
HAL Id: hal-01087992
https://hal.inria.fr/hal-01087992

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Synchronous Interface Theories and Time Triggered
Scheduling

Benot Delahaye, Uli Fahrenberg, Axel Legay, Dejan Ničković

To cite this version:
Benot Delahaye, Uli Fahrenberg, Axel Legay, Dejan Ničković. Synchronous Interface Theories and
Time Triggered Scheduling. 14th International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS) / 32nd International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE), Jun 2012, Stockholm, Sweden. pp.203-218, �10.1007/978-3-642-
30793-5_13�. �hal-01087992�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49577722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01087992
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Synchronous Interface Theories
and Time Triggered Scheduling

Benôıt Delahaye1, Uli Fahrenberg2, Thomas A. Henzinger3, Axel Legay21, and
Dejan Ničković3

1 Aalborg University, Denmark
2 Irisa/INRIA Rennes, France

3 IST Austria, Klosterneuburg, Austria

Abstract. We propose synchronous interfaces, a new interface theory
for discrete-time systems. We use an application to time-triggered schedul-
ing to drive the design choices for our formalism; in particular, addi-
tionally to deriving useful mathematical properties, we focus on provid-
ing a syntax which is adapted to natural high-level system modeling.
As a result, we develop an interface model that relies on a guarded-
command based language and is equipped with shared variables and
explicit discrete-time clocks. We define all standard interface operations:
compatibility checking, composition, refinement, and shared refinement.
Apart from the synchronous interface model, the contribution of this
paper is the establishment of a formal relation between interface theo-
ries and real-time scheduling, where we demonstrate a fully automatic
framework for the incremental computation of time-triggered schedules.

1 Introduction

Interface models and theories were developed with the aim to provide a the-
oretical foundation for compositional design. Interface models describe both
input assumptions on a component and its output guarantees and they sup-
port incremental design and independent implementability, two central concepts
in component-based design. Interface theories [1, 8, 13, 16, 18, 21, 23, 30] and re-
lated approaches [10, 29] have been subject of active research in the past years,
and today provide a strong and stable foundation for component-based design.
However, although the theoretical foundations of interface theories can be now
considered to be quite solid, the practical applicability of the framework has
remained rather limited. One of the reasons is the fact that little attention has
been given to adapt the modeling languages to the actual engineering needs in
the target application domains.

In this paper, we propose synchronous interfaces (SI), a new interface the-
ory motivated by an application to time-triggered scheduling and thus provid-
ing features that make our model closer to real-life needs of the engineers. In
time-triggered communication scheduling, one allocates message transmissions
to shared communication channels in a way that respects application-imposed
and real-time constraints. The time-triggered scheduling problem can be nat-
urally specified within an interface theory framework, by modeling scheduling

2 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

constraints as interface guarantees, and considering the environment to be the
scheduler. We remark that even though our model has been developed with an
eye to time-triggered scheduling, the application domain of the theory is much
broader.

Incorrect scheduling of communication messages leads to violation of real-
time and contention-freedom constraints, thus resulting in timing incompatibili-
ties. This is in contrast to the standard interface theories that are untimed and
are focused on reasoning about value incompatibilities. Continuous-time exten-
sions of interface theories [15, 20] were developed to tackle this problem. While
those are of clear interest and can solve interesting problems [14], they suffer
from the complexity of handling continuous time in an explicit manner that is
often unnecessary in practical application areas. We believe that discrete time
provides the right level of abstraction for many application areas, and demon-
strate it with the time-triggered scheduling application.

We base the syntax of SI on the model of reactive modules, a high-level
and general-purpose modeling language that provides a syntax close to procedu-
ral guarded-command languages. In addition, we extend our model with shared
variables that allow simple specification of contention freedom constraints, and
explicit discrete-time clocks that facilitate modeling timing constraints.

Semantically, a SI is a set of concurrent processes whose behavior is evolving
in discrete time. We equip our theory with operations that support incremental
design and independent implementability: (1) well-formedness check that com-
putes the set of environment choices for which the interface meets its guarantees;
(2) composition that allows to combine two interfaces and compute the assump-
tions under which they interact in a compatible way and (3) refinement and
shared refinement that are used to compare behaviors of different interfaces.

The second contribution of this paper is the incremental computation of time-
triggered schedules, that is resolved as an incremental design problem with SI.
We model scheduling constraints as SI guarantees and consider the environment
to be the (unknown) scheduler. We apply well-formedness checking to restrict
the environment to those schedules that satisfy the scheduling constraints. The
composition operator allows to solve scheduling problems incrementally, by de-
composing them into subproblems whose restricted environments are combined
into a full schedule (using the well-formedness check again).

