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Generalized Quantitative Analysis
of Metric Transition Systems

Uli Fahrenberg and Axel Legay

Irisa / INRIA Rennes, France

Abstract. The formalism of metric transition systems, as introduced by
de Alfaro, Faella and Stoelinga, is convenient for modeling systems and
properties with quantitative information, such as probabilities or time.
For a number of applications however, one needs other distances than
the point-wise (and possibly discounted) linear and branching distances
introduced by de Alfaro et.al. for analyzing quantitative behavior.
In this paper, we show a vast generalization of the setting of de Al-
faro et.al., to a framework where any of a large number of other use-
ful distances can be applied. Concrete instantiations of our framework
hence give e.g. limit-average, discounted-sum, or maximum-lead linear
and branching distances; in each instantiation, properties similar to the
ones of de Alfaro et.al. hold.
In the end, we achieve a framework which is not only suitable for mod-
eling different kinds of quantitative systems and properties, but also for
analyzing these by using different application-determined ways of mea-
suring quantitative behavior.

1 Introduction

During the last decade, formal verification has seen a trend towards modeling and
analyzing systems which contain quantitative information. This is motivated by
applications in real-time systems, hybrid systems, embedded systems and others.
Quantitative information can thus be a variety of things: probabilities, time, tank
pressure, energy intake, etc.

A number of quantitative models have hence been developed: probabilistic
automata [39], stochastic process algebras [30], timed automata [2], hybrid au-
tomata [1], continuous-time Markov chains [40], etc. Similarly, there is a number
of specification formalisms for expressing quantitative properties: timed compu-
tation tree logic [29], probabilistic computation tree logic [26], metric temporal
logic [31], stochastic continuous logic [3], etc.

Quantitative model checking, the verification of quantitative properties for
quantitative systems, has also seen rapid development: for probabilistic sys-
tems in PRISM [32] and PEPA [23], for real-time systems in UPPAAL [35]
and RED [46], and for hybrid systems in HyTech [27] and SpaceEx [22], to name
but a few.

Quantitative model checking has, however, a problem of robustness. When
the answers to model checking problems are Boolean—either a system meets its
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Fig. 1. Three timed automata modeling a train crossing.

specification or it does not—then small perturbations in the system’s parameters
may invalidate the result. This means that, from a model checking point of view,
small, perhaps unimportant, deviations in quantities are indistinguishable from
larger ones which may be critical.

As an example, Fig. 1 shows three simple timed-automata models of a train
crossing, each modeling that once the gates are closed, some time will pass before
the train arrives. Now if the specification of the system is “The gates have to
be closed 60 seconds before the train arrives”, then model A does satisfy the
specification, and models B and C do not. What this does not tell us, however,
is that model C is dangerously far away from the specification, whereas model B
only violates it slightly (and may be acceptable from a practical point of view).

In order to address the robustness problem, one approach is to replace the
Boolean yes-no answers of standard verification with distances. That is, the
Boolean co-domain of model checking is replaced by the non-negative real num-
bers. In this setting, the Boolean true corresponds to a distance of zero and
false to the non-zero numbers, so that quantitative model checking can now
tell us not only that a specification is violated, but also how much it is violated,
or how far the system is from corresponding to its specification.

In our example, and depending on precisely how one wishes to measure dis-
tances, the distance from A to our specification is 0, whereas the distances from
B and C to the specification may be 2 and 59, respectively. Note that the precise
interpretation of distance values will be application-dependent; but in any case,
it is clear that C is much further away from the specification than B is.

The distance-based approach to quantitative verification has been developed
the furthest for probabilistic and stochastic systems, perhaps akin to the fact
that for these systems, the need for a truly quantitative verification is felt the
most urgent. Panangaden and Desharnais et.al. have worked with distances for
Markov processes e.g. in [4, 16, 34, 37], and van Breugel and Worrell et.al. have
developed distances for probabilistic transition systems e.g. in [44,45]. De Alfaro
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and Stoelinga et.al. have worked on distances between probabilistic systems and
specifications in [13,14] and other papers.

For real-time and hybrid systems, some explicit work on distances is avail-
able in [28, 38]. Otherwise, distances have been used in approaches to robust
verification [8, 33], and Girard et.al. have developed a theory of approximate
bisimulation for robust control [25, 47].

