
HAL Id: hal-01087676
https://hal.inria.fr/hal-01087676

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster Statistical Model Checking by Means of
Abstraction and Learning

Ayoub Nouri, Balaji Raman, Marius Bozga, Axel Legay, Saddek Bensalem

To cite this version:
Ayoub Nouri, Balaji Raman, Marius Bozga, Axel Legay, Saddek Bensalem. Faster Statistical Model
Checking by Means of Abstraction and Learning. RV, Sep 2014, Toronto, Canada. �10.1007/978-3-
319-11164-3_28�. �hal-01087676�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49577995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01087676
https://hal.archives-ouvertes.fr

Faster Statistical Model Checking
by Means of Abstraction and Learning ⋆

Ayoub Nouri1, Balaji Raman1, Marius Bozga1

Axel Legay2, and Saddek Bensalem1

1 Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

2 INRIA/IRISA, Rennes, France

Abstract. This paper investigates the combined use of abstraction and
probabilistic learning as a means to enhance statistical model checking
performance. We are given a property (or a list of properties) for ver-
ification on a (large) stochastic system. We project on a set of traces
generated from the original system, and learn a (small) abstract model
from the projected traces, which contain only those labels that are rele-
vant to the property to be verified. Then, we model-check the property
on the reduced, abstract model instead of the large, original system. In
this paper, we propose a formal definition of the projection on traces
given a property to verify. We also provide conditions ensuring the cor-
rect preservation of the property on the abstract model. We validate our
approach on the Herman’s Self Stabilizing protocol. Our experimental
results show that (a) the size of the abstract model and the verification
time are drastically reduced, and that (b) the probability of satisfaction
of the property being verified is correctly estimated by statistical model
checking on the abstract model with respect to the concrete system.

1 Introduction

Statistical Model-Checking (SMC) [12, 17, 24, 27] has recently emerged as an
alternative to standard model-checking to avoid exhaustive exploration of the
state-space and its associated explosion problem. SMC combines Monte-Carlo
simulation [11] on model traces with statistical techniques in order to decide
whether some stochastic model satisfies a given property or to compute its sat-
isfaction probability. Nowadays, SMC is getting increased industrial attention
[4] and several modeling and/or analysis frameworks include it amongst their
(usually, most successful) analysis techniques [5, 16, 15, 3].

SMC is however not a panacea for automated verification. As many other
analysis techniques, it still encounters significant difficulties when used on real-
life systems. First, the stochastic modeling of these systems might be extremely

⋆ Research supported by the European Community’s Seventh Framework Programme
[FP7] under grant agreements No. 257414 (ASCENS), No. 288175 (CERTAINTY),
and the French BGLE project ACOSE.

cumbersome. Actually, high expertise is generally required to produce any kind
of meaningful formal models. For stochastic models, besides functional aspects,
they must include stochastic information in form of probabilities. These are
hardly available and usually incomprehensible by an average system designer.
Second, whenever such stochastic models exist, they can be very detailed and
contain too much information than actually needed for verification purposes.
This is usually the case when stochastic system models are automatically gen-
erated from higher level descriptions, e.g., as part of various designs/analysis
flows [2]. In this case, Monte-Carlo simulation becomes problematic as individ-
ual simulation time (time to obtain a single execution trace) could be very long.
Henceforth, it could not be possible to obtain any but only a limited number
of traces and consequently, prevent the use of SMC techniques. Moreover, it is
worth mentioning that for verification of system-level properties, the observation
of any such trace in detail is rarely needed. Most of the time, such properties
are expressed in terms of few observable actions/states of the system while the
remaining are completely irrelevant and can be safely ignored.

Our aim is to improve general applicability of SMC techniques. In this work,
we propose the combined use of abstraction and learning techniques to automat-
ically construct faithful abstractions of system models and therefore to overcome
the issues discussed earlier. Nowadays, machine learning is an active field of re-
search and learning algorithms are constantly developed and improved in order
to address new challenges and new classes of problems (see [26] for a recent
survey on grammatical inference). In our context, learning is combined with ab-
straction as follows. Given a property of interest and a (usually large) sample
of partial traces generated from a concrete system (model), we first use abstrac-
tion to restrict the amount of visible information on traces to the minimum
required to evaluate the property and then, use learning to construct an ab-
stract, probabilistic model which conforms to the abstracted sample set. Under
some additional restrictions discussed later, the resulting model is a sound ab-
straction of the concrete model with respect to the satisfaction of the property.
Hence, it can be used to correctly predict/generate the entire abstract behavior
of the model, in particular, as an input model for SMC.

The above approach has multiple benefits. First of all, the sample set of
traces can be generated directly from an existing black-box implementation of
the system, as opposed to a concrete detailed model. In many practical situations,
such detailed system models simply do not exist and the cost for building them
using reverse-engineering could be prohibitive. In such cases, learning provides an
effective, automated way to obtain a model and to get some valuable insight on
the system behavior. The use of projection is also mostly beneficial. In most of the
cases, the complexity of the learning algorithms as well as the complexity of the
resulting models are directly correlated to the the number of distinct observations
(the alphabet) of traces. Moreover, under normal considerations, a large alphabet
requires a large size for the sample set. Intuitively, the more complex the final
model is, the more traces are needed to learn it correctly. Nevertheless, one
should mention that a bit of care is needed to meaningfully combine abstraction

and learning. That is, abstraction may change a deterministic model into a
non-deterministic one, and henceforth has an impact on the learning algorithms
needed for it.