Related Work. Compositional scheduling for hierarchical RT systems has been
extensively studied in [22, 32] and other papers by the same authors, but in
a setting which in a sense is complementary to ours. The focus of this work
is on computing bounds on resource use under some (simple) schedulers, and
on inferring resource bounds for complex systems in a compositional manner,
whereas we focus on schedulability, i.e., computation of schedules under given
task dependencies and resource bounds. Incremental time-triggered scheduling
was also studied in [33], using an approach that computes schedules with an
SMT solver, but may miss a feasible schedule.

Another area of related work, similar in spirit but different in methods, is the
recent application of timed-automata based formalisms to schedulability prob-

Synchronous Interface Theories and Time Triggered Scheduling 3

lems. In [2], simple job-shop scheduling problems are solved using timed au-
tomata, and in [11, 31], priced timed automata and games are used for schedu-
lability under resource constraints. Another work in this area is [24], which is
using timed automata extended with tasks for solving scheduling problems under
uncertainty. Other approaches to solve worst-case scheduling problems are re-
ported in [12,28,34]. Interface theories with shared variables were also proposed
in [13] and [16, 17]. However, unlike in SI, the information about ownership of
the shared variables by individual components within a composed system is not
preserved, thus not making them suitable to express time-triggered scheduling
problems.

Other examples of component-design based methodologies include the BIP
toolset [6, 7] and its timed extension [3]. However, while BIP proposes features
that are definitively beyond the scope of our work (generation of code, compilers,
invariant-based verification), the approach does not permit to reason easily on
shared variables, and does not provide (shared) refinement or pruning operators.
Observe that several BIP-based approaches [9, 25] capable of restraining the
behaviors of a distributed system by avoiding deadlocks have the potential to
solve scheduling problems. However, a detailed study of (incremental) scheduling
problems has not been considered in the mentioned papers, hence it is not clear
whether TTEthernet scheduling would easily translate into the BIP framework.

2 Synchronous Interfaces

A synchronous interface comes equipped with a finite set X of typed variables
which is partitioned into sets X = extX∪ ctrX∪ sharedX of external, controlled,
and shared variables. External variables, also called input variables in interface
theories [19], are controlled by the environment. At each round, the environment
sets the values of external variables; the interface can read, but not modify them.
Controlled, or output variables, are controlled by the interface: in each round,
the interface assigns new values to all controlled variables. We further partition
ctrX = intfX∪privX into interface and private variables. Interface variables can
be seen by other SI, while private variables are local; hence private variables
do not influence the communication behavior of a SI, and we can safely ignore
them. We let obsX = X \ privX denote the set of observable variables. We use
unprimed symbols, such as x, to denote a latched value, and primed symbols,
such as x′, to denote an updated value of the variable x. We naturally extend this
notation to sets of variables. The function type(x) returns the type of variable
x. In particular, clock variables have the type C.

We follow the approach in [13] and introduce shared variables in the model, to
facilitate communication using shared resources. We let the environment ensure
the mutual exclusion property. Contrary to [13], we keep additional information
on which individual component in the system owns the shared variable at each
step of computation. In every computation step, the environment gives write
access to a shared variable to at most one interface active in the system. We
will define interface semantics following a game-oriented approach, hence this
assumption is not a restriction.

4 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

Definition 1. A guarded command γ from variables X to Y consists of a guard
pγ and an action Actγ . The guard pγ is a predicate over X, and Actγ is either
a discrete action: an expression αγ from X to Y , or a wait action, using the
keyword wait.

We use γ[pγ \ p′γ] for the operation that consists in replacing the predicate pγ
by the predicate p′γ . Given a guarded command γ, the function π(γ) returns the
associated predicate pγ Control and shared variables are collected into atoms,
which additionally contain guarded commands which specify rules for initializing
and updating variables.

In interface theories, non-determinism reflects the fact that, given all the
available information at a given step of the execution of an interface, several
behaviors are possible for its next step. We let the environment resolve non-
deterministic choices; this is implemented by assuming that for each x ∈ sharedX,
there exists a non-empty set isCtrx = {isCtrAx }A∈M of external variables, one for
each atom A ∈M potentially controlling x. A variable isCtrAx indicates whether
atom A can safely write x at a given step of computation.

Definition 2. An X-atom A consists of a declaration and a body of guarded
commands. We distinguish between atoms defined on controlled variables ctr(A)
and those defined on shared variables shared(A).
– The atom declaration for ctr(A) consists of sets ctrXA ⊆ ctrX, readXA ⊆
X, and waitXA ⊆ X\ctrXA of controlled, read, and awaited variables.
The atom body for ctr(A) consists of a set InitA of initial discrete guarded
commands from waitX′A to ctrX′A and a set UpdateA of update guarded
commands from readXA ∪ waitX′A to ctrX′A.

– The atom declaration for shared(A) consists of sets sharedXA ⊆ sharedX,
readXA ⊆ X, and waitXA ⊆ X\sharedXA of shared, read variables, and
awaited variables, with isCtrAx ∈ waitXA for all x ∈ sharedXA. The atom
body for shared(A) consists of a set Init(A) of initial discrete guarded com-
mands from waitX′A to sharedX′A and a set Update(A) of update guarded
commands from readXA ∪ waitX′A to sharedX′A.