Also general work on distances for quantitative systems where the precise
meaning of the quantities remains unspecified has been done. Van Breugel has
developed a general theory of behavioral pseudometrics, see e.g. [43], and Fahren-
berg and Legay et.al. have introduced linear and branching distances for such
systems in [5, 6, 21, 42]. Henzinger et.al. have employed distances in a software
engineering context in [9] and for abstraction refinement and synthesis in [10,11].

A different but related approach to quantitative verification is the theory
of weighted automata and quantitative languages developed by Droste et.al.
in [17–19] and by Henzinger and Chatterjee et.al. in [7, 12].

Common to all the above distance-based approaches is that they introduce
distances between systems, or between systems and specifications, and then em-
ploy these for approximate or quantitative verification. However, depending on
the application context, a plethora of different distances are being used. Conse-
quently, there is a need for a general theory of quantitative verification which
depends as little as possible on the concrete distances being used. This is a
point of view which is argued in [6, 10, 11, 21], and a number of the above pa-
pers [7, 17,19,37,43] attempt to develop the theory at this general level.

To be more specific, most of the above approaches can be classified according
to the way they measure distances between executions, or system traces. The
perhaps easiest such way is the point-wise distance, which measures the greatest
individual distance between corresponding points in the traces. Theory for this
specific distance has been developed e.g. in [8,13–15,42]. Sometimes discounting
is applied to diminish the influence of individual distances far in the future,
e.g. in [13–15].

Another distance which has been used is the accumulating one, which sums
individual distances along executions. Two major types have been considered
here: the discounted accumulating distance e.g. in [5,9,42] and the limit-average
accumulating distance e.g. in [9]. For real-time systems, a useful distance is
the maximum-lead one of [28, 42] which measures the maximum difference be-
tween accumulated time delays along traces. For hybrid systems, things are more
complicated, as distances between hybrid traces have to take into account both
spatial and timing differences, see e.g. [24, 25,38,47].

It is our point of view that the differences between measuring distances be-
tween system traces are fundamental, in the sense that specifying one concrete
way of measuring such trace distances fixes the quantitative semantics to a con-
crete application. Any general theory of quantitative verification should, then,
be independent of the way one measures distances between traces.

In this paper we show how such a distance-independent theory of quantita-
tive verification may be attempted. Taking as our model of quantitative systems
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the metric transition systems of [15] and starting out with an abstract distance
on traces, we define linear and branching distances and show that they have the
expected properties. Our linear distances generalize trace inclusion and equiva-
lence to the general quantitative setting, and the branching distances generalize
simulation and bisimulation.

As a central technical tool in our developments, we assume that the trace
distance factors through a complete lattice, and that this lifted trace distance
has a recursive characterization. We show that this assumption holds for most
of the trace distances considered in the above-mentioned papers; specifically,
our theory can be instantiated with the point-wise (and possibly discounted)
distance, the accumulating distance (both discounted and limit-average), and
the maximum-lead distance.

This paper follows up on work in [21], where we develop a general quantitative
theory for weighted transition systems, using the theory of quantitative games.
Compared to this work, the present paper uses a different model for quantitative
systems (namely, the one from [15]), hence the linear and branching distances
have to be defined differently; also, no game theory is necessary for us here.

2 Metric Transition Systems

We recapitulate the setting and terminology of [15], adapting it slightly to our
needs.

A hemimetric on a set X is a function d : X × X → R≥0 ∪ {∞} which
satisfies d(x, x) = 0 and d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality)
for all x, y, z ∈ X. The hemimetric is said to be symmetric if also d(x, y) =
d(y, x) for all x, y ∈ X; it is said to be separating if d(x, y) = 0 implies x =
y. The terms “pseudometric” for a symmetric hemimetric, “quasimetric” for a
separating hemimetric, and “metric” for a hemimetric which is both symmetric
and separating are also in use, but we will not use them here. The tuple (X, d)
is called a hemimetric space.

In [15], hemimetrics are called “directed metrics”, “undirected” is used in-
stead of “symmetric”, and “proper” instead of “separating”. Our choice of jargon
is driven by a wish to follow more-or-less established terminology; specifically,
the term “metric” has a standard meaning in mathematics, so that we find the
term “directed metric” for what should better be called a “directed quasimetric”
(or, “pseudometric”) unfortunate. Similarly, our use of “separating” instead of
“proper” is motivated by the use of this term in topology: the topology induced
by a (separating) metric has the T2 Hausdorff separation property, whereas the
one induced by a pseudometric does not.

