegative. Next, given
that the price profile falls in Region 4 of Figure 4, the ISP caduce the price of; to ¢5 such that

Do + Bp1
a

©=q¢+py=T(2)= (44)

without affecting the demand, and keeping the demant} = 0. His revenue does not change, and the price

profile (p1, g2) is now on the line BO in Figure 4. The ISP’s utility is thus
Usp(p1,p2) = Usp(p1,q2)
= (Do —ap1 + Bg2)(p] + pf) + (Do — agz + Bp1) (g5 + p3)

(Do — ap1 + Baz)(pr — p§ + pY) + (Do — age + Bp1) (g2 — p5 + p3).- (45)

Let us now consider infinitesimal deviations either into RedlL or along the line BO, and prove necessity of
(34) and (35). The ISP can clearly changeandg; simultaneously to place the price vector in a neighborhood
of (p1, ¢2) inside Region 1 or on the line BO. Such deviations are giveinbsements: = (uq, u2) that satisfy
us < (B/a)u;. SinceUsp(p1, g2) given by (45) is differentiable in this region, and there iroes no direction

pointing into Region 1 in whicllisp increases, we must have the dot-product
VUsp(p1,q2)T w <0 Yu with ug < (8/a)u;.

It follows that the direction of steepest ascent {dgp at (p1, g2) which is VUsp(p1, ¢2) must be normal to
the line defined by; = (8/a)u; and pointing away from Region 1, i.e.,

OUisp _ OUisp
992 B opr
From (45), and after noting thatsp 1 := (p1 — p§ +p¢) andrispa := (g2 — p§ + pd) are the ISP revenues per

(46)

unit demand arising from contents of CP 1 and CP 2, respégtive get

OUsp
0q2

= Brisp,1 + d2 — arisp2 = Brisp1 — arisp2
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and
OUisp

Op1

= fBrisp2 +di — arisp1.
Substitution of these in (46) yields that the condition
d1 = O/’I‘|sp71 (47)

is a necessary condition for direction of increase for the'dSutility. We now used; = Dy — ap; + Bq2, the

expression foge given in (44), and the definition ofisp; and rewrite (47) as
Dy — o' (p +pf) = o' (} +pf). (48)
Note that this equation fixes; given apg:

. D! — O/(pc +pd)
p=—— (49)

Furthermore, if we can establish the necessity of (35) wifikds p{, then (48) implies the necessity of (35)
as well, as can be verified by direct substitution.

We now establish the necessity of (35). Consider first arriott@oint of Region 4. Small deviation by CP
1 move the point along the abscissa, and if small enough thmtdn keeps the resulting point inside the
interior of Region 4. Ther; continues to be 0 and;, > 0. As a consequence, it follows thét = Dy — o/p1,

wherep; = pj + p§ and the variation here is ip$. The revenue for CP 1 ig§ + p¢ — p¢ so that

Ucp1 = (Df — o (p§ + p)) (0§ + p§ — pY).

It is thus necessary that the first order optimality conditimld, and so

OUcp1

ot (Df — o (p} +p5)) — &’ (0§ + pf —pf) =0 (50)
1

so that
Dy — o' (pi +pf) = o' (0§ +pi — pi). (51)
Solving the simultaneous equations (48) and (51), we gehéuessity of (34) and (35) among interior points
of Region 4.
Now consider points on the line BO. Let us denote the rightehsides of (34) and (35) ag ,,; andp{ oy,
respectively, i.e.,

Djy + a'pf d

piopt = T 30 P (52)
. D] — 2a'p?
Plopt = # +pf (53)

If p§ > pf opt» CONsider an infinitesimal decreasepifiwhich puts the point in the interior of Region 4. The

left partial derivative is
0~ Ucp1

e (Dy — o' (p} + %)) — ' (0] + p§ — pY), (54)
1
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the right-hand side of (50). We then have the following chafirequalities:

0~ Ucp1
opg

= (D) — o' (p; +p5)) — & (05 + p§ — 1Y)

5 > ] d
= (D6 - O‘I(pi,opt +piopt)) - O‘I(p(l.,opt +pf —pi)

