
HAL Id: hal-01087693
https://hal.inria.fr/hal-01087693

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Clustering Based on Mixing Time of Random
Walks

Konstantin Avrachenkov, Mahmoud El Chamie, Giovanni Neglia

To cite this version:
Konstantin Avrachenkov, Mahmoud El Chamie, Giovanni Neglia. Graph Clustering Based on Mixing
Time of Random Walks. IEEE International Conference on Communications (ICC 2014), Jun 2014,
Sydney, Australia. pp.4089-4094, �10.1109/ICC.2014.6883961�. �hal-01087693�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49577983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01087693
https://hal.archives-ouvertes.fr

Graph Clustering Based on Mixing Time of Random Walks∗

Konstantin Avrachenkov Mahmoud El Chamie

INRIA Sophia Antipolis - Méditerranée

2004 Route des Lucioles, B.P. 93

06902 Sophia Antipolis, France

{konstantin.avratchenkov, mahmoud.el chamie, giovanni.neglia }@inria.fr

Giovanni Neglia

Abstract—Clustering of a graph is the task of grouping its
nodes in such a way that the nodes within the same cluster are
well connected, but they are less connected to nodes in different
clusters. In this paper we propose a clustering metric based
on the random walks’ properties to evaluate the quality of a
graph clustering. We also propose a randomized algorithm that
identifies a locally optimal clustering of the graph according to
the metric defined. The algorithm is intrinsically distributed and
asynchronous. If the graph represents an actual network where
nodes have computing capabilities, each node can determine its
own cluster relying only on local communications. We show that
the size of clusters can be adapted to the available processing
capabilities to reduce the algorithm’s complexity.

I. INTRODUCTION

A community of nodes (or a cluster of nodes) in a network

is a group of vertices that are well connected to each other,

but are less connected with the remaining part of the network.

Detecting clusters in networks has many applications. Commu-

nities in social networks are formed by people having common

interest. Clusters in the web graph can group pages with

similar topics. E-commerce, classification, computer vision,

bioinformatics, and machine learning are only few areas of

application of network clustering.

Comparing different possible graph clustering outputs and

selecting the best outcome are carried out by introducing a

quality metric that serves as an objective function. There is

still no consensus in the literature on which quality metric

for graph clustering is the best one. One of the most used

metrics is the modularity [1] which gives a score to the cluster

by comparing the number of edges falling inside the clusters

with the number of edges of a random graph having similar

characteristic as the original one. Although the modularity

is widely used in applications, it is shown that it cannot

distinguish small clusters having links of order O(
√
m) where

m is the total number of links [2]. The silhouette index [3] uses

distances between the nodes presented in the cluster and those

outside it, its drawback being its high computational cost as it

requires to compute the shortest path between all node pairs.

Another approach [4] evaluates a clustering score by using

the concept of inter-cluster conductance, but it ignores internal

cluster density. Some graph partitioning algorithms based on

PageRank vectors of a graph have been proposed in [5] to

∗This work has been partially supported by the European Commission
within the framework of the CONGAS project FP7-ICT-2011-8-317672.
The authors are given in alphabetical order.

find a cut with a certain conductance in the graph. All these

metrics turn out to be biased toward large communities [6].

Many practical algorithms have been proposed as hierarchical

clustering [7], Markov clustering [8], bisecting K-means, and

spectral clustering [4]. Their drawback is that they are global

clustering methods which require as input the entire graph to

calculate the clustering. Moreover their output is biased toward

equal size clusters (so small communities tend to disappear

using these algorithms). A complete survey of fitness measures

and clustering is given in [9].