The contributions of the paper are as follows. We propose a general approach
to compute abstract stochastic models using learning and projection and discuss
conditions under which the obtained model is a correct abstraction of the original
system. We provide a first simple definition for a projection operator on execution
traces given an LTL property and an implementation of the whole procedure.
We finally validate the approach on the Herman’s Self Stabilizing protocol. The
obtained results show an important reduction of the model size, the SMC time,
and accurate probability estimations of the verified properties.

The remainder of this paper is organized as follows. The basic formalisms
for probabilistic modeling and learning techniques are briefly recalled in Section
2. In Section 3, we present our contribution, that is the joint use of abstraction
and learning as a means to speed-up statistical model checking. We discuss the
restrictions needed for convergence and correctness. In Section 4, we present the
experimental set-up and concrete results. Related work is discussed in Section 5.
Finally, conclusions and directions for future research are presented in Section 6.

2 Background

Let AP be a finite set of atomic propositions. We define the alphabet Σ = 2AP

and denote the elements of Σ (subsets of AP) as symbols. The empty symbol is
denoted by τ . As usual, we denote by Σω (resp. Σ∗) the sets of infinite (resp.
finite) words over Σ. For an infinite word σ = σ0σ1... and i ≥ 0, we define the
ith suffix (resp. prefix) of σ as σ[i..] = σiσi+1... (resp. as σ[..i] = σ0...σi).

2.1 Probabilistic models

Definition 1. A labeled Markov chain (LMC) M is a tuple 〈S, ι, π, L〉 where,

– S is a finite set of states,
– ι : S → [0, 1] is the initial states distribution such that

∑

s∈S ι(s) = 1,
– π : S × S → [0, 1] is the probability transition function such that for each
s ∈ S,

∑

s′∈S π(s, s
′) = 1 and

– L : S → Σ is a state labeling function.

A run is a possible behavior (infinite execution) of the LMC. A trace is the
sequence of labels associated to the states of the run. Formally:

Definition 2. Let M = 〈S, ι, π, L〉 be a LMC. A run of M is an infinite se-
quence of states s0s1...snsn+1... such that ι(s0) > 0 and π(si, si+1) > 0, for
all i ≥ 0. A trace σ associated to a run s0s1...snsn+1... is the infinite word
L(s0)L(s1)...L(sn)L(sn+1).... A finite run (resp. finite trace) is any finite prefix
of a run (resp. trace).

We denote by Runs(M) the set of runs and by Traces(M) the set of traces of
M . Moreover, we denote by PrM the underlying probability measure induced by
M on the set of its traces. This measure is well-defined in the context of Markov
chains (see [1]). Two LMCsM1 andM2 are called equivalent, and denotedM1 ≈
M2 if they have identical probability measures on traces, that is, PrM1

= PrM2
.

A labeled Markov chain is deterministic (DLMC) iff (i) ∃s0 ∈ S such that
ι(s0) = 1, and (ii) ∀s ∈ S, ∀σ ∈ Σ there exists at most one s′ ∈ S such that
π(s, s′) > 0 and L(s′) = σ.

Probabilistic finite automata (PFA) are an alternative model for probabilis-
tic systems. They are defined similarly to LMC with the following modification:
π is now defined on S × S ∪ {$} and π(s, $) stands for the probability to termi-
nate execution at state s. Henceforth, the associated notions of runs and traces
correspond to finite runs and finite traces for a LMC. The probability of a finite
run s = s0s1...sn of a PFA is Pr(s) = ι(s0) · (

∏n−1
i=0 π(si, si+1)) · π(sn, $). Deter-

ministic PFA are denoted as DPFA.

Example. We consider the Craps Gambling Game [1] as an illustrative example.
A player starts by rolling two fair six-sided dice. The outcome of the two dice
determines whether he wins or not. If the outcome is 7 or 11, the player wins. If
the outcome is 2, 3, or 12, the player looses. Otherwise, the dice are rolled again
taking into account the previous outcome (called point). If the new outcome is 7,
the player looses. If it is equal to point, he wins. For all other outcome, the dice
are rolled again and the process continue until the player wins or looses. Figure 1
illustrates the DLMC model that describes the game behavior. A possible run
of the DLMC below is r = S0S5S5S7S7 . . . The corresponding trace is t = start
point6 point6 won won . . . and Pr(t) = 1× 5

36 × 25
36 × 5

36 × 1× . . . = 0.0277.

won

1/12

1/12

3/4 3/4 13/18 13/18 25/36

1/9
5/36

5/36

1/92/9

25/36

1/9

1/12

1/12
1/6

1/9
1/6

5/36

1/6

1/9
1/6

5/36

1/6

1 1

1/6

start

point4 point10 point5 point9 point6 point8

lost

ι(S0) = 1

S = {S0, S1, , ..., S8}

L(S0) = start, . . . , L(S8) = lost

S0

S1
S2 S3

S4 S5 S6

S8S7

π =

S0 S1 · · · S8

S0 0 1
12 · · · 1

9

S1 0 3
4 · · · 1

12...
S8 0 0 · · · 1

Fig. 1: A DLMC model for the Craps Gambling Game.