+ ' (pi opt — D7) + 20/ (B opt — PT) (55)
= 0—(1/2)a/(p] opt — PT) + 2/ (DS opt — PF) (56)
= (3/2)al(p§,opt - i), (57)

where (55) follows by adding and subtracting

(Do — O/(piopt + DY opt) — O/(P{f,opt +p§ —pf).
Equation (56) follows because (51) and (48) hold for the ps{r,q, i ope), @nd from (49) we see that
PT = Popt = —(1/2)(PT = Piopt)-
From (57),pf > pf oo implies that an infinitesimal decrease results in a strictéase for CP 1. It must
therefore be thap; < pf{ . for the profile under consideration to be an equilibrium.
Whenp{ < p{ o, consider an infinitesimal increase jfi which puts the point in the interior of Region 1,

i.e., bothd; andd, become positive. As a consequence, the right-derivativeis

6+U S C C a

% = (Dp — ' (pF + %)) — a(pf + pf —pi); (58)
1

observe that the difference with (54) is that the second fsrmultiplied only by« instead ofa’ as now both

CPs have positive demand upon deviation in Region 1. Fatigwhe same steps leading to (57), we now get

0t Ucp;
opf

0— (1/2)O‘I(p§,opt -pi)+ (O‘I + O‘)(piopt - p)

(o + o' /2) (D5 opt — PT)

and now the right-hand side has a different scale when ccedpaith (57). Whenp§ < pf ,;, we have

't Ucp1
op§

the necessity of (35), and the proof of necessity is complete

> 0 yielding a strict increase in CP 1 utility. It follows that weust havep{ = p{ .. This establishes

Next, to address sufficiency of the stated conditions, dars profile satisfying them. Our necessity argument
for (36) also shows that CP 2 has no deviation yielding hinriatkt positive utility. For the ISP, the necessity
argument considered an equivalent point on the line BO, aodied that there are no infinitesimal deviations
around this point that will yield a better utility. But on ammt of concavity of the utility functions, no other
point in Region 1 (including the boundary AO) will yield aistty better utility. Since the boundary AO has
also been considered, and the any point in Region 3 yieldsthé@rsame utility as the point on the line AO
with the same ordinate, no point in Region 3 will yield a betiglity. Similarly, on account of concavity, CP
1 too as no deviation (infinitesimal or otherwise) that wikkld him a strictly better utility. This concludes the

proof of sufficiency.
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APPENDIXD

PROOF OFTHEOREM 3

Consider a fixegp?. We shall only focus on strategies jointly constrained sat t#h > 0 for all i. The joint
constraint onp® andpc is given by (8), and the demands are given by (7). Let us loo,at as a function
of p®* andUcp; as a functiorp. We already saw that the former is concave since (n — 1)3. Inspection
of the expression fot/cp; shows that it is also quadratic and strictly concaveinSince we seek equilibria
with strictly positive demand, such equilibria are intenmints of, for example in case of = 2, Region 1 in
Figure 4. It is therefore necessary that first order optityaonditions hold for such equilibria. So, setting the
gradient ofU,sp with respect top® to zero, we get

%Up'gp = _Z’ﬂ(pj +p§) — a(pi + i) + Do — a(pi +pf) + 5 _Z’(pj? +p5) =0
Jii#k Jii#k
for eachk. Similarly, setting eacl®Ucp/dpf = 0 yields

Do —a(py +p5) + B > (05 +15) — olpf, + pft — pf) =0
J:j#k
for each k. We next write thesen equations in matrix notation. For this purpose recall the matrix
A, = (a+ B)I, — 8J,, where all diagonal elements ateand all off-diagonal elements are3, and define
B, = (a+ p/2)I, — (8/2)J,, where all diagonal elements areand all off-diagonal elements ares/2.