Note that our hemimetrics are extended in that they can take the value ∞.
This is convenient for several reasons, cf. [36], one of them being that it allows
for a disjoint union, or coproduct, of hemimetric spaces: the disjoint union of
(X1, d1) and (X2, d2) is the hemimetric space (X1, d1)∪+(X1, d2) = (X1∪+X2, d)
where points from different components are infinitely far away from each other,
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Fig. 2. Example of a metric transition system

i.e. with d defined by

d(x, y) =


d1(x, y) if x, y ∈ X1,

d2(x, y) if x, y ∈ X2,

∞ otherwise.

We will need to generalize hemimetrics to codomains other than R≥0∪{∞}.
For a partially ordered monoid (M,v,�,0), anM -hemimetric onX is a function
d : X ×X →M which satisfies d(x, x) = 0 and d(x, y)� d(y, z) w d(x, z) for all
x, y, z ∈ X; symmetry and separation are generalized in similar ways.

Let Σ be a set of atomic propositions and (X, d) a hemimetric space; these
will be fixed throughout this paper. A valuation on Σ is a mapping u : Σ → X;
the set of all valuations on Σ is denoted U [Σ]. Note that in the setting of [15],
each proposition a takes values in a separate hemimetric space Xa. Using ex-
tended hemimetrics allows us to unite all these spaces into one. The propo-
sitional distance [15] is the mapping pd : U [Σ] × U [Σ] → R≥0 defined by
pd(u, v) = supa∈Σ d(u(a), v(a)).

A metric transition system (MTS) S = (S, T, [·]) consists of sets S of states
and T ⊆ S × S of transitions, together with a state valuation mapping [·] : S →
U [Σ]. For s, t ∈ S, we write s → t iff (s, t) ∈ T . Fig. 2 shows a simple example
of a MTS over Σ = {a} which we will use later.
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A path in S is a (finite or infinite) sequence π = (π0, π1, . . . ) of states πi ∈ S
in which πi → πi+1 for all i. Note that, extending [15], we also handle finite
paths instead of only infinite ones.

A trace in Σ is a (finite or infinite) sequence σ = (σ0, σ1, . . . ) of valuations
σi ∈ U [Σ]. The set of such traces is denoted U [Σ]∞. For a path π in S, its
induced trace is [π] = ([π0], [π1], . . . ). For a state s ∈ S, we let Tr(s) = {[π] |
π0 = s} denote the set of traces emanating from s. We introduce some convenient
notation for traces: ε denotes the empty trace, u.σ the concatenation of u ∈ U [Σ]
with σ ∈ U [Σ]∞, and len(σ) the length (finite or ∞) of σ.

As usual, a relation R ⊆ S × S is called a simulation (on S) if it holds that
[s] = [t] for all (s, t) ∈ S and
– for all s→ s′ there is t→ t′ such that (s′, t′) ∈ R.
R is called a bisimulation if, additionally,
– for all t→ t′ there is s→ s′ such that (s′, t′) ∈ R.

We write s � t if there is a simulation R with (s, t) ∈ R, and s ≈ t if there is a
bisimulation R with (s, t) ∈ R.

3 Examples of Trace Distances

We can now give concrete examples of trace distances which have been used in
the literature.

The point-wise trace distance is tdpw : U [Σ]∞×U [Σ]∞ → R≥0∪{∞} defined
by

tdpw(σ, τ) =

{
∞ if len(σ) 6= len(τ),
supi pd(σi, τi) otherwise.

This distance has been employed in [8, 13–15,42].
Using a discount factor λ ∈ R≥0 with λ < 1, one may discount the influence

of individual distances which occur further along the traces. The discounted
point-wise trace distance, which has been used in [13–15], is thus tdpw,λ : U [Σ]∞×
U [Σ]∞ → R≥0 ∪ {∞} defined by

tdpw,λ(σ, τ) =

{
∞ if len(σ) 6= len(τ),
supi λ

ipd(σi, τi) otherwise.

The accumulating trace distance is tdacc : U [Σ]∞ × U [Σ]∞ → R≥0 ∪ {∞}
defined by

tdacc(σ, τ) =

{
∞ if len(σ) 6= len(τ),∑
i pd(σi, τi) otherwise.