We denote by PInit(A) = {pγ | γ ∈ Init(A)} and PUpdate(A) = {pγ | γ ∈
Update(A)} the sets of predicates declared in initial and in update guarded
commands of A. We say that a variable y awaits x, denoted y �A x, if y ∈
ctrXA ∪ sharedXA and x ∈ waitXA.

Definition 3. A synchronous interface (SI) M consists of a declaration XM

and a body AM , where XM is a finite set of variables, and AM = ctr(AM) ∪
shared(AM) is a finite set of XM -atoms for which

⋃
A∈ctr(AM) ctrXA = ctrXM

and
⋃
A∈shared(AM) sharedXA = sharedXM , ctrXA1 ∩ ctrXA2 = ∅ for all atoms

A1, A2 ∈ ctr(AM), and such that the transitive closure �M= (
⋃
A∈AM �A)+ is

asymmetric.

These conditions ensure that the atoms in M control exactly the variables in
ctrXM ∪ sharedXM , that each variable in ctrXM is controlled by exactly one

Synchronous Interface Theories and Time Triggered Scheduling 5

1 module Mex

2 external r : B, b : N, c : N
3 isCtrb

x : B, isCtrc
x : B;

4 shared x : N;

5 atom b reads b, x awaits r, isCtrb
x

6 init

7 [] ¬isCtrb
x
′ →;

8 update

9 [] isCtrb
x
′ ∧ ¬r′ → x′ := x+ b;

10 [] isCtrb
x
′ ∧ r′ → x′ := 0;

11 [] ¬isCtrb
x
′ →;

12 atom c reads c, x awaits r, isCtrc
x

13 init
14 [] ¬isCtrc

x
′ →;

15 update
16 [] isCtrc

x
′ ∧ ¬r′ → x′ := x+ c;

17 [] isCtrc
x
′ ∧ r′ → x′ := 0;

18 [] ¬isCtrc
x
′ →;

Fig. 1: An example of a SI

atom in AM , and that the await dependencies between variables in AM are
acyclic. A linear order A1, . . . , An of the atoms in AM is consistent if for all
1 ≤ i < j ≤ n, the awaited variables in Ai are disjoint from the control variables
in Aj . The asymmetry of �M guarantees the existence of a consistent order of
atoms in AM . We denote by PM =

⋃
A∈AM PInit(A) ∪

⋃
A∈AM PUpdate(A) the

set of all predicates declared in the guarded commands of M . Remark that in
our examples, we name atoms by the set of variables they control. This is only
possible when all atoms have disjoint sets of controlled variables.

Example 1. Consider the SI Mex given in Figure 1. Mex consists of two external
Integer variables b, c, three external Boolean variables r, isCtrb

x, isCtrc
x, and a

shared Integer variable x. Intuitively, Mex models a simple additive controller
that works as follows. The shared variable x is either incremented or reset at each
time step in which the module controls x. Mex controls x whenever (isCtrb

x ∨
isCtrc

x = t). In this case, if r = t, then x is reset. Else, if Atom b (resp. c)
controls x (isCtrb

x = t), then x is incremented by the value of b (resp. c). If none
of these atoms assign a value to the variable, then the environment will do.

3 Semantics

The intuition about the semantics of a SI is as follows: in each round, the en-
vironment assigns arbitrary values of correct type to external variables. Then,
the atoms are executed in a (abitrary) static consistent order. As we do not
assume that modules are input-enabled, there may be valuations of the external
variables for which one or several atoms cannot be executed. Such configurations
result in deadlock states. A given valuation of the variables is reachable if there
exists a succession of rounds of the atom ending in this valuation. The appendix
contains an illustration of this intuition.

Formally, the semantics of a SI is given by a labeled transition system (LTS).
Given a SI M with set of variables XM , we denote by V [XM] the set of valuations
on variables in XM . A state s of an interface M is a valuation in V [XM]. We
write ΣM = ΣXM for the set of states of M . Given a state s ∈ ΣM and Y ⊆ XM ,
we denote by s[Y] the projection of the state s to the valuations of variables in Y .
Note that we will define the semantics in a way which keeps enough information
about the syntax to be able to go back from semantics to syntax; this is important

6 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

for several of the operations which we define in the next section, as these are
defined only at the semantics level.

Given a state s of an interface M , we denote by safesvM (s) the predicate
that indicates whether the state is safe with respect to shared variables in M ;

formally, safesvM (s) = t iff ∀x ∈ sharedXM ,
∧
A,A′∈M,A6=A′ s[isCtrAx]∧s[isCtrA

′

x] =
f. Intuitively, a state s of M is safe if and only if, for all shared variables x, there
is at most one atom that controls x.