In this paper, we introduce a new fitness measure for eval-

uating a clustering algorithm based on random walks’ proper-

ties. Roughly speaking, our fitness index is higher the faster a

random walk constrained to the cluster reaches its stationary

distribution and the slower it escapes from the cluster in the

unconstrained case. Both effects can be quantified considering

the eigenvalues of appropriate matrices. Beside introducing

this new metric, we propose a randomized algorithm for

clustering the network accordingly. The algorithm is local

because it relies only on a partial view of the entire network. In

particular, if the graph represents the topology of a network

where nodes have computing capabilities, the algorithm can

run in parallel at each node without the need of a central

unit. Being local, clusters can be formed in parallel and the

computation complexity is distributed among clusters. The

algorithm can also find small clusters that are more difficult

to be detected by the global clustering methods. We present

in the next section the notation used across the paper.

II. NOTATION

Let G = (V,E) be an undirected unweighted connected
graph withoug self-loops, where V = {1, . . . n} is the set of
vertices and E is the set of m = |E| edges. Let dG(i) =
|{j ∈ V, (i, j) ∈ E}| be the degree of a node i in G, DG

be a diagonal matrix having on its diagonal the degree of the

nodes in G and let AG be the adjacency matrix of the graph

G where aij = 1 if (i, j) ∈ E, and aij = 0 otherwise. For
any set S ⊆ V , let DG(S) (resp. AG(S)) be the sub-matrix of
DG (resp. AG) obtained considering only rows and columns

corresponding to the vertices in S. Let G(S) = (S,E(S))
be the subgraph induced by S ⊆ V where E(S) = {(i, j) ∈
E|i, j ∈ S}. Observe that in generalDG(S) %= DG(S) because

DG(S) contains the degree of nodes in the original graph G
which are different from their degrees in the induced subgraph

G(S). Conversely, AG(S) = AG(S) as the adjacency matrix

is not changed. If P is a substochastic matrix (a square matrix

with nonnegative entries so that every row adds up to at most

1), let σ(P) = |λ1(P)| be the largest eigenvalue in module of
P . When P is stochastic, let s(P) = 1−|λ2(P)| ∈ [0, 1] be its
spectral gap1 where |λ2(P)| is the second largest eigenvalue
in module of P . Finally, I is the identity matrix.
A clustering CG of a graph G is a partition of the vertices

such that CG = {C1, . . . Ck} where C1 ∪ ... ∪ Ck = V and

Cu ∩ Cv = φ for all clusters Cu and Cv in CG. Let C(i) =
{Cu ∈ CG; i ∈ Cu} be the cluster that contains node i. Let
f : V → R be a scoring function for the nodes, define a cluster

score f(Cu) =
∑

i∈Cu
f(i), and a clustering algorithm score

f(CG) =
∑k

u=1 f(Cu) =
∑n

i=1 f(i).

III. THE RANDOM WALK FITNESS MEASURE

In this section, we introduce a new scoring function f(.)
that can serve as a quality measure for a clustering algorithm.

A good clustering algorithm identifies clusters that are well

connected internally, but weakly connected with the rest of

the network. Inspired by this intuitive definition, the function

f should have the following properties:

1) A cluster whose induced subgraph is disconnected

should receive the minimum score.

2) A clique graph clustered as a single cluster should have

the highest score among all clusterings for graphs with

the same number of nodes.

3) For a given clustering, adding links within clusters

should increase the score while removing them should

only decrease the score.

4) For a given clustering, adding links between different

clusters should decrease the score while removing them

should increase the score.

5) Within a cluster, the higher the degree of a node, the

more it contributes to the score.

6) Boundary nodes in a cluster that have links to other

clusters have less score than internal nodes.

Given a graph clustering CG = {C1, ..., Ck}, we define the
score of a vertex i ∈ V is given by

f(i) = αi × sC(i) × σC(i),

where sC(i) quantifies how fast a random walk on G(C(i))
(and then constrained to the cluster C(i)) reaches its steady
state distribution, σC(i) corresponds to the probability that

a random walk on the whole graph G that starts inside the

cluster C(i) keeps staying inside the cluster at a following
step (see below for a more formal definition), and finally

αi differentiates among different nodes in the same cluster

according to the last two properties. Given this definition of

the scoring function, the score of cluster Cu is:

f(Cu) =

(

∑

i∈Cu

αi

)

sCu
σCu

.