This distance is typically used with discounting or limit-averaging:
Using again a discount factor λ ∈ R≥0 with λ < 1, the discounted accumu-

lating trace distance is tdacc,λ : U [Σ]∞ × U [Σ]∞ → R≥0 ∪ {∞} defined by

tdacc,λ(σ, τ) =

{
∞ if len(σ) 6= len(τ),∑
i λ

ipd(σi, τi) otherwise.
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This distance has been used in [5, 9, 42].
The limit-average trace distance, which has been used in [9], is tdlimavg :

U [Σ]∞ × U [Σ]∞ → R≥0 ∪ {∞} defined by

tdlimavg(σ, τ) =

{
∞ if len(σ) 6= len(τ),
lim infj

1
j+1

∑j
i=0 pd(σi, τi) otherwise.

This is generally defined only for infinite traces. If one wants it defined also for
finite traces σ, τ (of equal length N), one can patch σ and τ so that pd(σi, τi) = 0
for i > N ; then tdlimavg(σ, τ) = 0 in this case.

Both the discounted accumulating and limit-average trace distances are well-
known from the theory of discounted and mean-payoff games [20,48].

The maximum-lead trace distance tdmaxlead : U [Σ]∞ ×U [Σ]∞ → R≥0 ∪ {∞}
from [28,42] is only defined for the case where the valuation space is X = R. It
is given by

tdmaxlead(σ, τ) =

{
∞ if len(σ) 6= len(τ),
supj supa∈Σ

∣∣∑j
i=0 σi(a)−

∑j
i=0 τi(a)

∣∣ otherwise.

4 Linear Distances

To generalize the examples of the previous section, we define a trace distance to
be a general hemimetric on traces which specializes to the propositional distance
on individual valuations and is finite only for traces of equal length:

Definition 1. A trace distance is a hemimetric td : U [Σ]∞ × U [Σ]∞ → R≥0 ∪
{∞} for which td(u, v) = pd(u, v) for all u, v ∈ U [Σ] and td(σ, τ) =∞ whenever
len(σ) 6= len(τ).

We note that in case pd is separating, then also all example trace distances
from Section 3 are separating, except for the limit-average distance. For the
latter, tdlimavg(σ, τ) = 0 iff either σ = τ are finite traces, or there exists an index
k such that σi = τi for all i ≥ k. Also, the maximum-lead trace distance is
symmetric; the others are symmetric iff pd is symmetric.

For any given trace distance, we can define the linear distance between states
in S as the (asymmetric) Hausdorff distance between the corresponding sets of
traces:

Definition 2. For a given trace distance td, the linear distance induced by td is
ld : S × S → R≥0 ∪ {∞} given by

ld(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

td(σ, τ).

The symmetric linear distance induced by td is ld : S × S → R≥0 ∪ {∞} given
by ld(s, t) = max(ld(s, t), ld(t, s)).
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Continuing the example from Fig. 2, we compute the linear distances ld(s1, t1)
and ld(s2, t2) induced by all our example trace distances, using the usual metric
on R for valuations and a discount factor of λ = .9 where applicable:

ldpw(s1, t1) = 4 ldpw(s2, t2) = 4

ldpw,λ(s1, t1) = 3.24 ldpw(s2, t2) = 3.24

ldacc(s1, t1) = 5 ldacc(s2, t2) =∞
ldacc,λ(s1, t1) = 4.14 ldacc,λ(s2, t2) = 33.3

ldlimavg(s1, t2) = 0 ldlimavg(s2, t2) = 4

ldmaxlead(s1, t1) = 5 ldmaxlead(s2, t2) =∞

Our first theorem shows that for separating trace distances on finite transition
systems, trace inclusion is the kernel of ld and trace equivalence the kernel of ld:

Theorem 1. Let S be finite and td separating. For all s, t ∈ S, Tr(s) ⊆ Tr(t)
iff ld(s, t) = 0 and Tr(s) = Tr(t) iff ld(s, t) = 0.

Proof. It is clear that Tr(s) ⊆ Tr(t) implies ld(s, t) = 0. For the opposite di-
rection, assume ld(s, t) = 0 and let σ ∈ Tr(s). For every i ∈ N+, there exists
τi ∈ Tr(t) for which td(σ, τi) < 1

i . Because S is finite, there is an index N such
that τi = τN for all i ≥ N . Then td(σ, τN ) = 0 and thus, as td is separating,
σ = τN . The second bi-implication is now clear. ut

Note that we have also shown the statement that, whether td is separating
or not, ld(s, t) = 0 implies that for every σ ∈ Tr(s), there exists τ ∈ Tr(t) with
td(σ, τ) = 0. An example in [15] shows that precisely this statement may fail in
case S is not finite.