Also recall thatF,, is the vector of sizex x 1 with all-one entries. Then the above equations become:

24, A, p° —A, O pd
= + DoEsy, (59)
A, 2B, p° al, —al, p*
where() denotes a block of zeros of appropriate dimensions. Theigeatd,, and B,, commute because both
are linear combinations of the commuting matridgsand J,,. Moreover, the determinant of the matrix on the

left side is
det(4A4,B, — A%) = det(A,(A, +2al,))
= det(A,)det(A, + 2al,)
= (a+8)" a-(n-1))Ba+p)" ' Ba—(n-1)8)
> 0.
This follows because the eigenvalues of the matrix
M(p) = (1= p)In + pJn

arel — p repeatedh — 1 times andl + (n — 1)p occurring once. The matrice$, and 4,, + 2«1, are scaled
versions ofM (p) with appropriate choices fqr. Thus the matrix on the left side of (59) is invertible. Frame t
fact thatA,, and B,, commute, the fact thatA4,, B, — A2 = A,,(A,, + 2al,,), and the formula for the inverse

of two-by-two block matrices with commutable entries, ondtes by inspection that
—1

24,  An | 2B, -4,
= (An(An +2al,)) ' o
A, 2B, —A, 24,
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where the symbol ¢” implies that the matrix before it left-multiplies all thdeenents of the bigger matrix

following it. Multiplying (59) by the above inverse, and @sing that2B,, + ol,, = A, + 2al,,, we get

s -1, alA, +2al,)"? d alA, (A, +2al,))" E,
. ( ) o I TN ) 6o
p° I, —2a(A, +2al,)™ ! p° (A, +2al,)"'E,
Let us now verify that the revenues to each of CPs and the ISmannegative. First we handle the ISP.
Observe that the components pf + p¢ constitute revenues from each family of internauts. Fro®) (e

gather that

p° + p? a4, + 2a0,) " p® + aDo (A, + 2a[n)*1A;1En
= aA; (A, +2al,) (A + DoEy). (61)
Next, consider the CPs. Again from (60) we gather that
pC—pl+p* = (I, — 2a(A, + 2aL,) " Hp® + Do(A, + 201,) B,

(A, 4 2al,)  (Anp® + DoE,). (62)

From (60), it also follows that
ps +pc = (An + 2a]n)_1(—ap‘1 + DO(In + O‘Ar_zl)En)

so that the demand vectdr= Do E,, — A, (p® + p©) can be written (after observing that all involved matrices
commute) as

d = a(A, + 2al,) " (Anp® + DoE,). (63)
Using this in (61), we see that + p? = A-'d so that
Uisp = dTAT_lld. (64)

Necessity of
(A +2al,) (Anp® + DoE,) >0 (65)

is then clear from (62) and (63). Indeed, if any componentha left-hand side of (65) is nonpositive, the
corresponding CP derives a nonpositive revenue per uniaddnand the demand for this CP’s content truncates
to 0. Such a point is either not an equilibrium, or if so, ndtcedmands are strictly positive.

Sufficiency of (65) is obtained as follows. If (65) holds, th@?2), (63), and (64) yield a point with strictly
positive revenue for all agents and strictly positive dethdndeed, from (62), revenue per unit demand is
strictly positive for all CPs; from (63), all demands areicily positive and consequently, all CPs’ utilities
are strictly positive; from (64) and the fact thaf;! has strictly positive eigenvalues, the ISP revenue is also
positive. Furthermore, this point satisfies first-orderiroptity conditions. Given the concavity of the utility
functions, it is a Nash equilibrium.

We have thus established that (65) is necessary and sufffoien pure strategy Nash equilibrium to exist.
When this holds, the pure strategy Nash equilibria are shah(61)-(64) hold, for a givep?.

Let us now bring the relative weights into the picture. Sitioe choice ofp? does not affect the demands
d;(p* + p?) as in (63), and the collections per unit demand by each of e &hd the ISP are as in (62) and

(61), respectively, the optimal solutigif to the sharing problem can be taken as any vector.
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It then follows that the unique demand is given by (63) whistablishes the fourth item. The form of the
solution forp® andp® in (60) shows thap; = g; — p¢ andp¢ = h; + p¢ which verifies the second and the
third items. Notice thap? can be any vector, and so the solution is unique up to a freeeldp?, and the
statement of the first item is verified. The last item followsnfi the observation that the demand vector, the
price charged by the CPs in (62), and the the revenue of thenl$64) do not depend op?. This concludes
the proof.

