
HAL Id: hal-01087664
https://hal.inria.fr/hal-01087664

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesizing Distributed Scheduling Implementation for
Probabilistic Component-based Systems

Saddek Bensalem, Axel Legay, Ayoub Nouri, Doron Peled

To cite this version:
Saddek Bensalem, Axel Legay, Ayoub Nouri, Doron Peled. Synthesizing Distributed Scheduling Im-
plementation for Probabilistic Component-based Systems. MEMOCODE, Oct 2013, Portland, United
States. �hal-01087664�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49578006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01087664
https://hal.archives-ouvertes.fr


Synthesizing Distributed Scheduling Implementation for Probabilistic

Component-based Systems

Technical Report

Saddek Bensalem∗, Axel Legay†, Ayoub Nouri∗, and Doron Peled‡

∗UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France
†INRIA/IRISA, Rennes, France

‡Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Abstract—Developing concurrent systems typically involves
a lengthy debugging period, due to the huge number of
possible intricate behaviors. Using a high level description
formalism at the intermediate level between the specification
and the code can vastly help reduce the cost of this process,
and the existence of remaining bugs in the deployed code.
Verification is much more affordable at this level. An automatic
translation of component based systems into running code,
which preserves the temporal properties of the design, helps
synthesizing reliable code. We provide here a transformation
from a high level description formalism of component based
system with probabilistic choices into running code. This trans-
formation involves synchronization using shared variables. This
synchronization is component-based rather than interaction-
based, because of the need to guarantee a stable view for a
component that performs probabilistic choice. We provide the
synchronization algorithm and report on the implementation.

I. INTRODUCTION

Computer systems are initially developed as single entities

working on a single core architecture. The advances in

hardware and system design have drastically changed this

situation. Indeed, to increase performances and offer new

services, systems are now fully exploiting new technologies

such as multi-core or grid and cloud computing. This exac-

erbate the challenge of coordinating for the multiple subsys-

tems running concurrently to achieve a series of local/global

objectives. Moreover, economical constraints and separation

of concerns lead to a new way of developing huge systems.

The software design process can also consists of breaking

the original design into small entities, each of them being

potentially developed by a separate party that may not want

to completely reveal the entire implementation.

This paper presents an automatic transformation from a

high level description formalism for a component based sys-

tems, which include concurrency and probabilistic choices,

into a physical implementation. This is a continuation to the

models proposed in, e.g., [12], [13], [18], [21], [23], [24],

[32]. Our solution uses a limited amount of information from

the interface of the components [2], [8]. Our transformation

is a direct progress from the recent modeling of concurrency

The fourth author is supported by ISF grant 126/12 “Efficient Synthesis
of Control for Concurrent Systems”

and probabilities in Petri nets in [21], that suggests a princi-

pal algorithm that uses the Petri net objects, specifically, the

places, as semaphores to achieve a correct synchronization.

In contrast to that theoretical algorithm, we suggest here

a realistic transformation based on shared variables for

synchronization. We assume no additional scheduling mech-

anism or algorithm, nor we assume large atomic operations

besides standard ones (read, write and swap-and-compare).

Our transformation preserves the correctness of the high

level design.

Research on implementing and verifying concurrent

component-based systems extends back to Milner’s

CCS [28] and Hoare’s CSP [19]. The I/O automata [25]

and latter interface theories [14] permits reasoning on

subsystems interacting through input/output mechanisms.

Work on BIP [8] proposes very flexible coordination

languages that classify sets of processes that may interact

together [11]. By identifying independent interactions,

one can eventually map sets of subsystems to different

processes. The implementation reveals the difficulty in

achieving concurrent implementation. Using efficient

synchronizing algorithms such as α-core [29], one can then

obtain an efficient mechanism to handle concurrency with

interactions. As observed in [15], the latter is difficult for

the case of probabilistic systems.

In the design phase, one often has to model subcompo-

nents by pure probabilistic systems rather than by transition

systems [34]. This view allows capturing faults and uncer-

tainties in the hardware design. Mixing the non-determinism

of process selection with the probabilistic information of

individual components leads to very expressive but com-

plex models, among which are Markov Decision Processes,

Probabilistic Petri Nets, and Probabilistic automata. Clearly,

adding probabilities in the presence of nondeterminism is

challenging, especially if one wants to preserve full con-

currency [1], [5], [6], [10]. One solution that was proposed

is to parameterize the design to bias the choice of a given

process [13]. A second approach suggests to exploits real-

time delays and properties of exponential distributions rather

than parameters [36].

Another, more robust approach, which is particularly em-



phasized in the probabilistic I/O automata work, allow both

nondeterministic and probabilistic choice [32]. Switched

I/O automata [12] propose a solution to combination of

concurrency and probabilistic choices in two steps. The first

step establishes a competition between the components on

making the probabilistic decision. In the second step, a prob-

abilistic selection is made by the selected component. This

approach suffers from the fact that it limits the concurrency

of the system by allowing only one component to be active

at each state.

The difficulty in deciding which component will make

the probabilistic choice is the one of giving to each of the

components a stable and coherent view of the entire design.

This needs to be done without while preserving as much as

possible the concurrent behavior of the system, and while

revealing too much information about the global design.

Recently, Peled and Katoen proposed a new scheduling algo-

rithm to avoid the confusion problem for Probabilistic Petri

Nets [21]. This algorithm, which is based on shared locks,

is fully concurrent. It is related to the idea of distributed

schedulers [18], but does not force probabilistic selection

of processes, hence maintaining probabilistic choices at the

level of the process.