2.2 Probabilistic Linear Time Temporal Logic (PLTL)

The linear time temporal logic (LTL) formula ϕ built over a set of atomic propo-
sitions AP is defined by the following syntax:

ϕ := true | p | ¬ϕ | ϕ1 ∧ ϕ2 | Nϕ | ϕ1Uϕ2 | ϕ1U
iϕ2 (p ∈ AP)

N,U and U i are respectively the next, until and bounded until operators.
Additional Boolean operators can be inferred from negation ¬ and conjunction
∧. Moreover, temporal operators such as G (always) and F (eventually) are
defined as Fϕ ≡ true Uϕ and Gϕ ≡ ¬F¬ϕ. The bounded fragment of LTL
(denoted BLTL) restricts the use of the until operator U to its bounded variant
U i. LTL formula are interpreted on infinite traces σ = σ0σ1 . . . ∈ Σω as follows:

– σ � true; σ � p iff p ∈ σ0; σ � ¬ϕ iff σ 2 ϕ;
– σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2; σ � Nϕ iff σ[1..] � ϕ;
– σ � ϕ1Uϕ2 iff ∃k ≥ 0 s.t. σ[k..] � ϕ2 and ∀j ∈ [0, k[holds σ[j..] � ϕ1;
– σ � ϕ1U

iϕ2 iff ∃k ∈ [0, i] s.t. σ[k..] � ϕ2 and ∀j ∈ [0, k[holds σ[j..] � ϕ1.

Definition 3. Given an LMC M and an LTL property ϕ, the probability for M
to satisfy ϕ denoted by Pr(M � ϕ) is given by the measure PrM{σ ∈ Traces(M) |
σ |= ϕ}. In addition, we say that M satisfies ϕ denoted by M � ϕ iff ∀σ ∈
Traces(M), σ � ϕ.

Example. Given the Craps Gambling Game model in Figure 1, one could check
for instance the following probabilistic (B)LTL properties. The probability to
eventually loose is Pr(F lost) = 0.51, and the probability to win in two steps is
Pr(true U2 won) = 0.3.

2.3 Statistical Model Checking (SMC)

Consider a stochastic system S and a property ϕ. SMC refers to a series of
simulation-based techniques that can be used to answer two questions : (1)
Qualitative : Is the probability for S to satisfy ϕ greater or equal to a certain
threshold? and (2) Quantitative : What is the probability for S to satisfy ϕ?
Contrary to numerical approaches, the answer is given up to some correctness
precision. In the sequel, we overview two SMC techniques. Let Bi be a discrete
random variable with a Bernoulli distribution of parameter p. Such a variable
can only take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p.
In our context, each variable Bi is associated with one simulation of the system.
The outcome for Bi, denoted bi, is 1 if the simulation satisfies ϕ and 0 otherwise.

Qualitative Answer. The main approaches [27, 24] proposed to answer the qual-
itative question are based on hypothesis testing. Let p = Pr(ϕ), to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A test-based solution
does not guarantee a correct result but it is possible to bound the probabil-
ity of error. The strength of a test is determined by two parameters, α and β,

such that the probability of accepting K (respectively, H) when H (respectively,
K) holds, called a Type-I error (respectively, a Type-II error) is less or equal
to α (respectively, β). A test has ideal performance if the probability of the
Type-I error (respectively, Type-II error) is exactly α (respectively, β). How-
ever, these requirements make it impossible to ensure a low probability for both
types of errors simultaneously (see [27] for details). A solution is to use an in-
difference region [p1, p0] (given some δ, p1 = θ − δ and p0 = θ + δ) and to test
H0 : p≥ p0 against H1 : p≤ p1. We now sketch the Sequential Probability Ratio
Test (SPRT). In this algorithm, one has to choose two values A and B (A > B)
that ensure that the strength of the test is respected. Let m be the number of
observations that have been made so far. The test is based on the following quo-

tient: p1m
p0m

=
∏m
i=1

Pr(Bi=bi|p=p1)
Pr(Bi=bi|p=p0)

=
p
dm

1
(1−p1)

m−dm

p
dm

0
(1−p0)m−dm

, where dm =
∑m
i=1 bi. The

idea is to accept H0 if p1m
p0m

≥ A, and H1 if p1m
p0m

≤ B. The algorithm computes
p1m
p0m

for successive values of m until either H0 or H1 is satisfied. This has the
advantage of minimizing the number of simulations.

Quantitative Answer. In [12, 17] Peyronnet et al. propose an estimation pro-
cedure to compute the probability p for S to satisfy ϕ. Given a precision δ,
Peyronnet’s procedure, which we call PESTIM, computes a value for p′ such
that |p′ − p|≤δ with confidence 1− α. The procedure is based on the Chernoff-
Hoeffding bound [14]. Let m be the number of simulations of the system and
p′ = (

∑m
i=1 bi)/m, then Chernoff-Hoeffding bound [14] gives Pr(|p′ − p| > δ) <

2e−
mδ

2

4 . As a consequence, if we take m≥ 4
δ2

log(2
α
), then Pr(|p′−p|≤δ) ≥ 1−α.