Definition 4. Let X, Y , Z ⊆ Y be sets of variables and γ a guarded command
from X to Y . We define the semantics [[γ]] ⊆ ΣX ×ΣY of γ as follows:
– If γ is of the form pγ → αγ , where αγ : V [X] → V [Z], then (s, t) ∈ [[γ]] iff

(1) s |= pγ ; (2) ∀z ∈ Z, t[z] = α(s)[z]; (3) ∀y ∈ Y \Z such that type(y) 6= C,
t[y] = s[y] and (4) ∀y ∈ Y \Z such that type(y) = C, t[y] = s[y] + 1

– If γ is of the form pγ → wait, then (s, t) ∈ [[γ]] iff (1) s |= pγ , (2) ∀y ∈ Y
such that type(y) = C, t[y] = s[y] + 1, (3) ∀y ∈ Y such that type(y) 6= C,
t[y] = s[y], and (4) t |= pγ .

Let A be an atom from X to Y and let ΓA be either Init(A) or Update(A), i.e.,
a finite set of guarded commands. Then, ΓA defines a relation [[ΓA]] ⊆ ΣX ×ΣY
such that (s, t) ∈ [[ΓA]] iff (s, t) ∈ [[γ]] for some γ ∈ ΓA.

The semantics of SI is a LTS whose states represent valuations of variables, and
whose transitions correspond to complete rounds of updates for all atoms Ai in
a static consistent order A1, . . . An.

Definition 5. The semantics of a SI M is the LTS [[M]] = (SM , S
0
M ,→M , LM)

with SM = V [XM] ∪ {sinit}, S0
M = {sinit}, LM ⊆ PAMM the set of all functions

l : AM → PM for which l(A) ∈ PA for all A ∈ AM , and →M defined as follows:
– (sinit, l, t) ∈ →M iff safesvM (t) and there exist γ1, . . . , γn such that for all

1 ≤ i ≤ n, γi ∈ Init(Ai), l(Ai) = π(γi) and there exists s0 ∈ V [XM] such
that t = [[Init(An)]] ◦ · · · ◦ [[Init(A1)]](s0)

– (s, l, t) ∈ →M iff safesvM (s), safesvM (t), and there exist γ1, . . . , γn such that
for all 1 ≤ i ≤ n, γi ∈ Update(Ai), l(Ai) = π(γi) and t = [[Update(An)]] ◦
· · · ◦ [[Update(A1)]](s)

Note that we label each transition by the guarded commands that are effectively
executed during the round, hence we preserve full syntactic information about
the interface in its semantics. An illustration of this is given in the appendix. In
the following, we may omit this labelling in our notations when we do not need
the information.

A trajectory of a SI M is a finite sequence of states s0, s1, . . . , sn in [[M]]
such that: (1) s0 = sinit; (2) (si, si+1) ∈ →M for all 0 ≤ i < n; and (3) no
deadlock states are reachable from sn. The sequence s1[obsXM], . . . , sn[obsXM]
of observable valuations is called a trace of M ; the trace language L(M) of M
is the set of traces of M . In our optimistic approach, computing environments
that cannot result in deadlock states amounts to projecting L(M) onto the
external variables. Note that we can effectively compute these environments if
the interface has a finite representation of its trace language, i.e. if [[M]] has a
finite state space. We say that M is well-formed if L(M) 6= ∅.

Synchronous Interface Theories and Time Triggered Scheduling 7

module M module GS(M)
external a : N; external a : N;
interface b, c : N; interface b, c : N;

atom b awaits a atom c awaits b atom b awaits a atom c awaits b
initupdate initupdate initupdate initupdate

[] a′ ≤ 5→ b′ := 1; [] b′ ≤ 1→ c′ := 1; [] a′ ≤ 5→ b′ := 1; [] b′ ≤ 1→ c′ := 1;
[] a′ ≥ 2→ b′ := 2; [] false→ b′ := 2;

Fig. 2: An example of guard strengthening. Left: M , right: GS(M)

4 Operations

We now describe some operations on SI which will allow us to use SI as an inter-
face theory. Note that we will also use some of these operations for incremental
scheduling in Section 5; but notably shared refinement is not used in incremental
scheduling, yet a necessary ingredient in any interface theory.

Guard strengthening. Given a well-formed interface M , we are interested in
computing an equivalent module (in terms of infinite executions) in which no
deadlock states are reachable. This guard strengthening GS(M) is computed by
strengthening the guards of M in such a way that deadlocks are forbidden. An
illustration of guard strengthening is given in Figure 2.

Semantically, the construction relies on a notion of recursively pruning dead-
lock states together with states which inevitably lead to them: Let M be a SI
and let [[M]] = (SM , S

0
M ,→M , LM) be its associated LTS. Define the function

SuccX : SM × V [X]→ 2SM by

SuccX(q, v) = {q′ | (q, q′) ∈ →M and q′[X] = v} .