In this paper, we make an additional step forward by

proposing an algorithm that deals with concurrent proba-

bilistic systems that makes realistic local assumptions on

the individual components. The algorithm is intended for

a direct implementation on concurrent hardware, provided

standard shared variables operations; no need for special

synchronization or scheduling services from the operating

system.

The contributions of this paper are the following:

1) An automatic transformation from a high level de-

scription of component based system that include both

concurrency and probabilistic choices into an imple-

mentation based on shared locks. The implementation

does not assume or use any high level scheduling

mechanism, e.g., the α-core algorithm [29], [22] used

to provide synchronization for BIP components.

2) We refute the theoretical principal implementation

presented in [21] into a completely realistic and prac-

tical one. Our transformation does not assume atom-

icity on observing the local view of a component, nor

on executing a transition. In developing the algorithm,

we realized where the algorithm in [21] needs to be

refined, and further refuted and optimized in order to

obtain the efficient implementation reported here.

3) We report on a concrete and realistic implementation

of the algorithm and provide a case study.

II. COMPONENTS BASED SYSTEMS

We first propose a component-based design formalism.

Definition 1: A component based system A contains a set

of components Ai = 〈Σi, Si, δi, s
0
i 〉 for i ∈ [1..n] such that:

• Σi is a finite set of transitions,

• Si is a finite set of local states.

• δi ⊆ Si × Σi × Si is a deterministic partial transition

system, i.e., if δi(s, α, s
′) and δi(s, α, s

′′) then s′ =
s′′. Also, we assume that if δi(s, α, s

′) and δi(s, β, s
′′),

then s′ 6= s′′.
• s0i ∈ Si is the initial state of Ai.

A transition α is called shared if α ∈ Σi ∩ Σj for i 6= j.

Intuitively, a component is a finite automaton, acting as

a concurrent process, where it can execute a transition if

it owns it exclusively, and needs to coordinate with other

components in order to execute transitions that are shared

with other components.

Definition 2: The global representation of A, also as a

finite state automaton 〈Σ, S, δ, g0〉 as follows:

• Σ = ∪i=1..nΣi is the set of transitions.

• G = Πi=1..nSi is the set of global states. Denote a state

g ∈ S also as a tuple of components 〈s1, s2, . . . , sn〉
with si ∈ Si.

• δ ⊆ G × Σ × G such that

δ(〈s1, s2, . . . , sn〉, α, 〈s
′

1, s
′

2, . . . s
′

n〉), where

1) For at least one component Ai, δi(si, α, s
′

i),
2) For each component Ai, if α 6∈ Σi then si = s′i,

otherwise, δi(si, α, s
′

i).

• g0 = 〈s01, s
0
2, . . . s

0
n〉.

The global representation is basically the synchronization of

the component automata on shared transitions. A (finite or

infinite) execution for A is a maximal alternating sequence

g0α0g1α1 . . . of global states from G and transitions from Σ
such that g0 is the initial state g0 of A, and δ(gi, αi, gi+1).
The sequence is finite if from its last state, no transition is

enabled.

For s ∈ Si, let •s = {α|∃s′ ∈ Si, δi(s
′, α, s)} be the set of

input transitions to s, and s• = {α|∃s′ ∈ Si, δi(s, α, s
′)} be

the set of output transitions from s. A transition α is enabled

from a global state 〈s1, s2, . . . , sn〉 ∈ S of a components

system if α ∈ si
• for each i such that α ∈ Σi.

Definition 3: Any two transitions {α, β} ⊆ •s ∪ s•

for some local state s of some component are said to be

dependent. Let D ⊆ Σ × Σ be the reflexive dependence

relation. Then its complement I = (Σ × Σ) \ D is the

independence relation. We further identify a pair of in-

terdependent transitions (α, β) ∈ D to be in conflict (or

conflicting) if {α, β} ⊆ s• for some local state s for some

component Ai, and subsequent if α ∈ •s and β ∈ s•.

The notion of a confusion, formally defined below, come

from Petri nets [16]. Intuitively, it describes a situation

where the execution of a transition β, independently of

another transition α, would change the alternative choices

to executing β.

Definition 4: A pair of independent transitions (α, β) ∈ I
is a confusion if there exists γ ∈ Σ, two different compo-

nents Ai, Aj such that α ∈ Σi, β ∈ Σj , s ∈ Si be a local



state of Ai, and s′ ∈ Sj be a local state of Aj , such that

either

• {α, γ} ⊆ s• and {γ, β} ⊆ s′
•
, then the confusion

(α, β) is symmetric, see Figure 1, or

• {α, γ} ⊆ s•, γ ∈ s′
•
, and β ∈ •s′. then the confusion

(α, β) is asymmetric, see Figure 2.

γγα β

S ′S

Figure 1: Symmetric confusion (α, β)

α γ

β

S ′

S

γ

Figure 2: Asymmetric confusion (α, β)

III. COMPONENT BASED SYSTEMS WITH

PROBABILISTIC CHOICE

A. Probabilistic Component based systems

In this section, we define component based systems that

can make probabilistic choices.

Definition 5: A view of a component Ai is a pair (s,Γ),
where s ∈ Si is a local state and Γ ⊆ Σi is a set of

transitions of Ai. The view view i(g) of Ai in a global

state g, includes the component s of Ai in g and the set

of transitions Γ ⊆ Σi that are enabled in g.

The view of component Ai is then dependent not only

on the local state of this component but also on the local

states of other components to enabled joint transitions in

Σi. In essence, the view of a component in a given state

summarizes the information it needs to select a transition

and move to the next state. As we will see later, our

implementation is required to stabilize the view of Ai before

it can make a (probabilistic) decision about firing one of its

enabled transitions.