APPENDIX E

PROOF OFTHEOREM4

The system has two CPs,= 2. When g = 0, the problem separates into two smaller problems each with
one CP and one ISP, and Theorem 2 applies. We now assumé@ > 0. It will be useful to recall Figure 4
which has four regions.

1. We now argue there are no pure strategy equilibria in RegioThis is the region with both demands

zero. Let the ISP priceg;, p; and the CP pricep{ andp§ be such that
p1 = pi+pi>Do/(a—p)
p2 = py+p5 > Do/(a—p).

Consider the point O in Figure 4 given Y, /(a — ), Do/(« — 3)). ISP can bring down both his prices
to move the price point to O, and demand and revenue colleetadin zero. Now consider further deviation
along the line BO. To realise this, ISP reduces both pricethabthe net price denoteds, ¢2) satisfies the
equationgz = (Do + Bq1)/a. Along this lined; = Dj — o/q; > 0 andd, = 0, whereD;, anda’ are given in
the statement of the theorem. But this puts us in a singleif@ftesISP case. By the last part of the proof of
Theorem 2, we see that the ISP has a deviation that yieldsctyspositive revenue for itself. So no point in
Region 2 can be a pure strategy equilibrium.

2. We now argue that no point in the interior of Region 1 can beguilibrium. Let the prices be such that

the total prices on the internauts(is;, p2), @ point in Region 1. In this case
di(p1,p2) = Do — apy + fBp2 > 0
da(p1,p2) = Do — aps + Bp1 > 0. (66)
Clearly, the net revenue coming from internaiis p; + p?, and so
Usp = di(p1,p2)71(p1 + p7) + d2(p1,p2)72(p2 + P5)
Uepi = di(p1,p2)(1 — )i +pf), i=12.

Since the utilities depend aif andp$ only throughp; = p; + p§, partial derivatives with respect i andp$
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may be obtained by considering partial derivatives witlpees top;. These are (in Region 1)

35;;’1 = (1 —=7)(di(p1,p2) — alpi +pf)), i=12

aaUp'?P = m(di(p1,p2) — alp1 +pY)) + 72B(p2 + p3)
1 1171 88U;:1p1 e+ ph)

85;?’ = 72(da(p1,p2) — a(p2 + p3)) + 11B(p1 + pY)
_ ﬁag% + 1B+ ).

(In passing, we note that from here, it is but a short step tdfywehat the Hessian folsp with respect to
(p§,ps) is —2aH). The first order necessary conditions imply that the abantigd derivatives are zero, and
we immediately deduce that; + p{ = 0 for bothi = 1,2, i.e., the revenue for each CP’s content is zero.
Substitution of these ir?% = 0 above yieldsd; = 0 for bothi = 1, 2. But this is contrary to the assumption
that the point is on the interior of Region 1. So no point in iterior of Region 1 can be an equilibrium.

3. Let us now consider a candidate equilibrium in Region 4hwj < Dy /(o — ) andps > (Do + Bp1)/ .

Let us consider deviations by the ISP. First, he may reggde ¢5 so thatp, reduces taj, = (Do + 8p1)/«
so that the resulting poinips, g2) is on the line BO, andl; is on the threshold of positivity, but revenue of
CP 1, revenue of CP 2 (which is zero), and revenue of the I3Ratiain unaffected. ISP can now consider
deviations from(py, ¢2) along the line BO or into Region 1, i.e., along the vedtor, us) whereus < (5/a)us.
For such deviations to be fruitlesSUsp(p1, ¢2) must point into Region 4, and must in particular be normal

to the line BO, and so (46) should hold, which in the preseseagaelds
Y2dz2(p1, g2) — av2(p2 + p3) +118(p1 + pY)
= —(o/B)(mdi(p1,42) — avi(p1 + pi) +72B8(p2 + p3))-

After cancelations and after using the fact thatp:, ¢2) = 0, the above equality simplifies to

pi+pf = adi(pi,q)/(@® - 5%
= di(p1,q2)/0 (67)
= (Dh—a'pr)/o,
solving which we get

! !
Dy — o'pf

_oh, (68)

p1=

the solution for the single-CP and single-ISP case. It isheaegrified that the net revenue ig; + pf =

(Dj + a'p§)/(2a’) > 0 and further, from (67),
di(p1,q2) = o (p1 +p) = (Dg +a'pt)/2 > 0,

as in the single-CP and single-ISP case.
Let us next consider local deviations by CP 1 who can incremsgecrease{ and therefore perturb; .

