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Abstract

Semicommutation relations are simple rewriting relation on finite words

using rules of the form ab → ba. In this paper we present how to use An-

gluin style machine learning algorithms to compute the image of regular

language by the transitive closure of a semicommutation relation.

1 Introduction

Semicommutation relations are simple rewriting relations on finite words using
rules of the form ab → ba. Computing the image of a language by the transitive
closure by a semicommutation relation is a challenging problem connected to
regular-model-checking [6, 7, 10], trace theory issues [28, 21, 22, 17] or language
theory [12, 15, 16, 18]. Several works in the literature investigate the problem of
pointing out classes of regular languages whose closure under semicommutation
are still regular [6, 7, 10, 17, 16, 1].

In this paper we address the general problem of computing the closure of
a regular language under a semicommutation relation using a machine learn-
ing approach. Indeed, several recent works show that using a machine learning
algorithm is frequently an efficient pratical way to compute unkown regular lan-
guages, particularly in a software analysis context (test, verification,...); see, for
example, [31, 5, 3, 26, 8, 30]. General tool implementing some learning algo-
rithms have been developped [4, 19] for this purpose. Online machine learning
algorithms require an oracle (providing counter-examples) to work. The main
contribution of this paper is to develop such an oracle for the computation
of closures under semicommutation relations and to experiment it on several
examples.

The paper is organised as follows: the useful formal background is defined
in Section 1.1. Next, Section 1.2 presents the online machine learning approach
for computing semicommutations closures. Section 2 is dedicated to the main
contributions of the article by presenting the algorithms defining an oracle. Sec-
tion 3 presents experimental results on several classes of examples. Conclusion
and future works are exposed in Section 4.
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1.1 Formal Background

The reader is assumed to be familiar with basic language theory notions [29].
In this paper, Σ denotes a finite alphabet and Σ∗ the set of finite words over Σ.
A language is a subset of Σ∗. The cardinal of a finite set X is denoted |X |.

A finite automaton on Σ is a tuple (Q,Σ, E, I, F ), where Q is a finite set of
states, Σ is a finite alphabet, E ⊆ Q× Σ×Q is the set of transitions, I ⊆ Q is
the set of initial states and F ⊆ Q is the set of final states. A finite automaton
is determinisitic if there is a unique initial state and if for each state p and each
letter a there is at most one state q such that (p, a, q) ∈ E. A successful path
in a finite automaton is a sequence (p0, a1, q1), . . . , (pn−1, an, qn) of transitions
such that p0 is an initial state, qn is a final state and for every 1 ≤ i ≤ n − 1,
qi = pi. The word a1 . . . an is called the label of the path. A word is accepted
by a finite automaton if it is the label of a successful path. The set of accepted
(or recognized) words of an automaton A is denoted L(A).

A letter-to-letter transducer or simply a transducer is a tuple (Q,Σ, E, I, F ),
where Q, Σ, I, F are defined as for finite automata. The set E is a subset of Q×
(Σ×Σ)×Q. Successful paths are defined as for finite automata but their labels
are of the form (a1, b1) . . . (an, bn), which is also denoted (a1 . . . an, b1 . . . bn).
Therefore a transducer accepts a subset of Σ∗ × Σ∗, which is a relation on Σ∗.
If T is a transducer and A a finite automaton, one can construct in polynomial
time (by a product) a finite automaton T (A) accepting the set of words w such
that there exists a word u ∈ L(A) satisfying that (u,w) is accepted by T [29].

A semicommuation relation I is a subset of Σ × Σ such that for every a,
(a, a) /∈ I. Each semicommutation relation I induces a relation RI on Σ∗

defined by (u, v) ∈ RI iff there exists two words x, y and two letters a, b such
that u = xaby and v = xbay and (a, b) ∈ I. The reflexive-transitive closure of
any relation R on Σ∗ is denoted R∗. For any language L on Σ, any relation
R, R(L) denotes the set of words v such that there exists u ∈ L satisfying
(u, v) ∈ R. A semicommutation relation is antisymetric if there is no a, b such
that (a, b) ∈ I and (b, a) ∈ I.