Definition 6: A probability distribution dist on a set X
is a function dist : X → [0, 1] with

∑
x∈X dist(x) = 1.

Definition 7: A probabilistic component based sys-

tem consists of a collection of components Ai =
〈Σi, Si, δi, s

0
i , fi〉, where the components Σi, Si, δi, s

0
i are as

in Definition 1. Let fi : Si× 2Σi 7→ dist(Σi) associate with

each view, i.e., a local state s ∈ Si and a set of transitions

Γ ⊆ Σi, a distribution function over Γ.

In a probabilistic component based system, a component

is selected to make a transition based on its current local

view.

Definition 8: An execution of a probabilistic compo-

nent based system is a maximal alternating sequence

g0k0α0g1k1α1 . . . such that

• gi ∈ G,

• ki ∈ [1..n],
• αi ∈ Σki

,

• Component Aki
with view viewki

(gi) = (s,Γ) selects

a transition αi with probability fki
(viewki

(gi)).
• δ(gi, αi, gi+1) holds.

B. Modeling Probabilistic Component Based Systems as

Markov Decision Processes

One can model the collection of executions of a compo-

nent based system using the global state graph 〈G,E, g0〉,
where G is the set of global states, including the initial

state g0, and E ⊆ G × G is the edge relation (g, g′) ∈ E
when δ(g, τ, g′) for some τ ∈ Σ. Modeling probabilistic

systems, including a single component system, can be done

using Markov Chains, which add to the graph structure a

probability distribution for moving to the next state:

Definition 9: A Markov Chain is a triple (Q,P, q0),
where Q is a set of states, q0 is the initial state, P : Q 7→
dist(Q).

One can automatically compute the probability for a

Markov Chain to satisfy temporal properties. This can be

seen as an extension to model checking [34].

Markov chains are appropriate for modeling sequential

systems with probabilistic choices. However, sometimes

the system includes both probabilistic and nondeterministic

choices. The reason is that often a probability on making a

nondeterministic choice is not given. In this case, one can

still hope to provide some minimal and maximal probability

for satisfying a temporal property, over all the possible

nondeterministic choices. To model a system that can use

nondeterministic and probabilistic choices, we use Markov

Decision Processes.

Definition 10: A Markov Decision Process (MDP) is a

tuple M = (Q,Act,P, q0), where Q is a finite set of states

with initial state q0, Act is a finite set of action, and P :
Q × Act 7→ dist(Q) is a function that associate to each

state q and action α a probability distribution on the set of

successors.

As MDPs interleave both probabilistic and nondeterminis-

tic information, one first has to resolve the nondeterminism,

which is done using schedulers that select the next action.

Definition 11: A scheduler (or a strategy) is a func-

tion sch : Q∗ 7→ Act that selects an action given

a finite sequence. A scheduler is memoryless if it de-

pends only on the last state, i.e., sch(g0, g1, . . . gn, g) =
sch(g′0, g

′

1, . . . g
′

n, g).



An execution of an MDP alternates between

nondeterminism via action selection, and probabilistic

choices. Each pair (M, sch) of an MDP and a memoryless

scheduler corresponds to a Markov Chain, see e.g., [9]. The

extreme (minimal and maximal) probabilistic values of some

important properties of probabilistic systems depend only

on memoryless schedules. Then, as a system is modeled as

an MDP, one can use classical probabilistic model checking

techniques [9], [14], [34] to compute minimal and maximal

probability values that the system satisfies a global property.

We are now ready to give an MDP interpretation to our

probabilistic component based systems. In our case, each

execution step consists of a nondeterministic choice between

components with enabled transitions, and then a probabilistic

choice by the selected component. This nondeterminis-

tic choice reflects an abstraction of the actual scheduling

mechanism that is used to implement the selection of the

component that choose the next transition.

Definition 12: The MDP corresponding to a probabilistic

component based system is as follows:

1) In each global state g = (s1, . . . , si, . . . , sn) of a set of

components Ai for i ∈ [1 . . . n], one of the individual

components Ai is selected. Thus, the selection of an

action of the MDP corresponds to the selection of a

component Ai, which is making the decision among

its current enabled transitions.

2) The probability distribution induced by the component

Ai in state g for moving to state g′ such that g
τ
−→ g′,

is given by fi(viewi(g))(τ).

Our scheduler selects one component and decides on the

next move. Observe that if two components collaborates

on a given transition a, then the probability of a in the

composition will depend on the component that was selected

by the nondeterministic step and on its view. The same

transition a can have different probabilities when selected

by different components or by the same component with

different views. In particular, this means that the probability

can differ according to the set of other transitions that are

co-enabled.

IV. IMPLEMENTING STOCHASTIC COMPONENT BASED

SYSTEMS

Goals. We provide here a distributed algorithm for compo-

nent based system, which allows true concurrency between

transitions in different components.

The requirements from the implementation algorithm are

as follows.

• There is no centralized scheduling.

• Provide the ability of components to execute concur-

rently, when there is no need to block the simultaneous

execution of different components.

• Allow performing a probabilistic decision when pre-

scribed by the component specification.

• Use only standard operations on shared variables in-

cluding operations that are used for scheduling, in

particular, compare-and-swap.

• The algorithm is self contained: it does not rely on

any particular scheduling or interaction algorithm in

addition to the code provided.

• Separation and information hiding. Our goal is to allow

the development of separate components and their com-

position with the need to reveal only little information

about the internal structure.