From the above argument; must satisfy (68). If(p1,p2) is an interior point of Region 4, any deviation by
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CP 1 effectively moves the poirfps, ¢2), a point that is effectively equivalent to the origin@ak, p2), along
the line BO. It is easy to see, usigg = (Do + Bp1)/«, that

aiplUcm = %(dl(pl,lh)(m +p1)(1 —m))
= (D~ ap)lp + ) - )
= (di(p1,q2) — ' (pr + 1)1 — 1)
= 0 (69)

where the last equality comes from (67). Thus, wkign p-) is an interior point of Region 4, CP 1 does not
benefit from a local deviation. Whefp, p2) is on the line BO, it is justpi, ¢2). A decrease irp; moves the
point to the interior of Region 4, and the equivalent pointvemlower and left along the line BO. Then the
argument leading to (69) holds for the left partial deriwat%UcpJ, and decrease ipf does not yield a gain.
On the other hand, an increasepifiincrease®; and puts the system in the interior of Region 1, and we then

9 [C 1 9 (dl(jtl q2)(j[1 ll)(]‘ 1))
pl ’ pl ’ ,Y

= (D= ap+ B+ )1 - )

= (di(p1,q2) —e(pr +p7))(L —m)

= (di(p1,q2) — &/ (p1 +p1)) (A =) + (&' = &) (p1 +p1)(1 = 1)
= (o' —a)(pr +p1)(1 —m)

< 0

where the penultimate equality follows because of (67), thedast inequality follows becauge < «, but the
other two factors are strictly positive. But this implies iafinitesimal increase ip{ yields a strict decrease in
his utility. There are thus no utility increasing infinitesl deviations for CP 1.

Lastly, we consider infinitesimal deviations by CP 2pif> ¢-, then CP 2 can bring down his price so that
p2 reduces tay, without a change in his revenue or without a change in demandi$ content. Any further
decrease moves the operating point into the interior of &tedi, and renderd, strictly positive. For such a
deviation to be fruitless, the revenue for CP 2 at the opagatioint(p1, ¢2) should be nonpositive, i.e.,

o Do+ Bp1 a
0>q+py :T+p2-

Substitution of (68) and rearrangement yields (16) as agssacg condition for equilibrium. If (16) does not
hold, there is no pure strategy Nash equilibrium in Region 4.

4. Consider points in Region 3. An argument analogous to@pmlds that an analogue of (16), with indices
1 and 2 interchanged, is a necessary condition. Buyt{as p3, such a condition cannot hold, and there is no
pure strategy Nash equilibrium in Region 3

It is thus clear that if (16) does not hold, there exists noepstrategy Nash equilibrium. This proves the

second statement. If (16) does hold, we saw above that thepmdsible equilibria, if any, are in Region 4
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with p; as in (68), anths > (Dy + Bp1)/«. From the first order conditions, no infinitesimal deviatiields

a better revenue for any of the agents. From the facts that

« Uisp is concave in Region 1 by the assumption th&is positive definite,
e Ucp1 andUcpy are strictly concave in Region 1,
« they extend continuously to the boundaries AO and BO fromidred,
« for each point in Region 4, the utilities are determined by tttilities on an equivalent point on the line
BO, and similarly,
« for each point in Region 3, the utilities are determined by tilities on an equivalent point on the line
AO, and finally,
« the utilities earned in Region 2 are zero,
it follows that no deviation, infinitesimal or otherwise, llWwyield a better revenue for any of the agents. So
p1 given in (68) andp, > (Do + Bp1)/« characterize the pure strategy Nash equilibrium. This kmes the

proof of the theorem.