1If P is a scalar, we consider s(P) = 1 by convention.

Below we define formally the different quantities αi, sCu
and

σCu
and show that f(.) satisfies the required properties of a

good clustering function.

First, we define sCu
as

sCu
! s

(

(DG(Cu) + I)−1(AG(Cu) + I)
)

,

that is the spectral gap of the transition probability matrix of

a simple random walk on the subgraph induced by the cluster

nodes Cu adding self-loops [10]. This value ranges between 0
for a disconnected graph and 1 for a fully connected network
(a clique). Given a random walk starting at time 0 from a

node in the cluster, the difference between the probability

distribution of the position of the random walker at time t
and its stationary distribution can be bounded by A(1−sCu

)t,
with A being an appropriate constant. Then the larger sCu

, the

faster the distribution converges to its stationary distribution,

i.e. the faster the random walk mixes. The spectral gap of the

transition probability matrix is then also a measure of how well

connected the network within a cluster is. The presence of sCu

as a multiplicative factor in the scoring function guarantees

that the first two properties are satisfied. Moreover, due to the

interlacing property of eigenvalues [11], adding more links

between the nodes of the same cluster usually increases the

spectral gap while removing links decreases it, which supports

the third property of a good clustering function.

Second, we define

σCu
! σ

(

DG(Cu)
−1AG(Cu)

)

.

Given that DG(Cu) considers the degrees of the nodes
2 in the

original graph G, Q = DG(Cu)
−1AG(Cu) is a substochastic

matrix. If we consider the transition probability matrix of

a random walk on the whole graph G, Q is the submatrix

obtained by extracting only the rows and the columns cor-

responding to the nodes in Cu. Given a random walk on

G starting at a node i in Cu, and assuming that Q is a

primitive matrix, it is possible to show [12] that the conditional

probability distribution given that the random walk does not

exit from Cu converges to π ∈ [0, 1]|Cu| (we consider only

the probabilities for the nodes in Cu, for all the other nodes

the probability is clearly 0 under the conditioning event), that

satisfies the following equation πTQ = πTσ(Q). Then σ(Q)
can be interpreted as the probability that at each step the

random walker does not exit from Cu, given that it has already

spent a long time in Cu
3. The term σCu

quantifies then the

effect of outer links connecting the cluster Cu to other clusters.

Obviously, it ranges between 0 and 1. It is equal to 1 when
there is no link between nodes in Cu and nodes in V \Cu and

then in particular when Cu = V since the graph is connected.

It is equal to 0 if the subgraph G(Cu) has no links. Adding
links between clusters can only decrease σ while removing

2The inverse DG(Cu)−1 always exists because DG(Cu) is a diagonal
matrix having strictly positive diagonal values (dG(i) ≥ 1 because G is
connected).
3Otherwise if we consider that the random walk initial position in Cu

follows the probability distribution π, σ(Q) is simply the probability that the
random walker does not exit from Cu at each step.

them can only increase it. The factor σCu
guarantees that the

fourth property is satisfied.

Finally, αi represents the contribution of a node to the final

score depending on its connectivity to other clusters. To satisfy

the last two properties required for the function f , the value
αi is chosen as follows:

αi !
dini

1 + douti

,

where dini = dG(C(i))(i) is the number of nodes in C(i)
connected to i and douti = dG(i)−dini is the number of nodes

in V \C(i) connected to i.

IV. CLUSTERING ALGORITHM

The function f presented in the previous section gives

a scoring mechanism to evaluate a clustering algorithm. In

particular, the optimal clustering algorithm can be written as

follows:

Argmax
CG={C1,...,Ck}

f(CG). (1)

Let C∗
G be the solution of (1) and f∗ = f(C∗

G) be its
value. The optimal clustering and its value are computationally

difficult to find, so we will give first some bounds on the

optimal value f∗ and we will propose a local search clus-

tering algorithm that can be implemented with an acceptable

complexity and in a distributed way.