• Shared transitions are implemented non-atomically. We

do not assume that the local view (consisting of the

local states and enabled transitions) is collected by a

component in an atomic manner.

• The implementation must avoid livelocks. Actual

progress by the components must be guaranteed.

The information required to be exported by the compo-

nents is the following:

• The shared transitions. At runtime, there is a need

to allow components to check the inclination (local

enabledness) of other components to execute a shared

transition.

• Static component information about the dependencies

involving shared transitions needs to be known to

the other components participating in these transitions.

Specifically, if γ is a shared transition between Aj

and Ai, and in Aj , β a subsequent γ, then this static

information needs to be exported toAi due to a possible

asymmetric confusion involving β. This is the situation

in Figure 2, where Ai is the left component and Aj is

the right component. Note that β need not be a shared

transitions. Although similar considerations could be

applied to symmetric confusion, that case is avoided

due to the structure of the system as explained below.

In scheduling of distributed systems with probabilistic

choices [21], one models the execution as having two

phases: first selecting the agent or component that makes

the probabilistic choice, then firing the selected transition,

which may be shared by several components. Therefore, our

algorithm needs to lock a stable and consistent view for a

components before it can make the probabilistic decision.

We need to guarantee that the components that are not

selected to make the decision cannot change the set of

possibilities for the selected component. This, in turn, means

that the implementation of the component based system

needs to guarantee blocking the execution of transitions that

are in a confusion situation with the ones that are candidates

for the selection.

The algorithm alternates for each component between two

phases. One phase attempts to protect its local view from

changes so that it can make a probabilistic decision; then

the component becomes a master for its selected transition

and waits that the rest of the components execute their



part in the joint transition. The other phase checks whether

the component needs to follow a shared transition selected

by another component; then it becomes a slave to that

component, and performs its part in the transition.

Locks. To achieve the above goals, our algorithm uses

shared locks, behaving in a similar way as semaphores,

but without blocking. In order to guarantee the situation

that a component can make a selection, it first captures the

following locks:

• l(α.β) This is a lock for the involved asymmetric confu-

sions: not allowing a transition that increases the set of

choices for another component to fire before a selection

is made. We observe that we can have both (α, β) and

(β, α) independently as asymmetric confusions, but do

not need two separate variables for these cases. As a

result, the set of shared locks is decreased. This lock

can be set up and tested by any component Ai that has

either α or β in Σi. Initially, l(α,β) ← 0.

• li This is a lock for a component Ai, captured before

a transition α ∈ Σi that can appear in a probabilis-

tic choice. This does not allow different components

to make overlapping decisions about firing the same

transition furthermore. This lock can be set up and test

by each component Aj , j 6= i such that α ∈ Σj ∩ Σi.

Initially, li ← 0.

Observe that we do not need locks for the symmetric

confusion. This is because a lock on the involved com-

ponents is captured, and prevents the other components

from decreasing the current alternative choices. To see this,

consider again Figure 1, where Ai is the left component and

Aj is the right component. If Ai wants to make a move, it

needs to capture the locks on both components, due to the

fact that they are sharing the transition γ. Now, Aj cannot

make a move and execute β, hence disabling γ; a lock on

the symmetric confusion (α, β) is not needed.

Following the two phase locking principle of Dijkstra,

we assume a total order ≪ between the locks. Capturing

these locks is performed in ascending order, while releasing

them is performed in descending order. We do not perform

actual wait when we do not succeed in capturing a lock. But

rather we use the compare and swap mechanism. Capturing

the relevant semaphores guarantees that before a transition

is selected to execution, the local view of a component is

stable and consistent.

Additional shared variables. Our algorithm uses additional

shared variables as follows:

• mα,i, for each shared transition α. This variable is set

to 1 by component Ai (where α ∈ Σi) when it becomes

a master over α and is tested by the remaining slave

components. Initially, mα,i ← 0.

• fα,i for each shared transition α. This variable is set

to 1 by a slave component Ai (where α ∈ Σi) that

participate in α and is tested by the master component

upon execution α. Initially, fα,i ← 0.

• αi, for a shared transition α is a variable that is set to

1 by Ai ∈ A when its state is changed to s ∈ Si such

that α ∈ s• and to 0 when moving away from such

a state. The value of this variable can be accessed by

any other agent Aj such that has α ∈ Σj in its set of

(shared) transition. Initially, αi.

Let Vα be the set of variables that include the locks

l(α,β) and let var i be the set of shared variables and locks

maintained by each component Ai.

We use the standard atomic operations compare-and-swap

on locks. Accordingly, we define two type of operations over

the shared variables namely capture and release. If l is a

lock in vari, then

• capture(l) will try to set atomically l← 1. It will fail

if l is already equal to 1 and succeed otherwise.

• release(l) operation will set atomically l← 0.

Algorithm. The algorithm is as follows:

Algorithm 1 Distributed Scheduling Algorithm : Initialize

1: for all Ai ∈ A do

2: si ← s0i ; /∗initialize current state to initial∗/
3: var i ← ∅;
4: end for

5: for all shared α ∈ si
• do

6: αi ← 1; /∗mark sh. transitions from si enabled∗/
7: end for

8: for all shared α ∈ Σ \ si
• do

9: αi ← 0; /∗mark all other transitions as disabled∗/
10: end for

Algorithm 2 Move

procedure MOVE(si, α)

si ← s′i such that δi(si, α, s
′

i);
for all shared β ∈ si

• do

βi ← 0; /∗disables old transitions∗/
end for

for all shared β ∈ s′i
•

do

βi ← 1; /∗enables new transitions∗/
end for

end procedure

Let the duration of executing a transition by the trans-

formation span from the moment a master made selection

until it releases all its slave (for a non shared transition,

there are no salves). Then, transitions may overlap. Con-

currency between independent transitions is reduced by our

algorithm because of the need to stabilize the local views

before making a probabilistic decision. This can happen with

two transitions that are independent but form a confusion.