APPENDIX F

PROOF OFTHEOREMb5

Recall our argument théfs is a concave function ip® = (p1,p3,...,p;), andforeactk = 2,...,n,Ucp
is concave irp§,. Then, the equilibrium prices must satisfy the followingsfiiorder optimality conditions:

8UIS—P

s = Do —2ap1 +28Y pi+ 8> 05 —api + 8 pf =0,

J#1 §#1 §#1
and fork =2,3,...,n,

OUzgp ; ; , '
o = Do+26p—20p;+28 dovi—api+8 Y P+ —api+B D pf=0
k j#k,1 J#k,1 J#k,1
8UCPJ%’ _ s s c c a dy __
e D0+ﬂp1*0pk+ﬂZ(ijrpj)*QOépk*a(Pk*pk)*o-
P 7k,
Let p¢ = (p3,p5,...,p5) denote the CP price vector. The above seRof— 1 equations can be compactly
written in matrix form as follows
2a —bT p° —a T p®
= + DoE2p—1, (70)
-b C P° a D p

where b” and ¢! are row vectors of sizd x (2n — 2) given by b = [28EL | BEL ;] andcT = [0 -
ET | BET |]. a denotes a column vector of sizén — 2) x 1 given bya” = [3-EI ; 0-EI_,]. C andD

are2 x 2 block matrix given by

o 24,1 Apn— D— O —A,1
A,_1 2B,_1 —al,—1 al,_1
The solution to system of equation in (70) exists if the nxatri
200 —bT
-b C
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is invertible. By inspection we can write its inverse as

1 1 et | 71)
Bl oty puCt4+C tpTCt
where u = (2 — bT'C~1b) and C~! denotes the inverse of matrik. For the above inverse to exist the
following must hold.
(i) C is invertible and
(i) vTC~1h # 20
We next verify these conditions. Invertibility @f is guaranteed by its definition. Indeed,
def{C) = detd,—1(An_1 +2al,_1))
= (a+8)"P(a—Bn—2)Bat )" P Ba— Bn—2) >0,

and it can be computed as

2B, 1A I,
C'=(A,_1+2al, 1) o |: -1 ! :| )

—in—-1 217171

Further, all the terms in matriXxf{) can be expressed in term of inverse of matdix_; as follows:

AL B,
coo o= g U (72)
0
et = gl BT, Al o,
cwlo! — 52A;i1En—1ng1A;11 O
O O
Left multiplying matrix (72) byb” we have
_ - 26%(n—1)
T 1 _ 2 T 1 —

b'CT'b = 20°E, A, E,1= Py "y (73)

The above relation follows by noting that the sum of elemeénmteach row of the adjacent matrix of,,_;
and its determinant are given g + 3)"~2 and (a + 8)"~2(a — (n — 2)8), respectively. The left hand side
in (73) is equal t2a: only whena = 8 andn = 2. But, this contradicts our assumption> (n — 1)3. This
completes the proof of existence of equilibrium.

We next compute the equilibrium prices and the corresp@ndé@mand. Rearranging (70), equilibrium prices

—a CT pa N &
a D ¢ K

can be written as
1 pTC—t
C~1b Y

1 pTC-1
C~ 1 Y

1

E277,—1)
1

whereY = puC~' + C—1opTC L.
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To further simplify the expression for equilibrium pricese use the relation8”C~'a = v"C~'b and

' +bTC~1D = 0, both of which are easy to verify. Using these relations we ge

P —~1/2 O p? Dy 1 et
= + — Eop—1
P° C~Ya-1b/2) C'D p? Bl Cch Y
~1/2 O o —1/28+ (B +a)/Bu
= 0
Cl(a—1b/2) C-'D P C'b(55 + 52) + C By s
L 4 L i L I
r 12 o 11, ] —1/26+ (B +a)/B
- p
- +Do| 0 | —E bia | AT'E ,(74)
C-Ya-b/2) c'D || p* I + Bte
L e 2F O

where X = (A,,_1 + 2al,_1)~ !, and we used notatioA := A,,_; andE := E,,_, for ease of presentation.