This function gives all successors of q in [[M]] which for variables in X match
the valuation v. Next we define a mapping Pred which outputs the controllable
predecessors of a subset B ⊆ SM :

Pred(B) = {s | ∀v ∈ V [extXM] :

SuccextXM (s, v) 6= ∅ ⇒ SuccextXM (s, v) ∩B 6= ∅}.

Denote by Pred∗ the transitive closure of Pred, let B = {s ∈ SM | ∀t ∈ SM :
(s, t) 6∈ →M} be the deadlock states and B∗ = Pred∗(B). Intuitively, these are
states from which the environment cannot prevent M from reaching a deadlock.

The pruning of [[M]] is then given by the LTS ρ([[M]]) = (SM \ B∗, S0
M \

B∗,→′M , LM), where →′M= {(s, l, s′) ∈ →M | s′ /∈ B∗}. Intuitively, pruning
[[M]] removes all bad states and transitions leading to them, which reduces the
state-space of M without affecting its language. Note that if M is not well-
formed, then ρ([[M]]) has no initial states; we then say that the pruning of M is
empty.

For guard strengthening at the syntactic level, matching the pruning of the
semantics, we proceed as follows: for each initial set of guarded commands Init(A)
of an atom A in AM and γ ∈ Init(A), the predicate pγ ∈ γ is replaced by

p̃γ =
∨

(sinit,t∈SM\B∗,(s,l,t)∈→M ,l(A)=pγ)

∧
(x∈XM [waitXA]) x

′ = t[x].

8 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

Similarly, for each update set of guarded commands Update(A) and γ ∈ Update(A),
the predicate pγ ∈ γ is replaced by

p̃γ =
∨

(s,t∈SM\B∗,(s,l,t)∈→M ,l(A)=pγ)∧
(x∈XM [waitXA]) x

′ = t[x] ∧
∧

(x∈XM [readXA]) x = s[x].

Intuitively, this method amounts to an enumeration, for every guarded com-
mand, of possible valuations of read and awaited variables that cannot reach a
bad state. Replacing original predicates with associated enumerations prevents
exactly bad behaviors. It follows, by construction, that [[GS(M)]] ≡ ρ([[M]]),
hence also that M is well-formed if and only if [[GS(M)]] is not empty. As the
trace language L(M) by definition only includes traces which cannot be extended
to a deadlock state, we also have L(M) = L(GS(M)).

Parallel Composition. We introduce a synchronous parallel composition op-
eration which combines two compatible SI. We say that SI M and N are com-
posable if (1) the interface variables of M and N are disjoint; and (2) the await
dependencies between the observable variables of M and N are acyclic, that
is the transitive closure (�M ∪ �N)+ is asymmetric. Observe that the sets of
shared variables may overlap, and that private variables are not taken into con-
sideration here: these are not visible from the outside, hence in case of private
variables with the same name, we consider that they are different and belong to
different name spaces.

We say that two composable SI are compatible if there exists an environment
in which they can be composed without reaching deadlock states. Informally, the
synchronous composition P of M and N consists in the union of their atoms,
where some controlled variables in M can constrain external variables in N , and
vice-versa. An execution of P thus consists in an update of all the remaining
external variables, followed by an update of the controlled and shared variables
of M and N .

Definition 6. Let M and N be two composable SI. Define an intermediate mod-
ule P by privXP = privXM ∪ privXN , intfXP = intfXM ∪ intfXN , extXP =
extXM ∪ extXN\intfXP , sharedXP = sharedXM ∪ sharedXN , and finally, AP =
AM ∪AN . M and N are compatible if P is well-formed, in which case we define
M ‖ N = GS(P).

The below theorem shows that parallel composition is associative, hence allowing
incremental composition. The theorem follows directly from the fact that pruning
does not affect the trace language.

Theorem 1. For composable SI M1, M2, M3, L(M1 ‖ (M2 ‖ M3)) = L((M1 ‖
M2) ‖M3).

Refinement. Refinement of SI allows comparing interfaces. Informally, if N
refines M , then N works in at least all the environments where M works,

Synchronous Interface Theories and Time Triggered Scheduling 9

and all the behaviors of N defined in these environments are also behaviors
of M . Hence refinement for SI is similar to alternating simulation for I/O Au-
tomata [4]. For valuations v ∈ V [extXM], we define the set ctrM (v) of shared
variables that are controlled by M according to v by ctrM (v) = {x ∈ sharedXM |
(
∨
A∈M v[isCtrAx]) = t}, and we let noctrlM (v) = extXM ∪(sharedXM \ctrM (v)).