This can also happen between two independent transitions

of different components that can both make a choice on

transitions shared with another component.



Algorithm 3 Distributed Scheduling Algorithm : Main Loop

11: while ∃s′ ∈ Si, ∃α ∈ Σi such that δi(si, α, s
′

i) do

12: new cycle: Let si be the current local state

13: RELEASE(v ∈ vari); /∗in descending order∗/
14: var i ← ∅;
15: /∗collects transitions at current local state∗/
16: now i ← {α|α ∈ si

•};
17: for all shared α ∈ now i do

18: fα,i ← 0; /∗not master∗/
19: mα,i ← 0; /∗not slave∗/
20: end for

21: /∗checks if another component is master then,

perform transition as a slave∗/
22: for all shared α ∈ now i do

23: for all Aj ∈ A such that α ∈ Σj , j 6= i do

24: if mα,j = 1 then

25: MOVE(si, α);

26: fα,i ← 1; /∗finishing slave part∗/
27: /∗waits master resets slave flag∗/
28: WAIT(fα,i = 0);

29: GOTO(new cycle);

30: end if

31: end for

32: end for

33: /∗update view w.r.t other components∗/
34: UPDATEVIEW(nowi);

35: /∗Capture locks for asymmetric confusions and

involved components∗/
36: var i ← ∪α∈nowi

Vα∪{lj | for each Aj s.t α ∈ Σj};
37: for all v ∈ var i, according to ascending order do

38: if ¬capture(v) then

39: GOTO(new cycle);

40: end if

41: end for

42: old nowi ← nowi;

43: UPDATEVIEW(nowi); /∗update view again∗/
44: if old nowi 6= now i then

45: GOTO(new cycle);

46: end if

47: /∗probabilistic choice of a transition α in nowi∗/
48: α←F(si, nowi);

49: MOVE(si, α);

50: if α is shared then

51: mα,i ← 1; /∗becomes master∗/
52: for all Aj ∈ A s.t α ∈ Σj , j 6= i do

53: WAIT(fα,j = 1); /∗waits for slaves∗/
54: end for

55: mα,i ← 0; /∗when slaves finish reset master∗/
56: for all Aj ∈ A s.t α ∈ Σj , j 6= i do

57: fα,j ← 0; /∗resets slave flag∗/
58: end for

59: end if

60: end while

Algorithm 4 UpdateView

procedure UPDATEVIEW(nowi)

for all shared α ∈ now i do

for all Aj ∈ A such that α ∈ Σj , j 6= i do

if ¬αj then

nowi ← nowi \ {α};
end if

end for

end for

end procedure

The correctness of this algorithm follows from the fol-

lowing observations that can be proved using an induction

on the execution of the algorithm.

• Deadlock freedom. The two phase locking of Dijkstra

(lines 32-36 and 13) guarantees that no deadlocks can

occur when different components try to block their local

view. Then some component must be able to capture

all of the locks it needs.

• Livelock freedom. In addition to the deadlock freedom

though the use of Dijkstra’s two phase locking, either a

component is making a progress by becoming a master

and choosing a transition, which the other components

involved follow, or the local view has changed between

the start of capturing locks (at line 31) and the end

of capturing the locks at line 40. But if the view has

changed, then at least one other component has made

progress.

• Consistency of local view. The set of locks on com-

ponents and confusions are designed to guarantee the

following: if a set of locks for a component with some

local view is captured and the view of that component

has not changed since starting to capture these locks

(as in the previous point), then no other component can

change that view, i.e., add or remove enabled transitions

or becoming a master on a transition of that component.

• Scheduling. The execution of conflicting or subsequent

transitions never overlap. This follows from the need

to capture a lock on the involved components.

Any execution of the components system can be simulated

by an execution of the implementation, where overlapping

transitions are ordered arbitrarily. This can be shown by

scheduling the original transitions of the components and

the additional care-taking steps of the algorithm in al-

ternation. Conversely, the implementation does not allow

new executions of the basic component based system to

occur. Because of that, the minimums and maximums on

probabilities of measurable events that do not depend on

histories (such as reachability [9]) would not be affected by

the implementation of the algorithm.



V. EXPERIMENTS AND CASE STUDIES

We have implemented our algorithm in a prototype tool

written in Java. Actually, probabilistic components (Robots)

are implemented as stateful Java objects that are uniquely

identified and that could be interconnected in order to

communicate. Moreover, each component is a Java thread

that runs independently and concurrently and which uses

shared locks (AtomicBoolean), volatile variables (The value

of this variable will never be cached thread-locally: all reads

and writes will go straight to main memory), and non-

blocking operations namely compareAndSet() to synchronize

with other ones.

In addition, a particular component is aware of his neigh-

bors, that is components sharing transitions with him in

the following sense: only the identifiers of the neighbors

and common transitions not their complete structure are

shared. Transitions are also represented as Java objects

that have labels and that encapsulate status information

namely enabled, shared, master, and slave. The enabled

(respectively shared) flag states if a transition is enabled

(respectively shared) while master and slave tells if the

transition owner is a master or a slave component.

We now give two case studies to illustrate the concrete

implementation of the algorithm.