A. Bounds on f∗

Proposition 1. For the clustering optimization problem (1),

the following bounds hold for the optimal value f∗:

2×m× sV ≤ f∗ ≤ 2×m, (2)

where sV is the spectral gap of the simple random walk on

all the graph G (sV = 1− λ2

(

(D + I)−1(A+ I)
)

).

Proof: For any clustering CG = {C1, ..., Ck} of the graph
G we have,

f(CG) =
∑

i

f(i) =
∑

i

dini
1 + douti

sC(i)σC(i)

≤
∑

i

dini
1 + douti

≤
∑

i

dini ≤
∑

i

dG(i)

= 2×m,

where m is the number of links in the graph G and the first

inequality follows from both sCu
and σCu

being at most equal

to one. From this upper bound, it follows that f(C∗
G) ≤ 2×m.

The optimal clustering has a value greater than any possible

clustering. Taking the graph as one cluster CG = {V } is a valid
clustering of G. Thus, a lower bound on the optimal value is
given as follows:

f∗ ≥ f(CG = {V }) =
∑

i

dini × sV × 1 = 2×m× sV ,

where sV is the spectral gap of the simple random walk on

all the graph G (sV = 1− λ2

(

(D + I)−1(A+ I)
)

).

We observe that both of the bounds are tight for the fully

connected graph (let us denote it Kn). Indeed nodes in Kn

are grouped in a single cluster (CG = V) and f(V) = 2m
since douti = 0 for any vertex i and sV = σV = 1.
Due to the following proposition, the subgraph induced by

a cluster of the optimal clustering is connected as long as it

has at least an internal link.

Proposition 2. Let C∗
G = {C1, ..., Ck} be an optimal cluster-

ing for a graph G, then for any Cu ∈ C∗
G, if the subgraph

G(Cu) has at least one link, it is connected.

Proof: We sketch a proof of the proposition by contra-

diction. Suppose there exists a graph whose optimal clustering

C∗
G outputs a cluster Cu such that G(Cu) has at least one
link, but it is disconnected. It follows that f(Cu) = 0 since
sCu

= 0 for disconnected graphs. However, there is a subset of
vertices H ⊂ Cu such that |H | ≥ 2 and G(H) is connected
(because there is at least one link in G(Cu)) and it holds
f(H) > 0. Now if we replace Cu with two clusters H and

Cu − H , the new clustering has a strictly higher value than

C∗
G (contradiction).

B. Local Search Clustering Algorithm

The optimal clustering can be computationally costly be-

cause calculating the spectral gap of a random walks has

complexityO(n3). In this section, we present a local clustering
algorithm that allows the clustering to be done in a distributed

way. The algorithm applies the generic local search approach.

Let X be the set of all possible clusterings of graph G. We
define two cluster x and y belonging to X to be neighbors if

and only if they differ only for a single vertex that belongs to

two different clusters in x and in y. A local search algorithm
for clustering operates as follows:

1) Let x be some initial clustering;
2) While there is a neighboring G-clustering y with higher
score value (f(y) > f(x)), set x := y.

3) Return the final (locally optimal) solution x.

The algorithm is an iterative one. In our local clustering

algorithm we follow the above steps but we add some ran-

domness in choosing the neighbor in step two. In fact, at

every iteration, a cluster, say it Cu, is chosen uniformly at

random. This random cluster selects one of the outgoing links

uniformly at random and proposes to the endpoint node j in
the adjacent cluster, to disconnect from that cluster and to

join Cu. If joining Cu can increase the value of the clustering

then j will accept the proposal, otherwise it will reject it and
no change in the clustering will take place. In particular, a

detailed description of the local clustering algorithm is given

in Algorithm 1. The algorithm runs at most for Tstop iterations,

but it can easily changed so that it stops after a given number

of consecutive iterations without any change of the clustering.