5 Branching Distances

We have seen in Theorem 1 that the linear distances of the previous section are
generalizations of trace inclusion and trace equivalence. In order to generalize
simulation and bisimulation in a similar manner, we define branching distances.

To be able to introduce these branching distances, we need to assume that
our trace distance td factors through a complete lattice, and that the lifted trace
distance has a recursive characterization as given below. We will see in Section 6
that this is the case for all the example trace distances of Section 3.

For any set M , let LM = (R≥0 ∪ {∞})M be the set of functions from
M to R≥0 ∪ {∞}. Then LM is a complete lattice with partial order v given
by α v β iff α(x) ≤ β(x) for all x ∈ M , and with an addition � given by
(α� β)(x) = α(x) + β(x). The bottom element of LM is also the zero of � and
given by ⊥(x) = 0, and the top element is >(x) =∞.

Definition 3. A recursive specification of a trace distance td consists of a set
M , a lattice homomorphism eval : LM → R≥0 ∪ {∞} and an LM -hemimetric
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tdL : U [Σ]∞×U [Σ]∞ → LM which together satisfy td = eval◦tdL, and a function
F : U [Σ] × U [Σ] × LM → LM . F must be monotone in the third coordinate,
i.e. F (u, v, ·) : LM → LM is monotone for all u, v ∈ U [Σ], have F (u, u,⊥) =
⊥ for all u ∈ U [Σ], and satisfy, for all u, v ∈ U [Σ] and σ, τ ∈ U [Σ]∞, that
tdL(u.σ, v.τ) = F (u, v, tdL(σ, τ)).

Now if td is recursively specified as above, then we can use the recursion to
introduce branching distances sd and bd which generalize simulation and bisim-
ulation:

Definition 4. For a recursively specified trace distance td, let sdL, bdL : S×S →
LM be the respective least fixed points to the equations

sdL(s, t) = sup
s→s′

inf
t→t′

F ([s], [t], sdL(s′, t′)), (1)

bdL(s, t) = max

 sup
s→s′

inf
t→t′

F ([s], [t], bdL(s′, t′)),

sup
t→t′

inf
s→s′

F ([s], [t], bdL(s′, t′)).
(2)

The simulation distance induced by td is sd : S × S → R≥0 ∪ {∞} given by
sd = eval◦sdL; the bisimulation distance induced by td is bd : S×S → R≥0∪{∞}
given by bd = eval ◦ bdL.

Note that we define the distances using least fixed points, as opposed to
the greatest fixed point definition of standard (bi)simulation. Informally, this is
because our order is reversed: we are not interested in maximizing (bi)simulation
relations, but in minimizing (bi)simulation distance.

Lemma 1. The mappings sd and bd are well-defined hemimetrics on S.

Proof. We show the proof for sd; for bd it is similar. Let FS = LMS×S be the
lattice of functions from S×S to LM , then FS is complete because LM is. Let
I : FS → FS be defined by

I(f)(s, t) = sup
s→s′

inf
t→t′

F ([s], [t], f(s′, t′)),

similarly to (1). Because F ([s], [t], ·) : LM → LM is monotone for all s, t ∈ S,
I is monotone. Using Tarski’s fixed-point theorem, we can hence conclude that
I has a unique minimal fixed point, which is sdL. Clearly sdL(s, s) = ⊥ for all
s ∈ S, and by induction one can show that sdL(s, t) � sdL(t, u) w sdL(s, u) for
all s, t, u ∈ S. Hence sdL is an LM -hemimetric and sd is a hemimetric. ut

In order to show, similarly to Theorem 1, that simulation is the kernel of
simulation distance, we need a condition on the recursive F which mimics the
separation condition for hemimetrics. We say that a recursively specified trace
distance td is recursively separating if F : U [Σ] × U [Σ] × LM → LM satisfies
the condition that whenever F (u, v, x) = ⊥, then u = v and x = ⊥. Note that
this condition implies that tdL is separating.
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Theorem 2. Let S be finite and td recursively specified and recursively separat-
ing. For all s, t ∈ S, s � t iff sdL(s, t) = ⊥ and s ≈ t iff bdL(s, t) = ⊥.