Definition 7. Let M , N be SI and [[M]] = (SM , S
0
M ,→M), [[N]] = (SN , S

0
N ,→N).

We say that N refines M, written as N ≤ M , if extXM ⊆ extXN , intfXN ⊆
obsXM , sharedXN = sharedXM , and there exists a relation R ⊆ SN × SM such
that (sinit, tinit) ∈ R and for all (s, t) ∈ R, we have
– (s, t) 6= (sinit, tinit) implies that s[extXM ∪ intfXN ∪sharedXM] = t[extXM ∪

intfXN ∪ sharedXM]
– for all v ∈ V [extXM] and v′ ∈ V [sharedXM \ ctrM (v)] it holds that if

Succnoctrl(v)(t, v ∪ v′) 6= ∅, then also Succnoctrl(v)(s, v ∪ v′) 6= ∅, and then
for all s′ ∈ Succnoctrl(v)(s, v∪ v′), there exists t′ ∈ Succnoctrl(v)(t, v∪ v′) such
that s′Rt′.

The relation between refinement and trace languages is as follows: for a SI M ,
let adm(M) = {w ∈ extX∗M | ∃w′ ∈ L(M).w′↓extXM = w} be the set of all
admissible external valuations; here w′↓extXM denotes the projection of w′ to
external variables, hence we are collecting all traces of valuations of external
variables which do not block execution of M . Then:

Theorem 2. For SI N , M with N ≤ M we have {w ∈ L(N) | w↓extXM ∈
adm(M)} ⊆ L(M).

The next theorem shows that SI theory supports independent implementability :
Refinement is compatible with parallel composition in the sense that components
may be refined individually. The proofs of both theorems are in the appendix.

Theorem 3. Given SI M1,M
′
1, M2, M ′2 with M1 and M2 compatible, if M ′1 ≤

M1 and M ′2 ≤M2, then M ′1 is compatible with M ′2 and M ′1 ‖M ′2 ≤M1 ‖M2.

Shared Refinement. We finish this section by mentioning that there also is a
notion of shared refinement for SI which supports component reuse in different
parts of a design; due to space constraints, we defer the formal details to the
appendix.

The shared refinement of two SI M1 and M2 is the SI M = M1∧M2 which is
the product of the state spaces in LTSs of M1 and M2, with appropriate transi-
tions ensuring that M1 and M2 evolve synchronously along the same transitions.
Hence M accepts inputs that satisfy any of the assumptions from M1 and M2,
and it provides outputs that satisfy both guarantees of M1 and M2. In partic-
ular, M can be used to implement two different aspects of a single component.
Moreover, M is the smallest such SI in the sense of the theorem below.

Theorem 4. Given two SI M1 and M2, we have that: (1) M1 ∧M2 ≤M1; (2)
M1 ∧M2 ≤ M2; and (3) for all SI M ′ such that M ′ ≤ M1 and M ′ ≤ M2, also
M ′ ≤M1 ∧M2.

10 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

5 Incremental TTEthernet Scheduling with SI

In this final section we present a methodology for solving scheduling problems
using the synchronous interface theory developed in this paper. We concentrate
on the particular application of TTEthernet scheduling [26], but our framework
is sufficiently general that it also allows application to other scheduling and
job-shop problems.

A specification of a TTEthernet network consists of a physical topology, a
set of frames and a set of time-triggered scheduling constraints. The physical
topology is an undirected graph consisting of a set of vertices, corresponding
to communicating devices (end-systems or switches), and edges, representing bi-
directional communication links, called data-flow links, between devices. A frame
specifies a message that is sent over the network, and is represented by a tree that
defines the route for the message delivery from a sender device to a set of receiver
devices. Every edge in the tree represents the frame on a particular data-flow
link, and is characterized by its period (relative deadline for the frame arrival
from the sender to its receiver), length (value denoting frame delivery duration
on the data-flow link) and offset (actual time slot at which the frame is sent from
a sender to a receiver device). Like in [33], we assume, without loss of generality,
that the frame period Period is the same for all frames on all data-flow links in the
specification. Finally, time-triggered scheduling constraints are defined over the
offset values of frames on data-flow links. To simplify presentation, we consider
only two most common types of TT scheduling constraints: (1) contention free
(CF) constraints that impose to any reasonable schedule to forbid simultaneous
presence of two frames on the same data-flow link; and (2) path-dependent (PD)
constraints that impose correct flow of a frame through data-flow links, ensuring
that a device cannot send a frame before receiving it.

In a TTEthernet network specification, the only non-fixed values are the
offset parameters of frames in data-flow links. A schedule that satisfies the spec-
ification corresponds to an assignment of concrete values to offset parameters
which satisfies all the constraints. The TT scheduling problem consists in com-
puting such a schedule from a specification.

We introduce our methodology by way of example below, but in essence, it
proceeds as follows:

1. Introduce a SI Clock which keeps track of time within a period.
2. Model each frame as a SI, including transmission length, path dependency,

and shared resources.
3. Use parallel composition and well-formedness check to incrementally reject

all non-feasible offset values.
4. If any feasible offset values remain after the preceding step, then any of these

constitutes a feasible schedule. Otherwise the problem is unschedulable.