2.4 Probabilistic Learning

Learning probabilities distributions over traces is a hard problem [7] with po-
tential applications in a wide range of domains, far beyond formal verification.
Many methods have been proposed in the research literature and are continu-
ously improved and challenged on learning research competitions [26]. The family
of state merging techniques is one of the most successful nowadays. Intuitively,
these techniques proceed by first constructing some large automata-based rep-
resentation of the set of input traces and then progressively compacting them,
by merging states, into a smaller automaton, while preserving as much as possi-
ble trace occurrence frequencies/probabilities. Different algorithms in this family
can learn either DPFA models [6, 9, 8] or general PFA models [25, 22, 10].

In this paper, we use AAlergia [19] which is a state merging algorithm that
exclusively learn deterministic models. Given a sample of traces, the algorithm
proceeds in three steps. It first builds an intermediate representation, a Fre-
quency Prefix Tree Acceptor (FPTA), which is a restricted form of DPFA that
represents all the traces in the input sample and their corresponding frequencies.
Seconds, based on a compatibility criterion parametrized by αA (automatically
computed, as explained in [19]), it iteratively merges states of the FPTA having
the same labels and similar probability distributions until reaching a compact
DPFA. Finally, it transforms the obtained DPFA into a DLMC model.

AAlergia is proven to converge to the correct model in the limit [19] if the
input traces are generated, with random lengths, from an LMC model. A first
consequence concerns verification on DLMCs and ensures that, in the limit (with
sufficiently big sample set of traces), a given LTL property will hold on the orig-
inal and the learned model with the same probability. This result is partially
extended to LMC. That is, for arbitrary Markov chain models, the algorithm
might not converge to the good model in general. In the case of input traces
from a non-deterministic LMC model (which moreover, does not have an equiv-
alent deterministic representation), as the sample size increases, AAlergia will
build a sequence of DLMCs (usually, of increasing size) tending to approximate
the original model. It is however proven that, in the limit, these learned DLMC
models provide an increasingly better approximation for the initial (prefix) be-
havior, and hence preserve the satisfaction of bounded LTL properties.

3 Learning Abstract Models

The verification problem in the stochastic setting amounts to compute Pr(M |=
ϕ) for an LMC model M and an LTL property ϕ. Moreover, M might not be
explicitly known, that is, it could be a black-box probabilistic system which can
be executed arbitrarily many times in order to produce arbitrarily long traces.

Due to the reasons introduced earlier, we would like to avoid the verification
of ϕ on the original model M . Instead, we would like to perform it on a smaller,
abstract model M ♯ which preserves the satisfaction probability of ϕ, that is,
Pr(M |= ϕ) = Pr(M ♯ |= ϕ). We propose hereafter a method to compute such
an abstraction M ♯ by combining learning and a projection operator on traces
parametrized by the property ϕ. The idea is based on the simple observation
that, when checking a model against a property, only a subset of the atomic
propositions is really relevant. In fact, only the atomic propositions mentioned
explicitly in the property are useful while the others can be safely ignored.

traces
(Learning)(Execution)

(Learning)
traces

(Relabeling)

(Execution)

T M ′

Ta (M ♯ ≈ Ma)Ma = 〈S, τ, π, La〉

(M ′ ≈ M)M = 〈S, τ, π, L〉

M ♯

(Projectionϕ)

Fig. 2: Learning abstract models: approach overview.

The proposed approach is depicted in Figure 2. It consists of initially gen-
erating a finite set of random finite traces T (with random lengths) from M
(Sampling). In a second step, a projection is applied on traces T in order to
restrict the atomic propositions to the ones needed for the evaluation of the
property ϕ. The projection is detailed below. Third, the set of projected traces
is used as an input to a learning algorithm. For experiments, we have used AAler-

gia [19], however, any other algorithm could be used. The output of the learning
denoted M ♯ on Figure 2 will be used to evaluate the property of interest ϕ.

It is worthwhile to mention that, in our approach, the sampling step (which
could be time consuming) is done only once, while the following steps could
be repeated given different properties. Our approach ensures a significant time
reduction with respect to applying SMC directly on the black-box system since
it generally requires trace re-sampling every time. In [24], re-sampling is avoided
but raises confidence level issues as discussed in Section 5. In addition, some
SMC algorithms, besides their termination guarantee, might potentially need a
huge number/length of traces depending on the required confidence level.

The soundness of this approach is however justified only under particular con-
siderations. Note that a projection may potentially introduce non-deterministic
behavior at the level of traces. We then need to distinguish several cases. The first
one is when the traces are generated from a DLMC and the projection operation
does not introduce any non-determinism. In this case any learning algorithm
should work, for instance, AAlergia. Another case is when the traces are gener-
ated from an LMC and/or the projection introduces non-determinism. This case
is divided into two sub-cases depending on the type of non-determinism. If the
non-deterministic model has an equivalent deterministic one, then any learning
algorithm can be used. Otherwise, one needs to use learning algorithms capable
to learn non-deterministic models such as [25, 10]. We detail the main steps of
the approach and illustrate them on the running example. The correctness is
formally established by Theorem 1.