Proof. It is clear that s � t implies sdL(s, t) = ⊥. For the other direction, let
R = {(s′, t′) | sdL(s′, t′) = ⊥} ⊆ S × S. Then (s, t) ∈ R. Let (s′, t′) ∈ R, then
sups′→s′′ inft′→t′′ F ([s

′], [t′], sdL(s′′, t′′)) = ⊥. As S is finite, this implies that for
all s′ → s′′, there exists t′ → t′′ with F ([s′], [t′], sdL(s′′, t′′)) = ⊥. By recursive
separation, we hence have [s′] = [t′] and sdL(s′′, t′′) = ⊥. We have shown that
R is a simulation on S. The proof that s ≈ t iff bdL(s, t) = ⊥ is similar. ut

The next theorem gives the relations between the different distances we have
introduced. Also these relations generalize the situation in the Boolean setting:
in light of Theorems 1 and 2, they are quantitative analogues to the facts that
simulation implies trace inclusion and that bisimulation implies simulation and
trace equivalence.

Theorem 3. Let td be recursively specified. For all s, t ∈ S, ld(s, t) ≤ sd(s, t) ≤
bd(s, t) and ld(s, t) ≤ bd(s, t).

Proof. The proof is best understood in a setting of quantitative games, cf. [21]. In
this setting, the standard simulation and bisimulation games [41] are generalized
to games with quantitative objectives. One can then see that the linear distances
can be computed by similar games, and that the only differences between these
games are given by certain restrictions on the strategies available to the first
player. The result follows from inclusions on these sets of restricted strategies.

We can, however, also give a direct proof of the fact that ld(s, t) ≤ sd(s, t)
without resorting to games (and similar proofs may be given for the other in-
equalities). To do so, we need to lift ld to the lattice LM : for s, t ∈ S, define

ldL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

tdL(σ, τ),

then ld = eval ◦ ldL because eval is monotone. We show that ldL(s, t) v sdL(s, t)
for all s, t ∈ S, which will imply the result.

Let s, t ∈ S. We have

ldL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

tdL(σ, τ)

= sup
s→s′

sup
σ′∈Tr(s′)

inf
t→t′

inf
τ ′∈Tr(t′)

tdL([s].σ′, [t].τ ′)

= sup
s→s′

sup
σ′∈Tr(s′)

inf
t→t′

inf
τ ′∈Tr(t′)

F ([s], [t], tdL(σ′, τ ′))

v sup
s→s′

inf
t→t′

sup
σ′∈Tr(s′)

inf
τ ′∈Tr(t′)

F ([s], [t], tdL(σ′, τ ′))

= sup
s→s′

inf
t→t′

F ([s], [t], sup
σ′∈Tr(s′)

inf
τ ′∈Tr(t′)

tdL(σ′, τ ′))

= sup
s→s′

inf
t→t′

F ([s], [t], ldL(s′, t′)),

and the statement now follows by induction. ut
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6 Examples Revisited

We can now apply the constructions of Section 5 to the example trace distances
from Section 3. We give recursive specifications for all distances and deduce the
corresponding branching distances. For ease of exposition, we will only consider
ourselves with the simulation distances here, but similar things can be said about
the bisimulation distances.

For the point-wise trace distance tdpw, a recursive specification is given as
follows (where {∗} denotes the one-point set; hence LM is isomorphic to R≥0 ∪
{∞}):

M = {∗} eval(x) = x

tdL(σ, τ) = supi pd(σi, τi)
F (u, v, x) = max(pd(u, v), x)

Using Definition 4, the corresponding simulation distance sdpw = sdLpw is the
least fixed point to the equations

sdpw(s, t) = sup
s→s′

inf
t→t′

max(pd([s], [t]), sdpw(s
′, t′)).

This is similar to the formulation given in [14,15]. Note that if pd is separating,
then F is recursively separating, hence Theorem 2 applies.

For the discounted point-wise trace distance tdpw,λ the recursive specification
is similar:

M = {∗} eval(x) = x

tdL(σ, τ) = supi λ
ipd(σi, τi)

F (u, v, x) = max(pd(u, v), λx)

The corresponding simulation distance is hence the least fixed point to the equa-
tions

sdpw,λ(s, t) = sup
s→s′

inf
t→t′

max(pd([s], [t]), λsdpw,λ(s
′, t′)),

which is similar to what is in [14, 15]. Note again that if pd is separating, then
F is recursively separating, hence also here Theorem 2 applies.