1.2 Machine Learning for Computing Closures under Semi-

commutation

There exists two main kinds of algorithms to learn regular languages: offline
algorithms working from sets of positive and negative examples [24, 11]; and
online algorithms based on an oracle guessing whether the learned language is
correct and providing counter-examples if not [2, 20, 27]. Our work is based on
the online approach, using the libalf tool [4] for the experiments.

The general working way of the online approach is depicted in Fig. 1 in
the context of our problem: the goal is to find a finite automaton K such that
L(K) = R∗

I
(L(A)). It is required to have an Oracle that can say if L(K) =

R∗
I
(L(A)). If this equality holds, K is returned and it’s finished. If not, the

oracle points out a counter-example u ∈ L(A) \L(K) ∪L(K) \L(A). With this
counter-example, the online algorithm produces a new K such that u is no more
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Figure 1: Online Machine Learning

a counter-example for L(K) = R∗
I
(L(A)) (if the equality still doesn’t hold). In

this paper, online algorithms are used in a blackbox way and we only address
the problem of developping an oracle. Testing if L(K) = R∗

I
(L(A)) is done using

the following result which is a particular case of a result of [14].

Theorem 1 Let L,K be languages on Σ and R an antisymetric semicommu-
tation relation. One has R∗(L) = K if and only if R(K) ∪ L = K.

Now the remaining questions to build an oracle are:

1. How to check whether R∗
I
(L(A)) = L(K), when RI is not antisymetric?

2. How to efficiently provides u ∈ L(A)∆L(K) if K is not the good one?

3. How the approach practically works?

Section 2 is dedicated to the presentation of some algorithmst to answer this
question. The overall approach with the proposed oracle is experimented in
Section 3.

2 Oracle for Learning Semicommutation Closures

2.1 General Scheme for Antisymetric Relations

Algorithm 1 is the oracle algorithm presented in a general way. Several algo-
rithmic issues raised in this description are solved in Sections 2.2 to 2.5. Notice
that testing inclusion or equality of regular languages, computing intersection
and union of regular languages are done using classical construction of finite
automata [29].
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Input If RI(L(A)) ⊆ L(A), then L(A) is RI -closed and R∗
I
(L(A)) = L(A): the

problem of computing R∗
I
(L(A)) is solved. Therefore one can assume,

without loss of generality, that RI(L(A)) 6⊆ L(A).

Lines 1-3 For an antisymetric relation I, checking whether the conjecture is correct
(i.e. R∗

I
(L(A)) = L(K)?) is solved using Theorem 1 with L = L(A) and

K = L(K). The way to construct a finite automaton recognizing RI(L(K))
will be described in Section 2.3. Therefore, lines 1-3 of Algorithm 1 check
whether the conjecture is correct. In this case null is returned.

Algorithm 1 Oracle Algorithm (antisymetric relation)
Input: I an antisymetric semicommutation relation, A and K two finite au-

tomata such that RI(L(A)) 6⊆ L(A)
Output: null if R∗

I
(L(A)) = L(K), u ∈ R∗

I
(L(A))∆L(K) otherwise.

1: if RI(L(K)) ∪ L(A) = L(K) then

2: return null
3: end if

4: if L(A) 6⊆ L(K) then

5: return u ∈ L(A) \ L(K)
6: end if

7: if L(K) ⊆ L(A) then

8: return u ∈ RI(L(A)) \ L(A)
9: end if

10: if RI(L(K)) ⊆ L(K) then

11: return Search1(I,A,K)
12: else

13: return Search2(I,A,K)
14: end if

Lines 4-6 If R∗
I
(L(A)) 6= L(K), one first checks (line 4) whether L(A) 6⊆ L(K). If

this condition is satisfied, since L(A) ⊆ R∗
I
(L(A)), any u ∈ L(A) \ L(K)

is a counter-example in R∗
I
(L(A))∆L(K). Such a u is obtained using a

breadth-first search algorithm working on a finite automaton recognizing
L(A) ∩ L(K)c (note that any search algorithm can be used).