The product of matrix2~! and D in the above expression can be computed as

1 aX! 1,1
C™'D= (75)
—2aX ! — n—1
Substituting this relation in (74), it is easy to see thatilgium prices p; and p¢ depend only orp¢ all
1 =2,3,...,n. This verifies the claims in second item. Further, using ,(#4bllows that at equilibrium prices

paid by each user group can be computed as

p1 —1/2 O . —1/28+ (B+a)/Bu
= P + D()
piy +D° —(B/2)X'E —aX! XE/2+ B+ a)/pATE
wherep® ; denotes the ISP price vector without the compongniThe corresponding equilibrium demand can

be computed as

a B> a B(B+a) -
DoE, — —§ + gprxp +BaETX | Do sa—tons — PETXE - SR ETATE
" B B -8 (B+a)
LE - SAE - aAX e B+ T E+ AXE/2

Note that both equilibrium prices and the correspondingatedo not depend opy, verifying the claim in
the last item. Also, notice that; can be any vector, and so the solution is unique up to a freeehd p,,

and the statement of the first item is verified.

APPENDIX G

DYNAMICS

In this section we constrain prices to remain in Regiaof Figure 4. This yields a coupled constraint which
is a significant difference with respect to the unconstmimedel in Section Ill. For this new setting, we discuss
two dynamic models with multiple content providers. Agdior, ease of exposition, we restrict to the case of
two CPs.

A. Continuous dynamics

Let us assume that the players set their prices such thatethart! from each CP is nonnegative, i.e., (7) is

greater than or equal to zero for both CPs. This imposes eduginstraints on the set of prices, p¢) € R*
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given by
di(p®,p°) >0,  da(p®,p°) >0,
s d s d
pi+p7 20, Py +p3 >0,
p§ —pl+pf >0, ps—pi+ps>0.

Let R denote the set of prices that satisfy these constraints.dasy to verify that the above constraints also

result in the following upper bounds on the prices:

+p§ - p§

p§ < 25 +pf, %Sa%%+ﬁ
and thus the sek is compact. Furthermore, due to the linearity of the coirsdn the pricesR is convex. As
argued in Section Ill, for any price vectpr= (p®, p°) € R, the mapping®/isp(-, p°), Ucp1(p®, -, p3) andUcp1(p®, p§, *)
are concave functions in the"“variables.
Given the concave utility functions defined on the coupledst@int setR, we are in the setting ot-person
concave games studied by Rosen [31]. We can then directlyh@sdynamic model proposed by Rosen [31,

Sec. 4]. In our game setting the system of differential dguatfor the strategies;, p3, p{, ps is:

% - %@é’p() + ul(p)%? uz(p) &éjép) u3(p)
%%? :ZEEZE§£§§L232 +’“1(p)é¥%%gﬁ' u2(p)é¥§§gﬁ'+-U4(p)
%28[]@57;?#)4_%@)5?_;;) “2(17)86;2—;;) + us(p)
%éQQ%%§£Q+““m@%gZ+W@ﬁ%gﬁ+udm.

In the above dynamics it is assumed that a central agent desiplp) = (ui(p),...,us(p)) as in [31,
eqgn. (4.5)] and communicates the values to the players. Bogeadynamics tend to an equilibrium as is
established next.
Theorem 8: Let o > 3. Starting from any poinp € R, the continuous solutiop(¢) to the above system of
differential equations remains iR for all ¢t and converges to the unique equilibrium point.
Proof: The first claim follows directly from Rosen’s [31, Th. 7]. Teqve the second part, we verify the

so-calleddiagonal strict concavity property of

o(p) = Uisp(p) + Ucp1(p) + Ucp2(p), » € R.