A. The Collaborating Coauthors Example

In this example, which combines both symmetric and

asymmetric confusion, there are n coauthors, sitting in a

ring, each can be involved with writing up to one paper, with

one of its adjacent coauthors (the conference has very high

standards, hence it is impossible to finish a paper by oneself).

Hence, there is a probabilistic choice between collaborating

with the coauthor on the left and with the coauthor on the

right (state 1 of each component in Figure 3). In addition,

each coauthor starts by performing some deep meditation

(state 0 of each component in Figure 3), in which it has

not yet started to think about writing a paper; only when

finishing the meditation, it can proceed to try to collaborate

with its neighbors. The choice of collaboration give rise to

symmetric confusion, while the move from meditation to

choice introduces asymmetric confusion between a coauthor

and its neighbors. This example can be seen as a dual to

the dinning philosophers, where a philosopher needs to gain

resources (forks) on both sides in order to progress (eat).

Here, a coauthor needs to gain interaction in one side in

order to progress (submit a paper).

In the model in Figure 3, there is for instance one

asymmetric confusion between transition a of author 0 and

transition e of author 1. Indeed, if author 1 is in state 1 and

author 0 in state 0, then author 1 can only collaborate with

author 2, but he also want to know if author 0 will eventually

become available in which case his decision may change.

Another asymmetric confusion is between d of author 1

and b of author 0. An example of symmetric confusion is

between b of author 0 and e of author 1.

c e

0

1

2 3

c

x

y b

0

1

2 3

a

b c

0

1

2 3

c e y

...

...

d

Author 0 Author nAuthor 1

bb

Figure 3: The Collaborating Coauthors Example.

The number of confusions in the system increases with

the number of components which makes the scheduling

problem quite tricky. Figure 4 shows the overhead in term of

shared variables when the number of components increases.

In addition, Figure 5 illustrates the evolution of the average

execution time of the system with respect to the increasing

number of components.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
1

0
2

0
3

0
4

0
5

0

NumberAofAcomponentAinAtheAsystem

n
u

m
b

e
rA

o
fA
s
h

a
re

d
Av

a
ri
a

b
le

s
Comp.ALocks

Asym.AConf.ALocks

Master/SlaveAVars

SharedATrans.AVars

TotalAsharedAVars.

Figure 4: Number of shared variables with respect to the

number of components in the system.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

Number of component in the system

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Figure 5: Average execution time with respect to the increas-

ing number of components. The average execution time is

obtained over 10 independent runs performed on a machine

with 2.93 GHz Core 2 Duo processor and 4 GB of RAM.

B. Search and Rescue Operation

We demonstrate the use of the tool on a second case

study that concerns the deployment of robots in a hostile



environment. Those are used to rescue motionless human

victims from a toxic/nuclear disaster. The environment,

consists of a safe home region from where the robots will

start the rescue operation and to where they have to bring the

victim. The radiation is caused by the collapse of a part of an

insulating wall. To protect themselves and the victim from

radiations, the robots will first have to re-build the insulating

wall using building blocks spread within the environment.

Initially the robots are grouped into teams as they may not

be able to perform a task alone. As an example, moving big

building blocks may require team collaboration. To speed

up the search operation, finding the victim is performed

individually by all the deployed robots.

Each robot is equipped with sensors to detect building

blocks, obstacles, and victims. In addition, they can perform

the following tasks.

• Search The robot moves within the environment, avoid

obstacles, and detects objects (building blocks or vic-

tim).

• Move When detecting a building block, a robot move

it alone.

• Move together When detecting a building block, a robot

can collaborate with other robots from his team to move

the block.

• Rescue When detecting the victim, the robot will try to

collaborate with other robots from his team to rescue

it.

Probabilities are used to model the fact that a robot can

decide to collaborate on moving a block even or move it

alone. Indeed, due to its low battery status, a robot may

prefer to perform less effort (collaborate) to save energy.

The joint action (move together) depends also on the state

of the other robots in the team which may be not available.

This can introduce nondeterminism and confusion.

search block

search victim

big

small

move together

move

move together

move together

rescue

rescue

S0

S3

S4

S5

S1

p2

p1

p3

S2

Figure 6: Robot Component Model.

Figure 6 shows a component view of the robot behavior.

Initially (state S0), two actions are possible; search block

and search victim. The choice between those two actions

is represented by a probability distribution, namely p1. The

use of probabilities rather than non determinism permits to

configure robots so that some of them give a higher priority

to one of the two tasks. When the victim is found, the

robot performs the rescue action, that is, collaborate with

teammates to bring the victim to the safe area (this needs

teammates to be available). A building block is either big

or small and, in our model, this distinction is made by a

probability distribution p2. When the block is small, the

robot may either try to move it alone, or ask teammates

to help it. The latter situation may occurs when the robot

has already used a considerable amount of energy. In our

setting, we do not encode energy level directly. Rather, we

use a probability distribution p3 (see Table I) to distinguish

the case when the robot needs help from the one when it

does not. In case the block is big, the robot will need to

collaborate with teammates to move it.

Move Move together

0.6 0.4 In case both action are possible, the robot
decides depending on his energy status (re-
flected trough the probabilities).

1 0 It could be that only Move is possible be-
cause no teammate is available for collabo-
ration. Then, Move has probability 1.

Table I: Example of the p3 probabilistic distribution.