Figure 3 depicts an example of a time-triggered scheduling problem for a par-
ticular TTEthernet network specification. The input to the scheduling problem
consists of the network topology N (Figure 3(a)) and two frames f1, f2 (Fig-
ures 3(b) and (c)). The contention-freedom and path-dependency constraints in-
duced by the frames are depicted in Figure 3(d). Solving the scheduling problem

Synchronous Interface Theories and Time Triggered Scheduling 11

A D

C

EB

(a)

A

C

D

lenAC
1 = 1

offAC
1

lenCD
1 = 2

offCD
1

(b)

E

B

C

D

offDE
2

lenCE
2 = 2

lenBC
2 = 3

offBC
2

offCD
2

lenCD
2 = 1

(c)

CD: offCD1 ≥ offCD2 + lenCD2 ∨
offCD2 ≥ offCD1 + lenCD1
offCD1 ≥ offAC1 + lenAC1

PD: offCE2 ≥ offBC2 + lenBC2
offCD2 ≥ offBC2 + lenBC2

(d)

f2

0

f1

1 2 3 4 5

CE

BC

CD

AC

f2

f2

f1

(e)

f1

f2

0

f2

f1

1 2 3 4 5

CE

BC

CD

AC

f2

(f)

Fig. 3: Specification of a TTEthernet network: (a) network topology N ; (b),
(c) specification of frame routes f1 and f2; (d) constraints on offset values; (e)
feasible schedule; (f) infeasible schedule

specified in Figure 3 consists in computing the feasible schedules that satisfy all
the requirements of the specification. Figures 3(e) and (f) depict two schedules,
one that satisfies and another that violates the specification.

module Clock
interface clkP : C;
atom clkP reads clkP

init
[] t→ clkP

′ := 0;
update

[] (clkP ≥ P− 1)→ clkP
′ := 0;

[] clkP < P− 1→ wait;

Fig. 4: SI Clock

To solve the example scheduling problem, we first
introduce a SI Clock as depicted in Figure 4 which
measures the relative time within every period us-
ing an explicit clock variable clkP . This clock is
visible to all other interfaces in the system. Then
we model the two frames f1 and f2 as two inde-
pendent interfaces M1 and M2; this will allow to
solve the problem incrementally. The application

of the well-formedness check operator on the composition Clock‖Mi computes
the set of all feasible partial schedules that are consistent with the scheduling
(path-dependency) constraints of the frame fi. We then use the parallel com-
position of Clock with M1 and M2 to combine compatible partial schedules for
f1 and f2, effectively removing all schedules that violate the contention-freedom
constraint.

We now encode the frame f1 as a SI M1, shown in Figure 5. The environment
(scheduler) owns the variables soffAC1 and soffCD1 (line 2), that are used to pro-
pose in the initial state the offset values for the message of frame f1 on the data
flow AC and CD, respectively. The interface M1 checks in line 8 whether the
proposed values satisfy the path-dependency constraint, and accordingly rejects
the offsets, or accepts them and copies them into the controlled variables offAC1

and offCD1 . The atom depicted in lines 6− 10 controls a local clock clkAC1 , that
measures the time length of the message transmitted on the data flow link AC

12 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

1 module M1

2 external soffAC
1 : [0, P), soffCD

1 : [0, P), clkP : C;
isCtr1xCD

: B;
3 interface offAC

1 : [0, P), offCD
1 : [0, P)

4 interface clkAC
1 : C; clkCD

1 : C;
5 shared xCD : B;

6 atom offAC
1 , offCD

1 awaits soffAC
1 , soffCD

1
7 init

8 [] soffCD
1
′ ≥ soffAC

1
′
+ lenAC

1 →
offAC

1
′
:= soff1AC

′, offCD
1
′
:= soffCD

1
′
;

9 update
10 [] t→;

11 atom clkAC
1 awaits offAC

1 , clkP

12 init

13 [] offAC
1
′
= 0→ clkAC

1
′
:= 0;

14 [] offAC
1
′ 6= 0→ clkAC

1
′
:= ⊥;

15 update

16 [] clkAC
1
′
< lenAC

1 ∧ clkP
′ < P − 1→ wait;

17 [] clkAC
1
′
= lenAC

1 ∧ clkP
′ < P → clkAC

1
′
:= ⊥;

18 atom clkCD
1 awaits offCD

1 , clkP
19 init

20 [] offCD
1
′ 6= 0→ clkCD

1
′
:= ⊥;

21 update

22 [] clkCD
1
′
< lenCD

1 ∧ clkP
′ < P − 1→ wait;

23 [] clkCD
1
′
= lenCD

1 ∧ clkP
′ < P → clkCD

1 := ⊥;

24 atom xCD awaits clkCD
1 , isCtr1xCD

25 initupdate

26 [] isCtr1xCD
∧ clkCD

1
′ ∈ [0, lenCD

1)→ xCD
′ := t;