3.1 Main steps

Projection. The projection is defined on traces so as to reduce the number of
labels and henceforth, later on, the number of states in the learned model. We
introduce a first syntactic definition of a projection operator. It basically consists
of ignoring the atomic propositions that are not relevant to the property under
verification as formally defined below.

Definition 4. Let Vϕ ⊆ AP called the support of ϕ be the set of atomic propo-
sitions occurring explicitly in ϕ. The projection Pϕ : Σ∗ → Σ∗ is defined as
Pϕ(σ0σ1...σn) = σ′

0σ
′
1...σ

′
n where σ′

i = σi ∩ Vϕ for all i ∈ [0, n].

Example. Given a set T of traces generated from the Craps Gambling Game
model in Figure 1 and the properties ϕ1 = F won and ϕ2 = F (won ∨ lost),
Definition 4 is applied to compute the corresponding sets of projected traces Ta1
and Ta2 : T = {start won, start lost lost, start won won won won won won won won

won, start point5, start point10 point10 point10 point10 point10, start point9 point9,

. . .}; Ta1
= {τ won, τ τ τ , τ won won won won won won won won won, τ τ , τ τ τ τ τ τ ,

τ τ τ , . . .}; Ta2
= {τ won, τ lost lost, τ won won won won won won won won won,

τ τ , τ τ τ τ τ τ , τ τ τ , . . .}

Learning. We briefly illustrate the learning phase using AAlergia on the running
example. Figure 3 shows three learned models of the Craps Gambling Game
obtained using the set T of 5000 traces generated from the model in Figure 1. One
can note, out of this figure, the important reduction of the obtained models sizes
with respect to the original one. Figure 3a shows the model learned by AAlergia
taking as input the set Ta2 , that is, with respect to property ϕ2 = F (won∨lost).
Figure 3b is obtained by applying AAlergia on the set Ta1 , that is, projected
with respect to ϕ1 = F won. Remark that this model is not equivalent but only
an approximation of the original model in Figure 1. That is, in the latter there
exists some non null probability to never reach the won state. Whereas, in the
learned model the won state is reachable with probability 1. This approximation
could however improve if a larger set of traces is used for learning as stated in the
previous section. Finally, the third learned model shown in Figure 3c is equally
obtained from Ta1 but when using an algorithm able to learn non-deterministic
models such as the one proposed by Stolcke [25].

1 1

0.110.67

0.22

0.72

0.170.11

lostwon

S3

S0

S2

τ

S1

τ

(a) Scenario 1

1

0.47 0.53

0.37

0.63

won

S1

S2

τ

S0

τ

(b) Scenario 2

1 1

0.110.67

0.22

0.72

0.170.11

won

S2

S1
τ

S3

τ

S0
τ

(c) Scenario 3

Fig. 3: Learned Markov Chains for Craps Gambling Game using 5000 traces.

Statistical Model Checking. The last step evaluates the considered property on the

learned model. Table 1 provides results of verifying the property ϕ1 = F won on the

Craps Gambling Game models. It shows that the model in Figure 3a exhibits similar

probability to the original Craps model, whereas the one in Figure 3b shows different

ones. The reason is that the projection introduced a non-determinism in the input

sample. In addition, it seems that in this case there is no equivalent deterministic

model that could be learned by AAlergia.

Models Pr(ϕ1)

Scenario 1(Figure 3a) 0.485

Scenario 2 (Figure 3b) 1

Original Model (Figure 1) 0.493

Table 1: Verifying ϕ1 on the original and the learned Craps Gambling Game
models using SMC (PESTIM).

3.2 Correctness

The correctness of our approach is formally stated as follows.

Theorem 1. Let M be an LMC model and let ϕ be an LTL property. Let M ♯

be the learned model from a sample set of traces generated from M and projected
according to ϕ as in definition 4. Then, in the limit, M ♯ is a correct abstraction
for the verification of ϕ, that is Pr(M |= ϕ) = Pr(M ♯ |= ϕ) if either

i) ϕ belongs to the bounded fragment BLTL and the learning algorithm con-
verges for DLMC models, or

ii) the learning algorithm converges for arbitrary LMC models

Proof. First, let us remark thatM ♯ is constructed as illustrated by the thick line
in Figure 2. Let us moreover observe that any sample set of projected traces Ta
obtained from M is equally obtained from Ma, that is, the ”abstracted” version
of M where only the labeling function has changed from L into La by taking
La(s) = L(s)∩Vϕ, for all s ∈ S. In other words, the left-hand side of the diagram
shown in Figure 2 commutes. Henceforth,M andMa are identical with respect to
the satisfaction of ϕ. The underlying set of runs and their associated probabilities
are the same in M and Ma. As the atomic propositions occurring in ϕ are
preserved by relabeling, it obviously holds that Pr(M |= ϕ) = Pr(Ma |= ϕ).