Lines 7-9 Now if L(K) ⊆ L(A), any u ∈ RI(L(A)) \ L(A) is in R∗
I
(L(A))∆L(K).

Since it is assume that RI(L(A)) 6⊆ L(A), such a u exists and can be also
found by a Breadth-first search algorithm working on a finite automaton
recognizing RI(L(A)) ∩ L(A)c (how to compute RI(L(A) is described in
Section 2.3).

Lines 10-14 To finish, it is tested (line 10) whether L(K) is RI -closed. Since L(A) ⊆
L(K) (line 4), if L(K) is RI -closed, then, by a direct induction, R∗

I
(L(A)) ⊆

L(K). The Algorithm 2, called Search1 and described in Section 2.2, re-
turns u ∈ L(K) \R∗

I
(L(A)).

4



Notice that the Search2 algorithm would be used directly at the first step
of the oracle, but since it has an ugly complexity, the described particular cases
(lines 5,8,11) are dedicated to simpler cases in order to speed up the procedure.

2.2 Searching Counter-Examples

When L(K) \ R∗(L) 6= ∅, Algorithm 2 (Search1) points out an element u of
L(K) \ R∗(L). This algorithm looks for a word of minimal length belonging
to L(K) \ R∗

I
(L) by a brute force approach. How to test whether u /∈ R∗

I
(L)

is described in Section 2.4. Enumerating the words in L(K) ∩ Σn can be done
by computing a finite automaton recognizing L(K) ∩ Σn. This automaton will
be acyclic since it recognizes a finite language. Notice that the automaton
recognizing L(K)∩Σn+1 can be construct from the one recognizing L(K)∩Σn,
reducing computation times.

Algorithm 2 Search1

Input: I an antisymetric semicommutation relation, A and K two finite au-
tomata such that L(K) \R∗

I
(L).

Output: u ∈ L(K) \R∗
I
(L(A)).

1: n=0
2: while true do

3: for u ∈ L(K) ∩ Σn do

4: if u /∈ R∗
I
(L) then

5: return u
6: end if

7: end for

8: n=n+1
9: end while

When L(K)∆R∗
I
(L) 6= ∅, Algorithm 2 (Search1) points out an element u

of L(K)∆R∗
I
(L). This is also a brute force approach looking for a counter-

example of the minimal length. Once again, all constructions in the algorithm
are classical but the computation of R∗

I
(u) (line 9) described in Section 2.4.

2.3 Computing RI(L(A))

Computing RI(L(A)) can be easily done using a transducer: RI is recignized
by a transducer. Consider for instance the automaton A1 depicted on Fig. 2
and the relation RI associated to I = {(a, b)}. A transducer recognizing RI is
depicted in Fig. 2. In general case, this transducer has |I|+2 states. Computing
a product of TRI

and A1 provides (after trimming) the automaton TRI
(A1)

accepting RI(L(A1)).
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Algorithm 3 Search2

Input: I an antisymetric semicommutation relation, A and K two finite au-
tomata such that L(K)∆R∗

I
(L) 6= ∅.

Output: u ∈ L(K)∆R∗
I
(L(A)) 6= ∅.