Let g(p) denote the gradient aof(p) given by

OUisp(p)/Op3
OUisp(p)/Op3
OUcp1(p)/0p§

g(p) =
(p)
OUcp2(p)/0ps
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With 7 := §/a, the JacobiarZ(p) of the above matrix can be verified to be the symmetric matrix

It is easy to see that the eigenvalues-af(p)/« are

(B +4) £ /(37 +4)2 —4(r2 + 47 + 3))/2

(4—37) £ /(4 —37)2 —4(r2 — 47 + 3))/2,

and that these eigenvalues are strictly positiverfar [0, 1). G(p) is therefore negative definite. By [31, Th. 6],
o(p) is diagonally strictly concave, and by [31, Th. 9], the eimilm point is globally asymptotically stable

for the system of differential equations; this establisbesvergence. ]

B. Discrete dynamics

In this subsection we study discrete dynamics motivatedhayltest response dynamics. We assume the
providers set their price, say, at the beginning of each daythe best response to prices set by the other
players on the previous day.

Let p, = ((pi;,p5:), P5:, P5;.) denote the price set by the players on daRRecalling the concavity properties

of the utility functions, the price set by the players on day= ¢ + 1 are obtained by setting

OUisp((P1ms Pom), PLes P2e)/OPT = 0 (76)
OUisp((P1 s Pom ) Pits P2:) /O3 = 0 (77)
OUcr1((P1e: P3e)s Pl D) /OPT = 0 (78)
OUcp2((Pi1: P3¢) Pits Poim)/OP5 = 0. (79)

The ISP controls the pricés,,,, p5,,) and sets them so that both (76) and (77) are simultaneoutfiesd.
The above conditions straightforwardly result in the falilog equations:

205, — 285, = Do — aps, + Bps, — api + Bp§

20p3,, — 2P, = Do — aps, + Bp§, — apd + Bp?
20p5,, = Do — aps, + Bp5, + BpS, — a(p} — pf)
2ap5,, = Do — ap3, + Bp, + Bpi, — a(ps — p).

This is a linear mapping that can be compactly written in tregrim form as

Py = Xp{ +Y (80)
where, withT = 8/, we take
Do—(a—B)p{
_ Do—(a=B)py
L]0 00 1 e
2 ’ Do—a( %* 1)
-1 7 0 T %
r -1 7 0 Do—olps—p3)

2a
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An easy guess of the fixed point to the iteration in (80) is
Popt = (I — X)71Y. (81)

Under the assumptions of Theorem 3 for two CRs=(2), it can be verified thapoTpt is the solution of that
theorem given in (60). Under the same assumptions, the dgsamonverge to that solution, as guaranteed next.
Theorem 9: For 7 € [0,1), the dynamics given in (80) converges to the fixed pQ)EA; = -X)ty.
Proof: The eigenvalues of the matriX can be straightforwardly evaluated; they are

- (g;2+1f7 g —5E (52)271le

For r € [0,1), these eigenvalues are nonzero, of magnitudes strictilesnthan 1, distinct, and henc¥ is
diagonalizable in the fornX = UDU 1, whereD is the diagonal matrix of eigenvalues abidis an invertible

matrix. X is also invertible. Consequentl%Tpt in (81) is well-defined and satisfies
pgpt = ngpt +Y.
Using this and (80), witlp!" as the initial iterate, the norm of the error at iteration 1 telescopes as

Ipfs1 — poptll = 11X (0f — pop)
= X" (0§ — pop)
= [[(UDU" )" (p§ — pow) |
= [[UD"'U (pg — pop)lI-

Since the magnitudes of the eigenvalues are strictly lems 1h the error vector converges to 0 exponentially
quickly in the number of iterations. ]
Remarks: 1) The iterates converge if = 8/« < 1. However, to guarantee that the solution isnwe need
the other necessary and sufficient conditigh+ 2a1,,) ~*[Do E,, + Ap?] to be made of strictly positive entries.
2) Even if these hold, the iterates may not remairRimlue to the coupled nature of the constraints. Strictly
speaking then, the dynamics is not the best response dysamieed, withD, = 200,a = 6,3 = 3,p¢ =
10, p4 = 25,p¢ = 45,p2 = 10, it can be see that withy = (19, 2, 25,28) when demand for both contents is
positive, we gefp; = (15.8333,6.8333, —2.8333,34.1667) where demand for CP 1 content alone is positive.

Nevertheless, the iterates converge to the unique equilibwith strictly positive demands.
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