Algorithm 1 presents some interesting features. In fact, at

every iteration, only two clusters are involved in the algorithm,

while the others are idle. It is then simple to distribute

the algorithm among the different clusters that can work

asynchronously and in parallel as follows: at any time an

Algorithm 1 Local Clustering Algorithm

1: G = (V,E) where V = 1...n and E = 1...m.
2: Initial clustering C0

G = {C1, ..., Cn} where Ci = {i}.
3: E+

Cu
= {(i, j) ∈ E|i ∈ Cu, j /∈ Cu} is the set of Cu’s

outgoing links.

4: for k = 1 : Tstop do

5: Ck
G = Ck−1

G ;

6: let Cu be a cluster chosen uniformly at random from

Ck
G;

7: let (i, j) be a link chosen uniformly at random from

E+
Cu
;

8: let Cv be the cluster containing j (i.e. Cv = C(j));
9: Cu proposes to j to join (if it didn’t yet propose to j

after the last change within Cu occurred) ;

10: if f(Cu) + f(Cv) < f(Cu ∪ {j}) + f(Cv\{j}) then
11: j accepts the proposal;
12: Cu ← Cu ∪ {j};
13: Cv ← Cv\{j};
14: if C(j) = φ then
15: Remove Cv from Ck

G;

16: end if

17: else

18: j rejects the proposal;
19: end if

20: k ← k + 1;
21: If all clusters don’t have any more proposals break;

22: end for

23: return Ck−1
G

inactive cluster can wake up and can propose to a node from

another inactive cluster to join it, both clusters will become

active until acceptance or rejection of the proposal. Several

matching clusters can be active at the same time and the

computations is distributed in a parallel way. Finally, being

that the algorithm randomized, it is possible to run it multiple

times and then select the best solution across all the different

runs.

Moreover, at every iteration, a cluster can increase by max-

imum one node. The complexity of the algorithm originates

from calculating the function f which in its turn depends

on the number of nodes in the cluster. So depending on the

available computational power, we can restrict the maximum

number of nodes in a cluster. For example, if the calculation of

the spectral gap is affordable for graphs with only few hundred

nodes, then clusters reaching this limit will stop initiating the

algorithm and stop proposing to other nodes to join.

In addition, the local clustering algorithm performs well on

clique-like graphs. The following simple lemma will prepare

the result:

Lemma 1. Let g : A → R be a scalar strongly convex

function, then for any x and y such that x, x+1, y, y− 1 ∈ A

and x ≥ y, we have:

g(x+ 1) + g(y − 1) > g(x) + g(y).

Proof: Let h(x) = g(x + 1) − g(x), since g is strongly
convex, then g′(x) is strictly increasing, so

x+ 1 > x,

⇒ g′(x+ 1) > g′(x),

⇒ h′(x) > 0, so h(x) is strictly increasing,

and adding that x ≥ y we can write:

x > y − 1,

⇒ h(x) > h(y − 1),

⇒ g(x+ 1)− g(x) > g(y)− g(y − 1),

and the lemma follows.

Proposition 3. The local clustering Algorithm 1 calculates

the optimal clustering for a clique graph Kn in a finite

number of iterations almost surely if Tstop is large enough,

i.e., Algorithm 1 on Kn outputs a single cluster CG = {V }.
Proof: First note that the optimal clustering on a clique

Kn is C∗
G = {V } since f(CG = {V }) = 2m that is an upper

bound on f∗. It remains to prove that the local algorithm

terminates with one cluster of all nodes. Let Cu be any cluster

in this graph, and let nu = |Cu| be its number of vertices, so
sCu

= 1 since the subgraph induced by Cu is also a clique,

and σCu
= nu−1

n−1 since the matrix DG(Cu)
−1AG(Cu) has

dimensions nu×nu and any of its elements has the value
1

n−1
except the diagonal elements that are equal to 0, therefore

f(Cu) =

(

∑

i∈Cu

dini
1 + douti

)

sCu
σCu

=

(

∑

i∈Cu

nu − 1

1 + n− nu

)