Also the accumulating trace distance tdacc has a simple recursive specification
with LM isomorphic to R≥0 ∪ {∞}:

M = {∗} eval(x) = x

tdL(σ, τ) =
∑
i pd(σi, τi)

F (u, v, x) = pd(u, v) + x

The corresponding simulation distance is hence the least fixed point to the equa-
tions

sdacc(s, t) = sup
s→s′

inf
t→t′

(pd([s], [t]) + sdacc(s
′, t′)).
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Again, if pd is separating, then F is recursively separating, hence Theorem 2
applies.

A recursive specification for the discounted accumulating trace distance is
given as follows:

M = {∗} eval(x) = x

tdL(σ, τ) =
∑
i λ

ipd(σi, τi)
F (u, v, x) = pd(u, v) + λx

The corresponding simulation distance is then the least fixed point to the equa-
tions

sdacc,λ(s, t) = sup
s→s′

inf
t→t′

pd([s], [t]) + λsdacc,λ(s
′, t′),

similarly to what is in [9]. If pd is separating, then F is recursively separating,
hence Theorem 2 applies also in this case.

To obtain a recursive specification of the limit-average trace distance, we
need a richer lattice:

M = N eval(x) = lim infj x(j)

tdL(σ, τ)(j) = 1
j+1

∑j
i=0 pd(σi, τi)

F (u, v, x)(j) = 1
j+1pd(u, v) +

j
j+1x(j − 1)

Using Definition 4, we obtain the corresponding lifted simulation distance as the
least fixed point to the equations

sdLlimavg(s, t)(j) = sup
s→s′

inf
t→t′

(
1
j+1pd([s], [t]) +

j
j+1sd

L

limavg(s
′, t′)(j − 1)

)
.

The limit-average simulation distance is then

sdlimavg(s, t) = lim infj sdLlimavg(s, t)(j).

To the best of our knowledge, this formulation of limit-average simulation dis-
tance is new. We again remark that if pd is separating, then F is recursively
separating, hence Theorem 2 applies.

For the maximum-lead trace distance, we need a lattice which maps leads to
maximum leads. A recursive specification is as follows:

M = R eval(x) = x(0)

tdL(σ, τ)(δ) = max(|δ|, supj supa∈Σ |δ +
∑j
i=0 σi(a)−

∑j
i=0 τi(a)|)

F (u, v, x)(δ) = supa∈Σ max(|δ + u(a)− v(a)|, x(δ + u(a)− v(a)))

The lifted simulation distance is then the least fixed point to the equations

sdLmaxlead(s, t)(δ) = sup
s→s′

inf
t→t′

sup
a∈Σ

max

{
|δ + [s](a)− [t](a)|,
sdLmaxlead(s

′, t′)(δ + [s](a)− [t](a)),



Generalized Quantitative Analysis of Metric Transition Systems 13

cf. [28], and maximum-lead simulation distance is

sdmaxlead(s, t) = sdLmaxlead(s, t)(0).

Also here it holds that if pd is separating, then F is recursively separating, hence
Theorem 2 applies.

Finishing the example from Fig. 2, we compute the simulation distances
sd(s1, t1) and sd(s2, t2) induced by all our example trace distances, using the
usual metric onR for valuations and a discount factor of λ = .9 where applicable:

sdpw(s1, t1) = 6 sdpw(s2, t2) = 6

sdpw,λ(s1, t1) = 5.46 sdpw,λ(s2, t2) = 5.46

sdacc(s1, t1) = 6 sdacc(s2, t2) =∞
sdacc,λ(s1, t1) = 5.46 sdacc,λ(s2, t2) = 54

sdlimavg(s1, t2) = 0 sdlimavg(s2, t2) = 6

sdmaxlead(s1, t1) = 6 sdmaxlead(s2, t2) =∞

7 A Note on Robustness

In [15] it is shown that with respect to the point-wise linear and branching dis-
tances, metric transition systems are robust to perturbations in the state valua-
tions. To be precise, let [·]1, [·]2 : S → U [Σ] be two different state valuations on a
MTS S and define their valuation distance by vd([·]1, [·]2) = sups∈S pd([s]1, [s]2).
This measures how close the state valuations are to each other.