1: n=0
2: while true do

3: for u ∈ L(K) ∩ Σn do

4: if u /∈ R∗
I
(L) then

5: return u
6: end if

7: end for

8: for u ∈ L(A) ∩ Σn do

9: if R∗
I
(u) ∩ L(K)c 6= ∅ then

10: return v ∈ R∗
I
(u) ∩ L(K)c

11: end if

12: end for

13: n=n+1
14: end while

0 1

b

a

(a) A1

α β γ

(a | a), (b | b)(a | a), (b | b)

a | b b | a

(b) TRI

0, α 1, β

1, γb

a

b

(c) TRI
(A1)

Figure 2: Computing RI(L(A)).
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2.4 Testing whether u ∈ R
∗
I
(L(A))

Let I be a semicommutation relation and u ∈ Σ∗. One has u ∈ R∗
I
(L(A)) iff

(R−1

I
)∗(u) ∩ L(A) 6= ∅. Since (R−1

I
)∗(u) ⊆ Σ|u|, it is a finite set. Therefore

(R−1

I
)∗(u) can be calculated using finitely many time the algorithm of Sec-

tion 2.3. However, it is more efficient to use a saturation approach to compute
a finite automaton accepting (R−1

I
)∗(u).

2.5 Non antisymetric Relations

For non antisymetric I’s, there is no known criterion (as far as we know) to
check whether L(K) = R∗

I
(L(A)). In this case, let I1 and I2 be two antisymetric

semicommutation relations such that I = I1 ∪ I2. Let K1 = R∗
I1
(L(A)), K ′

1 =
R∗

I2
(K1), and for every n ≥ 2, Kn = R∗

I1
(K ′

n−1) and K ′
n
= R∗

I2
(Kn). Next, all

the Ki’s and K ′
i
’s are computed until reaching a fixed point using Algorithm 1.

Notice that it may be a non terminating computation, but if it terminates, the
fixed point is R∗

I
(L(A)).

2.6 Complexity Issues

Theoretical complexity of Algorithm 1 is exponential due to the brute force
approaches of Algorithms 2 and 3. However, in practice we may hope to find
quite short counter-examples. Computing intersections and unions of regular
languages can be done in polynomial by classical product based constructions.
Testing the inclusion (or the equality) of regular languages given by non deter-
ministic automata is PSPACE-complete, but several practically efficient algo-
rithms are known, as [13]. Inclusion and equality are polynomial time decidable
for deterministic automata using classical constructions.

3 Experiments

All the algorithms have been implemented in a Java tool and all the tests have
been performed on a personal computer Intel Core 2 Duo T7300 2.00GHz with
2 GBytes of memory, running on a Fedora distribution.

3.1 Partially Ordered Automata and Related Languages

All the reported test values of this section were obtained with |Σ| = 5 and
|I| = 6 (randomly generated for each test) and by generating 100 examples each
time.

A partially ordered automaton is a finite automaton in which there is no
simple loop of length greater or equal to 2: if (p1, a1, q1) . . . (pn, an, qn) is a
path such that p1 = qn, then all the pi’s and qi’s are equal. Automata A1 and
TRI

(A1) on Fig. 2 are partially ordered. An alphabetic pattern constraint, APC
for short, is a regular expression which is a finite union of expressions of the
form e1e2 . . . ek where ek is either a letter or of the form B∗ where B ⊆ Σ. For
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(a) Machine Learning (ms)

n 2 3 4 5 6 7
Gen1 2 (3+6) 3 (5+15) 5 (8+23) 10 (13+42) 20 (20+67) 57 (27+93)
Gen2 5 (3+8) 4 (5+15) 7 (9+29) 15 (13+39) 33 (19+63) 59 (36+133)
Gen3 2 (2+6) 2 (3+10) 5 (3+12) 12 (4+17) 108 (5+20) 209 (5+23)
Gen4 3 (23+9) 17 (6+20) 591 (8+32) 1688 (15+61) 3859 (18+75) 36459 (32+136)

(b) Specific Algorithm [10] (ms)

n 2 3 4 5 6 7
Gen1 0 (5+13) 1 (16+40) 2 (35+84) 6 (86+207) 14 (144+335) 34 (277+681)
Gen2 1 (6+18) 3 (20+48) 4 (55+126) 10 (113+255) 28 (253+506) 48 (445+952)
Gen3 0 (3+11) 0 (6+32) 1 (10+63) 1 (17+131) 1 (24+211) 2 (36+351)
Gen4 0 (4+13) 1 (8+31) 1 (14+61) 2 (23+107) 3 (29+140) 8 (41+204)

Table 1: Results for APC languages

instance a{a, b}∗{b, c}∗ is an APC, but (ab)∗ is not. It can be easily checked that
a language is accepted by a partially ordered automaton iff it can be expressed
by an APC.