× 1× nu − 1

n− 1

=
nu(nu − 1)2

(n− 1)(n− nu + 1)
,

and it depends only on the size of the cluster. Let g(nu) =
f(Cu), since g(nu) is strongly convex in nu when nu ∈ [1, n],
then according to the algorithm and due to Lemma 1, any node

j (that belongs to the cluster Cv) receiving a proposal from a

cluster Cu will accept this proposal if |Cu| ≥ |Cv| and will
reject otherwise due to the following equation,

f(Cu ∪ {j}) + f(Cv\{j}) = g(|Cu|+ 1) + g(|Cv| − 1)
(3)

> g(|Cu|) + g(|Cv|) (4)

= f(Cu) + f(Cv). (5)

The transition from (3) to (4) is due to Lemma 1. Therefore,

any proposal from the cluster with largest number of vertices

to other nodes is accepted (let Ck
max be the cluster with

maximum number of vertices at iteration k), |Ck
max| cannot

decrease while it can increase by one with a probability larger

Fig. 1. The network of social relationship between the members of the
Karate Club. After a split, the members represented by a square belongs to
one sub-club and the members represented by a circle to the other sub-club
(the image is taken from [1]).

than 1/n. The algorithm terminates when |Ck
max| = n, so with

probability 1 there is an iteration K such that all the nodes

form a single cluster and the algorithm terminates. It is easy

to check that E(K) ≤ n2.

V. NUMERICAL EXAMPLES

In this part, we study the performance of our local clustering

algorithm. We consider real world networks whose ground

truth is known. We apply our algorithm (we perform multiple

independent runs of the Algorithm 1 and select the best local

maximum) on these networks and compare the algorithm’s

results with actual clustering. The results are shown using the

graph visualization platform Gephi [13]. We also compare our

results with the built-in modularity clustering algorithm [14]

in Gephi. Our first example is the Zachary’s Karate Club [15],

it is a social network of friendships between 34 members of

a karate club at a US university in the 70s. Fig. 1 shows the

partition of the karate club.

We apply our local clustering algorithm to the karate club

network and the results are given in Fig. 2. Starting from

34 different clusters as initial input (every node is considered

a cluster) and based on the connection and the spectral gap

of the clusters, our algorithm identifies 3 clusters (one more

than the ground truth). Moreover the two nodes 31 and 9

are not assigned to the correct cluster. Notice that this is

just a local maximum for the optimization problem. For

comparison, Fig. 3 shows the results of clustering using the

modularity clustering algorithm, we see that it identifies even

more clusters than our method (4) and node 10 is not correctly

assigned in comparison to the ground truth.

The other example we consider is the network of American

College football teams in Division I during Fall 2000 regular

season [16]. Division I was made up by 115 teams divided

in 12 conferences. A link in the graph corresponds to a game

played between the two teams. Teams in the same conference

are more likely to play games than teams from different

conferences. Fig. 4 shows the teams grouped according to

the conference they belong to. While most of conferences

have good clustering properties (good connections inside the

clusters and week connections among them), there are some

conferences for which this is not true. For conference 1 for

example there is only one game (one link) among its members,

Fig. 2. Clustering the karate club by applying Algorithm 1.

Fig. 3. Clustering the karate club by applying modularity algorithm.

and the clubs have played most of their games against teams in

different conferences. In those cases we expect the clustering

algorithm to classify the nodes into different clusters.

We applied our local clustering algorithm to this network.

The results are shown in Fig. 5. The local clustering algorithm

gives 14 clusters, and we see that the algorithm was able to

find correctly most of the clusters. In particular, the difference

























Fig. 4. The ground truth of the conferences (clusters) in the American
College football network.

Fig. 5. Clustering the American College football network by applying
Algorithm 1. Nodes with the same color are classified as one cluster (the
algorithm terminates with 14 clusters, 2 more than the ground truth).

between the ground truth and the spectral gap clustering is

as follows: cluster 7 was divided into two clusters, cluster 12

was also divided into two clusters. Even though conference 1

is very difficult to identify, our algorithm clustered together

the only two connected nodes and clustered the disconnected

nodes into different clusters. In total there are only 6 nodes

that are not well clustered4(out of the 115 nodes).