Moreover, learning from the sample set Ta leads eventually to Ma. That
is, under particular restrictions specific to the learning algorithms and limit
conditions, the learned model M ♯ will be an equivalent representation of Ma,
that is,M ♯ ≈Ma. We distinguish two cases depending on the learning algorithm:

i) In the case of deterministic models learning (e.g., AAlergia), the learned
model M ♯ is provable equivalent only for a deterministic input model Ma.
But, in addition, for the general case, this models is also providing good
approximations for the initial (prefix) behavior ofMa and hence preserve the
probability of satisfaction for properties in the BLTL fragment (see Theorem
3 in [19]). Thereof, by using AAlergia or a similar learning algorithm, it holds
that Pr(Ma |= ϕ) = Pr(M ♯ |= ϕ) whenever ϕ belongs to BLTL.

ii) In the general case of non-deterministic models learning, it is guaranteed in
the limit that Ma ≈ M ♯. Thereof, one can safely conclude that Pr(Ma |=
ϕ) = Pr(M ′

a |= ϕ) for any ϕ.

Henceforth, in both cases it holds Pr(M |= ϕ) = Pr(M ♯ |= ϕ). ⊓⊔

4 Case study: Herman’s Self Stabilizing Protocol

To experiment our approach, we use the Herman’s Self Stabilizing Protocol [13].
The goal of such a protocol is to perform fault tolerance by enabling a distributed
system starting in an arbitrary state to converge to a legitimate one in a finite
time. Given a token ring network where the processes are indexed from 1 toN (N
must be odd) and ordered anticlockwise, the algorithm operates synchronously.

Processes can possess tokens, which circulate in one direction around the ring. At
every step, each process with a token tosses a coin. Depending on the outcome,
it decides to keep it or to pass it on to the right neighbor. When a process holds
two tokens, they are eliminated. Thus, the number of tokens remains odd. The
network is said to be stable if exactly one process has a token. Once such a
configuration is reached, the token circulate forever, fairly, around the ring.

We apply our abstraction approach to several configurations (N = 7, 11, 19, 21)
of the protocol. Note that as the number of processes increases, the state space
becomes very large and makes the verification quite heavy even using simulation-
based methods such as SMC. We use AAlergia for learning and show that
we are able to reduce the state space while still accurate for several prop-
erties. We consider the bounded properties ϕL = Pr(true UL stable) and
ψLN = Pr(tokenN UL stable) where N is the number of processes in the net-
work and L is a bound. The first property states that the protocol reaches the
stable state in L steps whatever the intermediate ones are. The second specifies
in addition that the protocol directly moves from N tokens to the stable state
(1 token), that is, all the states before stable are tokenN. We first apply the
projection on the traces generated from the different configurations using the
properties supports VϕL = {stable} and VψL

N

= {tokenN, stable}. Then, we use
AAlergia to learn the corresponding models shown in Figure 4. The models for
N = 19, 21 are similar to N = 11 and are omitted for space constraints.

1

0.89 0.11

0.2

0.8

stable

S1

S2

τ

S0

τ

(a) Given ϕL

1

0.87 0.11

0.2

0.8

stable

token70.02

S1

S2

τ

S0

(b) Given ψL
7

stable

1

0.07

0.93

S0

τ

S1

(c) Given ϕL

stable

token11

0.88

1

0.119
0.001

0.922

0.078

S1

S2

τ

S0

(d) Given ψL
11

Fig. 4: Learned (AAlergia) Herman’s models for N = 7 (a,b) and N = 11 (c,d).

Table 2 summarizes the learned models characteristics, AAlergia perfor-
mance when combined with projection, and properties verification results using
PRISM [16]. In this table, the first two columns list the used configurations and
their corresponding sizes. The third column depicts the properties under con-
sideration. Information about the learning process are then detailed: αA is the
AAlergia compatibility criterion parameter, Size is the learned model size, and
Time is the learning time in seconds. The last part concerns the comparison
of the original and the learned model in term of properties probabilities and
verification time. The verification part relies on the PESTIM algorithm which is
parametrized by two confidence parameters δ and α.

The results in Table 2 point out two important facts. The first is the drastic
reduction of the learned models sizes and SMC time compared to the original
Herman’s Self Stabilizing protocol. Figure 5 summarizes the SMC time of ϕ10

for the learned and the original models when increasing N . The figure and the
table allow us to see how big is the SMC time of the original model with respect
to the learned one. Figure 5 shows in addition the learning time which is also
far below the SMC time of the original model for N > 11. Moreover, one can
see that the time to learn plus SMC the learned model is below the SMC time
of the original model for N > 11 which confirms the pertinence of our approach
for big models. For instance, for N = 19, the learning took about 83 seconds
and SMC the learned model about 0.307 seconds while SMC the original one
took about 13 hours. Furthermore, since the sampling step is done only once
in our approach, its time impact is reduced when considering many properties.
The second fact is that, besides this reduction, the models are quite accurate in
terms of probability measures as clearly shown in the table and Figures 6a,6b
and 6c. These figures show the verification results of ϕL (for different L) on the
original protocol versus the learned model for all the considered configurations.