Various configurations of the robots were experimented to

evaluate the scheduling algorithm in term of shared variables

overhead and execution time. For doing so, we iterate on

two parameters that are (1) the number of robots in the

systems (m) and (2) the number of robots in each single team

(n). There are several ways for confusion to occur. As an

example, consider again the robot model in Figure 6. From

state S4, a robot has two possible actions, namely move

and move together which is a joint action. Those actions

may introduce asymmetric confusion. This is illustrated in

Figure 7: if Robot1 is in state S4 and Robot2 and Robot3

are both in state S1, then the view of Robot1 contains only

the move action since move together (joint action) is not

enabled in the other robots. In this case, if Robot1 is going

to select move, it needs to make sure that none of Robot2

and Robot3 is going to change his view. Hence, it needs to

capture asymmetric confusion locks for Robot2 and Robot3.

The same applies to Robot2 in state S4 when Robot1 and

Robot3 are in state S1 and also to Robot3 in state S4 when

Robot1 and Robot2 are in state S1. Then, for a team of 3

robots, each one of them needs to maintain 2 asymmetric

confusion locks hence 6 locks per team in total. For example,

for a configuration C = (6, 3) the number of asymmetric

confusion locks is 12. Remark that this locks are only used

in specific cases as explained below.

In Figure 8, we show the amount of shared variables in

the system when the total number of robots (respectively, the

number of robots in a single team) increases. Moreover, the

execution time is also measured and reported in Figure 9.

Table II sum up all measure. In this table, Configuration

represents the possible couples (m, n). The number of

shared variables is composed by components locks (li, in the

algorithm), master/slave status variables (mα,i, fα,i), shared



transitions variables (αi), and asymmetric confusions locks

(l(α,β)) respectively.

small

move togethermove

Robot1

small

move togethermove

big
big

Robot2

small

move together
move

Robot3

big
S1

S4

S6S5

S1

S4

S6S5

S1

S4

S5 S6

Figure 7: Part of the Robot1, Robot2, and Robot3 models

from Figure 6.

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

RobotscConfiguration

n
u

m
b

e
rc

o
fc
s
h

a
re

d
cv

a
ri
a

b
le

s

Comp.cLocks

Asym.cConf.cLocks

Master/SlavecVars

SharedcTrans.cVars

TotalcsharedcVars.

C1 C2 C3 C4 C5 C6

Figure 8: Number of shared variables with respect to differ-

ent robot configuration.

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Robots3Configuration

A
v
e

ra
g

e
3e

x
e

c
u

ti
o

n
3t
im

e
3(

m
s
)

C1 C2 C3 C4 C5 C6

Figure 9: Average execution time with respect to different

robots configuration. The average execution time is mea-

sured over 10 independent runs done on a machine with 2.4
GHz Core 2 Duo processor and 2 GB of RAM.

VI. CONCLUSION AND FUTURE WORK

We described here an automatic transformation from a

high level description formalism, similar to BIP, Petri nets

and I/O automata, into a directly running shared-variables

based system. Our formalism allows both concurrently ex-

ecuting components, with share transitions, modeling, e.g.,

synchronous communication, and probabilistic choices. The

possibility to model and implement systems that have these

two ingredients was considered problematic for many years,

prompting suggestions such as restricting the generality of

Configuration (m,n) Number of Shared Variables Avg. Ex. T. (ms)

C1 = (2, 2) 10 (2 + 4 + 4 + 2) 35

C2 = (4, 2) 20 (4 + 8 + 8 + 4 ) 57

C3 = (6, 2) 30 (6 + 12 + 12 + 6) 65

C4 = (6, 3) 42 (6 + 12 + 12 + 12) 72

C5 = (8, 2) 48 (8 + 16 + 16 + 8) 84

C6 = (9, 3) 63 (9 + 18 + 18 + 18) 102

Table II: Results of the search and rescue scenario.

Avg. Ex. T. (ms) = Average Execution Time (ms).

the systems [16]. Recently, some ideas started to emerge

about allowing process-based or component-based proba-

bilistic decisions. In the I/O automata context [24], [32],

this was done by scheduling a single process to make its

decision, while blocking the others. Subsequently, in [21], a

model and a conceptual implementation that allow making

concurrent probabilistic choices, without blocking the rest

of the system, was presented.

In this paper we looked at a practical transformation from

a high level description of a concurrent and probabilistic

system into a physical one. We provided an actual imple-

mentation using shared variables. the algorithm refines and

improves that of [21]: it transfer it from the theoretical

Petri-nets domain into actual implementation, with realistic

assumption about non-atomicity. Then it improves on it by

eliminating the number of shared locks that are needed. One

of the strongest points of our transformation is that it does

not assume any services or strong primitives from the under-

lying hardware and software. We provide a direct translation

that can run on any reasonable shared variables with minimal

synchronization primitives (we use the swap-and-compare

primitive for non blocking locking). The complete correct-

by-design synthesis of concurrent systems is shown to be

undecidable [30]. On the other hand, the direct verification

of actual complicated systems is often too hard for automatic

verification. We believe that our approach, of allowing the

designer to work with a high level description formalism,

whose verification is more affordable, and translating it

automatically into a directly running code, is an important

step for synthesizing correct concurrent code.

ACKNOWLEDGEMENT

We thank Gadi Taubenfeld for helpful discussion about

concurrent synchronization primitives.

REFERENCES

[1] S. Abbes. The (true) concurrent Markov property and some
applications to Markov nets. In Applications and Theory of
Petri Nets, LNCS 3536, pages 70–89, 2005.

[2] T. Abdellatif, S. Bensalem, J. Combaz, L. de Silva and
F. Ingrand Rigorous design of robot software: A formal
component-based approach In Robotics and Autonomous
Systems, volume 60(12), pages 1563–1578, 2012



[3] M. Albanese. A constrained probabilistic Petri net framework
for human activity detection in video. IEEE Trans. on
Multimedia, 10(6):982–996, 2008.