For this class of languages the approach was experimented on four random
generators. The Generator1, randomly (and uniformly) generates a word u of a
given length n, build the minimal automaton recognizing {u} and randomly add
3n

2
transitions without introducing any loop. The Generator2 randomly gener-

ates a deterministic partially ordered automaton using a Markov Chain based
algorithm closed to the one in [9]. The Generator3 uniformly generates an APC
of the form B∗

0B
∗
1 . . . B

∗
n

where the Bi’s are subset of the alphabet. Finally, the
Generator4 uniformly generates an APC of the form B∗

0a1B
∗
1 . . . anB

∗
n

where
the Bi’s are subsets of the alphabet and the ai’s are letters.

Table 1 reports the average time (ms) to compute the closure under RI of
the generated languages, both with the machine learning approach and with
a specific algorithm [10]. The average size (number of states + number of
transitions) of the computed automata (for R∗

I
(L(A)) is reported under braces).

Note that the specific algorithm is quite better, what is not surprising. How-
ever, the machine learning approach is tractable. It should be emphasized that
the specific algorithm produces larger automata. Therefore, if the computed
results are used in conjunction with another algorithm (as for a model-checking
problem for instance), it may be interesting to have smaller automata and to
use the machine learning approach.

Moreover, it can be efficiently tested whether a language (given by its min-
imal automaton) can be recognized by an APC but there is no known efficient
algorithm to build such an expression. Therefore, if such a language is given by
its minimal automaton, using the specific algorithm [10] will require a possibly
ugly pre-processing step. For instance, the automaton depicted in Fig. 3 can be

8



1 2 3 4

a, c c b a
b

a

b

c b

a

c

Figure 3: Minimal automaton of an APC language.

n 2 3 4 5 6
GroupGen 0.002 (2+6) 0.01 (12+35) 0.04 (40+120) 29.0 (67.3+202) 247.2 (143+430)

Table 2: Results for group languages (seconds), |Σ| = 3, |I| = 6

represented by the APC (see [7] for the complexity of the test):

({a, b, c}∗a{a, c}∗ ∪ {a, c}∗) b{b, c}∗b{a, b}∗.

The Machine Learning Algorithm finds its RI closure (with I = {(a, b), (b, c)})
in few milliseconds; finding the above expression from the automaton is not an
easy problem since the test is not constructive.

3.2 Languages of PolG and PolC

A regular language is a group language if there exists a finite automaton ac-
cepting it and for which each letter induces a one-to-one function from the set
of states into itself. Equivalently, it is a language accepted by a complete de-
terministic automaton such that there is no pair of transitions labelled by the
same letter pointing the same state. One can prove that a language is a group
language iff its minimal automaton has this property. Under some simple con-
ditions on I, if L is a group language, then R∗

I
(L) is regular [1]. Notice that

the proof of this theoretical result is constructive but lies on Ramsey like re-
sults: transforming it into an algorithm is possible but the complexity would be
intractable.

We have generated group languages accepted by a n-state automaton in the
following way: (1) generate uniformly for each letter of Σ a permutation of
{1, . . . , n}; 1 is the initial state and each state is final with a probability 1/2
(the reader interested by the random generation of group languages is referred
to [23]). The results are reported in Table 2.