Size Prop.
Learning SMC

δ, α
Learned Model Original Model

αA Size Time(s) Pr Time(s) Pr Time

N = 7 27

ϕ10 [2−9, 20] 3 69.70
10−2, 10−1 0.874 0.180 0.874 3.40 s
10−2, 10−2 0.880 0.320 0.873 5.44 s

ψ30 [2−6, 26] 3 45.98
10−2, 10−1 0.112 0.050 0.112 0.93 s
10−2, 10−2 0.109 0.111 0.111 1.51 s

φ [2−8, 20] 4 167.50 – 0.160 0.005 0.167 0.02 s
Sample Size = 5000

N = 11 211

ϕ10 [2−4, 26] 2 54.67
10−2, 10−1 0.517 0.250 0.543 33.1 s
10−2, 10−2 0.518 0.440 0.543 58.3 s

ψ30 [2−6, 26] 3 60.22
10−2, 10−1 0.011 0.039 0.012 12.1 s
10−2, 10−2 0.012 0.070 0.011 21.7 s

Sample Size = 5000

N = 19 219

ϕ10 [2−4, 26] 2 82.95
10−2, 10−1 0.197 0.180 0.148 8.1 h
10−2, 10−2 0.191 0.307 0.151 13.3 h

ψ30 [2−6, 26] 3 172.58
10−2, 10−1 0.000 0.040 0.0001 5.7 h
10−2, 10−2 0.000 0.074 0.0008 10.1 h

Sample Size = 10000

N = 21 221
ϕ10 [2−10, 20] 3 253.71

10−2, 10−1 0.169 0.355 0.172 34 h
10−2, 10−2 0.163 0.616 − > 5 d

Sample Size = 10000

Table 2: Abstraction and verification results of ϕ10 and ψ30 using PESTIM.

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

Number of processes in Herman's Protocol

T
im

e
 i
n
 s

e
c
o
n
d
s

7 11 19 21

SMC Time - Original model
SMC Time - Learned model
Learning Time

Fig. 5: PESTIM (10−2, 10−2) time: original vs. learned Herman’s model for ϕ10.

(a) N = 7, 11. (b) N = 19. (c) N = 21.

Fig. 6: ϕL verification results using PESTIM for N = 7, 11, 19, and 21. The
results for N = 21 are obtained with PESTIM (5.10−2, 5.10−3).

L
Original Model Learned Model
θ Traces Time(s) θ Traces Time(s)

N = 7
L = 1 [0.109, 0.110[622018 25.643 [0.107, 0.108[588357 1.363
L = 30 [0.111, 0.112[622834 25.749 [0.108, 0.109[533885 1.282
L = 65 [0.111, 0.112[651434 26.756 [0.108, 0.109[476883 1.118

N = 11
L = 1 [0.011, 0.012[147178 85.135 [0.012, 0.013[163600 0.411
L = 30 [0.011, 0.012[105362 60.206 [0.013, 0.014[098493 0.262
L = 65 [0.011, 0.012[137469 80.648 [0.013, 0.014[248300 0.564

Table 3: SPRT (10−3, 10−3) of ψLN on the original and the learned models.

1

0.330.56

0.11

0.789

0.0010.21

stable token5

0.58

0.31

0.11

S3

S0

S2

τ

S1

τ

Fig. 7: Learned Herman’s protocol model (N = 7) using AAlergia given φ.

In addition to PESTIM, we used the SPRT technique to validate with more
confidence the results of the property ψLN = Pr(tokenN UL token1) >= θ for
N = 7, 11. We fixed the confidence parameters to α = β = 10−3 and δ = 10−3.
Table 3 shows the verification results and performance (verification time and
number of traces) for different L values. Note that for this experiment, we used
the same model learned previously. In this table, θ is the probability range to
satisfy ψLN , Traces is the number of traces used by SPRT, and Time is the SMC
time. This table confirms the observation made in the previous experiment, that
is, the reduction of the SMC time when using the abstract model while the
probability estimation still accurate.

We did an additional property φ = Pr(X(token5 U stable)) for Herman’s
protocol with N = 7 in order to investigate the usability of this instance of the
approach for unbounded properties (all the considered properties so far where
bounded). The corresponding learned model is shown in Figure 7 and the verifi-
cation results are depicted in Table 2. The obtained results show that the proba-
bility of satisfying φ is almost the same for the learned and the original protocol.
This is possible (to check unbounded LTL properties on a learned model with
a good accuracy) because, in this case, there exist an equivalent deterministic
model to the original Herman’s protocol that AAlergia succeed to learn. Since φ
is unbounded, we rely on classical probabilistic model checking using PRISM.

5 Related Work

We first review some applications of learning techniques for systems verifica-
tion. For more details, we refer the reader to the literature survey from Martin
Leucker [18]. Pena et al. propose to use learning for the purpose of state reduc-
tion in incompletely specified finite state machines [21]. Based on Angluin’s L*
algorithm, which computes the minimal DFA in polynomial time, the authors
propose a learning technique that produces an equivalent, reduced finite state
machine. In contrast, our work relies on the AAlergia algorithm and assumes
that the input data is generated from an LMC. Peled et al. propose to combine
model checking, testing, and learning to automatically check properties of sys-
tems whose structure is unknown [20]. This paper motivates black-box checking
where a user performs acceptance tests and does not have access to the design,

nor to the internal structure of the system. The authors, however, conclude that
the complexity of their algorithms could be reduced if an abstract model of the
system would be available. Additionally, the authors pointed out the need to
take into account the property of interest to tackle verification complexity.