[4] L. de. Alfaro and T. A. Henzinger. Interface Theories for
Component-Based Design. In EMSOFT, volume 2211 of
LNCS, pages 148–165, 2001.

[5] M. E. Andrés, C. Palamidessi, P. van Rossum, and
A. Sokolova. Information hiding in probabilistic concurrent
systems. TCS, 412(28):3072–3089, 2011.

[6] S. Abbes, and A. Benveniste/ Concurrency, sigma-Algebras,
and Probabilistic Fairness. in Foundations of Software Science
and Computational Structures, LNCS 5504, pages 380–394,
2008.

[7] S. Bensalem, M. Bozga, B. Delahaye, C. Jégourel, A. Legay
and A. Nouri; Statistical Model Checking QoS Properties
of Systems with SBIP, In Leveraging Applications of For-
mal Methods, Verification and Validation. Technologies for
Mastering Change, volume 7609 of LNCS, pages 327–341,
2012.

[8] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber,
T. Nguyen, and J. Sifakis. Rigorous Component-Based
System Design Using the BIP Framework. In IEEE Software,
volume 28(3), pages 41–48, 2011.

[9] C. Baier and J.-P. Katoen. Principles of Model Checking.
MIT Press, 2008.

[10] M. Beccuti, G. Franceschinis, and S. Haddad. Markov
decision Petri net and Markov decision well-formed net
formalisms. In Applications and Theory of Petri Nets, volume
4546 of LNCS, pages 43–62, 2007.

[11] S. Bliudze and J. Sifakis. The algebra of connectors -
structuring interaction in BIP. IEEE Trans. Computers,
57(10):1315–1330, 2008.

[12] L. Cheung, N. A. Lynch, R. Segala, and F. W. Vaandrager.
Switched PIOA: Parallel composition via distributed schedul-
ing. TCS, 365(1-2):83–108, 2006.

[13] P. R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic
approach to the specification of stochastic systems. In
Conference on Programming Concepts and Methods, volume
125 of LNCS, pages 126–147, 1998.

[14] L. de Alfaro. The verification of probabilistic systems
under memoryless partial-information policies is hard. In
PROBMIV, pages 19–32, 1999.

[15] C. Eisentraut, H. Hermanns, and L. Zhang. Concurrency
and composition in a stochastic world. In CONCUR, volume
LNCS 6269, pages 21–39, 2010.

[16] J. Esparza. Reduction and Synthesis of Live and Bounded
Free Choice Petri Nets. In Information and Computation,
114(1): 50-87 (1994).

[17] S. Georgievska and S. Andova. Probabilistic may/must test-
ing: retaining probabilities by restricted schedulers. Formal
Asp. Comput., 24(4-6):727–748, 2012.

[18] S. Giro and P. R. D’Argenio. On the expressive power of
schedulers in distributed probabilistic systems. In ENTCS,
253(3):45–71, 2009.

[19] C. A. R. Hoare, Communicating Sequential Processes. In
communication of the ACM, 21(8):666-677, 1978.

[20] J.-P. Katoen. GSPNs revisited: Simple semantics and new
analysis algorithms. In Application of Concurrency to System
Design, pages 6–11, 2012.

[21] Joost-Pieter Katoen, Doron Peled. Taming Confusion for
Modeling and Implementing Probabilistic Concurrent Sys-
tems. In ESOP, volume 7792 of LNCS, pages 411-430, 2013.

[22] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed
control through knowledge accumulation. In CAV, volume
6806 of LNCS, pages 510–525, 2011.

[23] M. Kudlek. Probability in Petri nets. In Fund. Informatica,
67(1-3):121–130, 2005.

[24] N. A. Lynch, R. Segala, and F. W. Vaandrager. Observing
branching structure through probabilistic contexts. SIAM J.
Comp., 37(4):977–1013, 2007.

[25] N. Lynch and M. R. Tuttle. An Introduction to Input/Output
Automata In CWI-quarterly, volume 2(3), 1989

[26] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic Petri
Nets. Wiley, 1995.

[27] A. Mazurkiewicz. Introduction to trace theory. In V. Diek-
ert and G. Rozenberg, editors, The Book of Traces. World
Scientific, 1995.

[28] R. Milner A Complete Axiomatisation for Observational
Congruence of Finite-State Behaviors. In IandC, volume
81(2), pages 227–247, 1989.

[29] J. A. Pérez, R. Corchuelo, and M. Toro. An order-based
algorithm for multiparty synchronization. Concurrency -
Practice and Experience, 16(12):1173–1206, 2004.

[30] Amir Pnueli, Roni Rosner, Distributed Reactive Systems Are
Hard to Synthesize. in FOCS 1990: Pages 746-757, 1990.

[31] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, 2005.

[32] R. Segala and N. A. Lynch. Probabilistic simulations for
probabilistic processes. Nord. J. Comput., 2(2):250–273,
1995.

[33] G. Taubenfeld. Synchronization Algorithms for Concurrent
Programming. Prentice Hall, 2006.

[34] M. Y. Vardi. Automatic Verification of Probabilistic Concur-
rent Finite-State Programs. In Annual SFCS, IEEE Computer
Society, pages 327–338, 1985.

[35] D. Varacca and M. Nielsen. Probabilistic Petri nets and
Mazurkiewicz equivalence. Unpublished manuscript, 2003.

[36] S. H. Wu, S. A. Smolka and E. W. Stark. Composition
and Behaviors of Probabilistic I/O Automata. In CONCUR,
volume 836 of LNCS, pages 513–528, 1994.