PolG is the class of regular languages that are a finite union of languages of
the form Loa1L1 . . . akLk (*), where the Li’s are group languages and the ai’s
are letters. It is know that if L is in PolG, then, under certain hypothesis on I,
R∗

I
(L) is regular [1]. We have implemented two generators of elements of PolG:

first, for a given k, we generate an expression of the form (*), where the ai’s

9



k (length of the expressions (*)) 2 (4 states) 3 (6 states) 4 (8 states)
Generator6 0.25 6.6 18.9
First Approach (9+27) (23+69) (41+122)
Generator6 0.001 0.001 0.003
Second Approach (8+29) (24+92) (43+176)

k (length of the expressions (*)) 2 (6 states) 3 (9 states) 4 (12 states)
Generator6b 13.8 26.0 27.1
First Approach (54+161) (93+279) (548+1643)
Generator6b 0.22 0.35 1.1
Second Approach (148+459) (1272+4292) (13881+50572)

n (states) 2 3 4 5 6 7
Generator7 0.06 (2+10) 0.5 (4+20) 0.5 (9+44) 0.2 (8+38) 1.0 (14.70) 14.1 (25+124)

Table 3: Results for PolG (seconds), |Σ| = 3, |I| = 6

are arbitrarily chosen and the Li’s are generated with the GroupGen algorithm
described above (with n = 2; the generated automaton has 2k states). This
generator is called Generator6. Generator6b is similar except that n = 3; the
generated automaton has 3k states. The Generator7 works as follows: (1) an
automaton with n states is generated using GroupGen; (2)

√
n transitions are

uniformly removed, providing a deterministic automaton recognizing a language
L0; (3) using classical automata constructions, an automaton recognizing Lc

0 is
returned. Results of [25] ensure that this language is in PolG, even if there is
no known tractable algorithm to compute a related expression of the form (*).

For Generator6 two approaches have been experimented: first R∗
I
(L) is

computed by the proposed machine learning technique. Secondly, each R∗
I
(Li)

is computed using the machine learning algorithm. Next R∗
I
(L) is computed

using the R-shuffle algorithm [10]. The results are reported in Table 3. For
Generator7 only the first approach can be applied.

The results show that it is possible to compute the closure under semicom-
mutation of group languages or of languages of PolG when finite automata have
few states.

A commutative language is a language closed under all semicommutation
relations. The class PolC is the class of regular languages which are a finite union
of languages of the form Loa1L1 . . . akLk (**), where the Li’s are commutative
regular languages and the ai’s are letters. Regular commutative languages can
be generated by generating a n-state automaton having the diamond property:
for any pair of states p, q and any pair of letters a, b, if (p, a, q) and (q, b, r)
are transitions, then there exists a state s such that (p, b, s) and (q, a, s) are
transitions. Using this generator of commutative languages, the Generator8

produces expressions of the form (**) in the same way as Generator6, with
n = 3. In Table 4, the results of the proposed approach are compared to the
results obtained by the dedicated algorithm [10].
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k (length of the expressions (**)) 2 3 4
Generator8 5.8 14.2 26.3
Machine Learning Approach (14+51) (35+133) (34+113)
Generator8 0.002 0.003 0.01
Specific Approach [10] (19+69) (63+239) (169+712)

Table 4: Results for PolC (seconds), |Σ| = 5, |I| = 6

Like APC, the results show that the specific approach runs faster than the
machine learning approach. However the latter is tractable and produces quite
smaller automata.

4 Conclusion

In this paper we proposed an algorithm to use online machine learning algorithm
to compute the image of a regular language by the transitive closure of a semi-
commutation relation. Practical experiments show that this approach is slower
than specific algorithms for the APC and PolC class of languages. However, for
this two classes the computed automata are smaller (and deterministic) making
the approach fruitful for combining it with others model-checking techniques.
Moreover, it was possible to compute several closures of regular languages for
which there is no known efficient algorithm. In the future we plan to develop
specific machine learning algorithm dedicated to the computation of semicom-
mutation closures and to improve the efficiency of involved procedures.
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