We also present the results of clustering using the mod-

ularity algorithm of [14]. This allows us to compare the

performance with other clustering algorithm and to check if

the errors were due to failure of the algorithm or due to the

ground truth graph structure. In the Fig. 6, the modularity

algorithm classified the network into only 10 clusters (2 less

clusters than the ground truth). Cluster 7 nodes were divided

between two already existing clusters. Cluster 1 disappeared.

Note that the same 6 nodes that were miss-classified by our

algorithm were also here miss-classified which suggests that

the errors are due to the structure but not to the algorithm.

VI. CONCLUSION

In this paper we proposed a new clustering metric based

on the spectral gap of a random walk on clusters. We also

proposed a randomized local clustering algorithm that outputs

a locally optimal clustering of the graph. The algorithm can be

distributed in a network and clusters are iteratively updated on

the basis of local communication and processing. One of the

strengths of our algorithm is its ability to detect small clusters.

The complexity can also be adapted to available processing

capabilities.

4The bad clustered nodes by Algorithm 1 in comparison to the ground truth
are: 3 nodes in cluster 1, 2 nodes in cluster 9, and 1 node in cluster 5 which
gives a total of 6 error nodes (without taken into consideration the split of
the clusters 7 and 12).

Fig. 6. Clustering the American College football network by applying the
modularity algorithm. Nodes with the same color are classified as one cluster
(the algorithm terminates with 10 clusters).

REFERENCES

[1] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, p. 026113, Feb 2004.

[2] S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences, Jan. 2007.

[3] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2005.

[4] R. Kannan, S. Vempala, and A. Veta, “On clusterings-good, bad and
spectral,” in Proceedings of the 41st Annual Symposium on Foundations

of Computer Science, ser. FOCS, Washington, DC, USA, 2000, p. 367.
[5] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using

pagerank vectors,” in Foundations of Computer Science, 2006. FOCS
’06. 47th Annual IEEE Symposium on, 2006, pp. 475–486.

[6] H. Almeida, D. Guedes, W. Meira, and M. J. Zaki, “Is there a best
quality metric for graph clusters?” in Proceedings of the 2011 ECML

PKDD’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 44–59.
[7] M. Krivánek and J. Morávek, “Np-hard problems in hierarchical-tree

clustering,” Acta Informatica, vol. 23, no. 3, pp. 311–323, 1986.
[8] S. Van Dongen, “Graph clustering via a discrete uncoupling process,”

SIAM J. Matrix Anal. Appl., vol. 30, no. 1, pp. 121–141, Feb. 2008.
[9] S. E. Schaeffer, “Survey: Graph clustering,” Comput. Sci. Rev., vol. 1,

no. 1, pp. 27–64, Aug. 2007.
[10] H. Landau and A. Odlyzko, “Bounds for eigenvalues of certain stochastic

matrices,” Linear Algebra and its App., vol. 38, no. 0, pp. 5 – 15, 1981.
[11] G. Chen, G. Davis, F. Hall, Z. Li, K. Patel, and M. Stewart, “An

interlacing result on normalized laplacians,” SIAM J. Discret. Math.,
vol. 18, no. 2, pp. 353–361, Feb. 2005.

[12] J. N. Darroch and E. Seneta, “On quasi-stationary distributions in
absorbing discrete-time finite markov chains,” Journal of Applied Prob-
ability, vol. 2, no. 1, pp. pp. 88–100, 1965.

[13] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” in International

AAAI Conference on Weblogs and Social Media, 2009.
[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.
[15] W. Zachary, “An information flow model for conflict and fission in small

groups,” J. of Anthropological Research, vol. 33, pp. 452–473, 1977.
[16] M. Girvan and M. E. J. Newman, “Community structure in social and

biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