Now write ldipw and sdipw (with i ∈ {1, 2}) for the point-wise linear and
simulation distances with respect to the valuation [·]i. It is shown in [15] that
for all s, t ∈ S,

|ld1pw(s, t)− ld2pw(s, t)| ≤ vd([·]1, [·]2) + vd([·]2, [·]1),
|sd1pw(s, t)− sd2pw(s, t)| ≤ vd([·]1, [·]2) + vd([·]2, [·]1).

This is, hence, a robustness result: given that the two valuations are close to
each other, also the linear and branching distances will be.

Similar results can easily be seen to hold also for the symmetric linear and the
bisimulation distances, and also for the discounted point-wise versions of these
distances. A result similar in spirit, also for the point-wise distance, is reported
for robustness of timed automata in [8].

Using almost the same arguments as in [15], one can show that for the dis-
counted accumulating distances,

|ld1acc,λ(s, t)− ld2acc,λ(s, t)| ≤ 1
1−λ (vd([·]1, [·]2) + vd([·]2, [·]1)),

|sd1acc,λ(s, t)− sd2acc,λ(s, t)| ≤ 1
1−λ (vd([·]1, [·]2) + vd([·]2, [·]1)).

Hence MTS are also robust with respect to the discounted accumulating dis-
tances. In the proof, one uses the convergence of the geometric series: after the ith
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s t

u1(a) = 0 u1(a) = 0
s t

u2(a) = 0 u2(a) = 1

Fig. 3. Example of a MTS with two different state valuations.

step, distances are discounted by λi, so no more than λi(vd([·]1, [·]2)+vd([·]2, [·]1))
can be added to the total distance. Hence the distance is bounded above by
(vd([·]1, [·]2) + vd([·]2, [·]1))

∑∞
i=0 λ

i = 1
1−λ (vd([·]1, [·]2) + vd([·]2, [·]1)).

Unfortunately, no general robustness results are available, and our other ex-
ample distances do not have similar properties. This is shown by the example
in Fig. 3. Here, vd([·]1, [·]2) = vd([·]2, [·]1) = 1, and the linear distances are as
follows, with the usual metric on R and λ = .9 where applicable:

ld1pw(s, t) = 0 ld2pw(s, t) = 1 ld1pw(t, s) = 0 ld2pw(t, s) = 1

ld1pw,λ(s, t) = 0 ld2pw,λ(s, t) = 1 ld1pw,λ(t, s) = 0 ld2pw,λ(t, s) = 1

ld1acc(s, t) = 0 ld2acc(s, t) =∞ ld1acc(t, s) = 0 ld2acc(t, s) =∞
ld1acc,λ(s, t) = 0 ld2acc,λ(s, t) = 10 ld1acc,λ(t, s) = 0 ld2acc,λ(t, s) = 10

ld1limavg(s, t) = 0 ld2limavg(s, t) =∞ ld1limavg(t, s) = 0 ld2limavg(t, s) =∞
ld1maxlead(s, t) = 0 ld2maxlead(s, t) =∞ ld1maxlead(t, s) = 0 ld2maxlead(t, s) =∞

(The branching distances are equal to the linear distances in all cases.)

8 Conclusion

We have shown how the model of metric transition systems from [15] can be
embedded in a general quantitative framework which allows quantitative veri-
fication using a large number of different system distances. As these distances
are an essential part of quantitative verification and, at the same time, typically
depend on what precise application one has in mind, it is important to develop
a general quantitative theory of systems which is independent of the employed
distances. This is what we have done here.

Assuming an abstract trace distance as input, we have developed correspond-
ing linear and branching distances. What we have not done, however, is to com-
pare linear and branching distances which arise from different trace distances.
One important question is, for example, whether the linear and branching dis-
tances one obtains from two Lipschitz equivalent, or topologically equivalent,
trace distances will again be Lipschitz or topologically equivalent. This would
be a crucial step in a classification of system distances and is part of our ongoing
research.

Another issue which we have not treated here is the logical side of quantitative
verification. In [15], the authors introduce a quantitative variant of LTL which
characterizes the point-wise linear distance, and a quantitative µ-calculus which
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characterizes the point-wise simulation and bisimulation distances. We plan to
work on similar logics for our general setting.
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