Among the works aiming to improve SMC applicability, we mention Sen et
al. SMC algorithm for black-box systems [24]. In this work, systems are assumed
to be uncontrolled, that is, traces can not be generated on demand. Hence, the
approach cannot guarantee a correct answer within required error bounds. It
computes instead a p-value as a confidence measure. While our approach is not
making such an assumption, it also uses a pre-generated set of traces to learn
an abstract model which is given as input to SMC. In contrast, [24] uses the
pre-generated traces as direct input to their SMC algorithm. This raises the
confidence issue but makes it faster since no learning is performed.

6 Conclusion

Reducing the SMC time of a given LTL property on a large stochastic system is
the primary benefit of our abstraction approach. This gain is achieved through
the combined use of projection on traces and learning. Projection is performed
by considering the support of the property of interest, that is, the set of symbols
explicitly appearing in that property. The approach could be instantiated with
any learning algorithm. Although, this must respect the conditions discussed
earlier to produce accurate models preserving the probability of the property
under verification. Experimental results show that (1) verifying the properties
of interest on the abstract model is faster than the original one, and that (2)
the estimation of the probability of satisfying these properties is accurate with
respect to the one obtained on the original system.

The proposed projection definition is currently quite simple. It allowed us to
instantiate our methodology and to implement it for validation. As future work,
we plan to improve it such that to obtain coarser abstractions, yet preserving
the probability of the underlying property (as opposed to a class of properties
currently). This could be potentially achieved by taking into account the LTL
operators semantics. We shall also apply the approach to other real-life systems
and consider using other algorithms able to learn non-deterministic models. Fur-
thermore, our proposed approach is applicable to discrete stochastic systems. An
interesting direction to investigate is its extension to continuous systems, such
as continuous time Markov chains [23] or probabilistic timed automata.

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

2. A. Basu, S. Bensalem, M. Bozga, P. Bourgos, M. Maheshwari, and J. Sifakis.
Component assemblies in the context of manycore. In FMCO’11, pages 314–333.

3. S. Bensalem, M. Bozga, B. Delahaye, C. Jégourel, A. Legay, and A. Nouri. Statis-
tical Model Checking QoS Properties of Systems with SBIP. In ISoLA (1), pages
327–341, 2012.

4. S. Bensalem, B. Delahaye, and A. Legay. Statistical model checking: Present and
future. In RV, volume 6418 of LNCS. Springer, 2010.

5. P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen, A. Legay,
and Z. Wang. Uppaal-smc: Statistical model checking for priced timed automata.
In QAPL’12, pages 1–16, 2012.

6. R. C. Carrasco and J. Oncina. Learning Stochastic Regular Grammars by Means
of a State Merging Method. In ICGI, pages 139–152, 1994.

7. C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.

8. C. de la Higuera and J. Oncina. Identification with Probability One of Stochastic
Deterministic Linear Languages. In ALT, pages 247–258, 2003.

9. C. de la Higuera, J. Oncina, and E. Vidal. Identification of DFA: data-dependent
vs data-independent algorithms. In ICGI, pages 313–325, 1996.

10. F. Denis, Y. Esposito, and A. Habrard. Learning rational stochastic languages.
COLT’06, 2006.

11. R. Grosu and S. A. Smolka. Monte carlo model checking. In TACAS, volume 3440
of LNCS, pages 271–286. Springer, 2005.

12. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Proba-
bilistic Model Checking. In VMCAI, pages 73–84, 2004.

13. T. Herman. Probabilistic self-stabilization. Information Processing Letters,
35(2):63–67, 1990.

14. W. Hoeffding. Probability inequalities. Journal of the American Statistical Asso-
ciation, 58:13–30, 1963.

15. C. Jégourel, A. Legay, and S. Sedwards. A platform for high performance statistical
model checking - plasma. In TACAS, LNCS, pages 498–503, 2012.

16. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: verification of probabilistic
real-time systems. CAV, pages 585–591, 2011.

17. S. Laplante, R. Lassaigne, F. Magniez, S. Peyronnet, and M. de Rougemont. Prob-
abilistic abstraction for model checking: An approach based on property testing.
ACM TCS, 8(4), 2007.

18. M. Leucker. Learning Meets Verification. In FMCO, pages 127–151, 2006.
19. H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen. Learning

Probabilistic Automata for Model Checking. In QEST, pages 111–120, 2011.
20. D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. J. Autom. Lang.

Comb., 7(2):225–246, Nov. 2001.
21. J. M. Pena and A. L. Oliveira. A new algorithm for exact reduction of incompletely

specified finite state machines. TCAD, 18(11):1619–1632, 2006.
22. D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic proba-

bilistic finite automata. COLT, pages 31–40, 1995.
23. K. Sen, M. Viswanathan, and G. Agha. Learning continuous time markov chains

from sample executions. In QEST, pages 146–155, 2004.
24. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box

probabilistic systems. In CAV, LNCS 3114, pages 202–215. Springer, 2004.
25. A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis,

Berkeley, CA, USA, 1994. UMI Order No. GAX95-29515.
26. S. Verwer, R. Eyraud, and C. de la Higuera. Results of the pautomac probabilistic

automaton learning competition. In ICGI, pages 243–248, 2012.
27. H. L. S. Younes. Verification and Planning for Stochastic Processes with Asyn-

chronous Events. PhD thesis, Carnegie Mellon, 2005.