27 [] ¬isCtr1xCD
∧ clkCD

1
′ 6∈ [0, lenCD

1)→

offAC
1 : 0

clkP : 4
clkAC

1 : ⊥

offCD
1 : 4

clkCD
1 : 0

isCtr1xCD
: 0

xCD : ∗

offAC
1 : 0

xCD : ∗
isCtr1xCD

: ∗
clkCD

1 : ⊥

clkP : 4

offAC
1 : 0

clkP : 0

xCD : ∗
isCtr1xCD

: ∗
clkCD

1 : ⊥
clkAC

1 : 0

clkAC
1 : ⊥

offAC
1 : 0

clkP : 1
clkAC

1 : ⊥
clkCD

1 : ⊥
isCtr1xCD

: ∗
xCD : ∗

offAC
1 : 0

clkAC
1 : ⊥

clkCD
1 : 0

isCtr1xCD
: 0

xCD : ∗

offAC
1 : 0

clkP : 3
clkAC

1 : ⊥
clkCD

1 : 1
isCtr1xCD

: 0

offAC
1 : 0

clkP : 3
clkAC

1 : ⊥
clkCD

1 : 1
isCtr1xCD

: 1
xCD : 1 xCD : ∗

offAC
1 : 0

clkP : 0

xCD : ∗
isCtr1xCD

: ∗
clkCD

1 : ⊥
clkAC

1 : 0

offAC
1 : 0

clkP : 1
clkAC

1 : ⊥
clkCD

1 : ⊥
isCtr1xCD

: ∗
xCD : ∗

offAC
1 : 0

clkP : 2
clkAC

1 : ⊥

offCD
1 : 4

clkCD
1 : ⊥

offAC
1 : 0

clkP : 3
clkAC

1 : ⊥
clkCD

1 : ⊥

isCtr1xCD
: ∗

xCD : ∗

isCtr1xCD
: ∗

xCD : ∗

offCD
1 : 4

offCD
1 : 4

offCD
1 : 4

offAC
1 : 0

clkP : 4
clkAC

1 : ⊥

offCD
1 : 4

clkCD
1 : 0

isCtr1xCD
: 1

xCD : 1

sinit

offCD
1 : 2

offCD
1 : 2

clkP : 2

offAC
1 : 0

clkP : 2

isCtr1xCD
: 1

xCD : 1

clkAC
1 : ⊥

clkCD
1 : 0

offCD
1 : 2 offCD

1 : 2

offCD
1 : 2 offCD

1 : 2

offCD
1 : 2

Fig. 5: Synchronous interface M1: (a) syntax; (b) part of its pruned semantics

by the frame f1. The clock clkAC1 is reset when the corresponding offset value is
reached, and the atom ensures that the transmission of the message is finished
before the end of the period P . The atom that controls the local clock clkCD1 ,
depicted in lines 18− 23, does the same monitoring of the message transmitted
by f1 on the data flow link CD. Finally, the last atom controls the shared vari-
able xCD, that models the shared resource (data flow link) CD. It ensures that
when the frame f1 is given access to the data flow link CD (via the external
variable isCtr1xCD), it is not preempted before the message transmission is done.

In order to compute the partial feasible schedules for f1, one needs to apply
the well-formedness check on Clock‖M1, which amounts to generating the pruned
semantics graph of this composition (also shown (in parts) in Figure 5). The well-
formedness checking results in pruning all states that lead to a deadlock, i.e.,
it removes all states where the offsets that are proposed by the environment
result in a violation of a scheduling constraint. The partial feasible schedules are
encoded as the valuations of offAC1 and offCD1 in the remaining initial states.

Synchronous Interface Theories and Time Triggered Scheduling 13

The encoding of the scheduling problem for f2 into a synchronous interface
M2, and the corresponding computation of the partial feasible schedules for f2 is
done in a similar way. Given the pruned transition systems ρ([[Clock‖M1]]) and
ρ(Clock‖[[M2]]), the parallel composition combines the two systems and removes
the joint behaviors that are not compatible. In our example, it amounts to remove
all the behaviors in which the mutual exclusion property on the access to the
shared variable xCD is violated, thus falsifying the contention-freedom scheduling
constraint. The pruned transition system of the composition encodes exactly all
feasible schedules of the original problem. Figure 6 depicts two fragments of the
transition systems for Clock‖M1 and Clock‖M2 and of the pruned semantics of
their composition.

offCD
2

clkCD
2

offBC
2

clkBC
2

isCtr2xCD
isCtr1xCD

clkCD
1

offCD
1

xCD

clkP

offAC
1

clkAC
1

offCE
2

clkCE
2

offCD
2

clkCD
2

isCtr2xCD
xCD

clkP

offBC
2

clkBC
2

offCD
1

clkCD
1

isCtr1xCD

offAC
1

clkAC
1

xCD

clkP

3

0

1

3
⊥
3
⊥1

1 0

1

⊥ 0
1 0

0 3
⊥
3
⊥2

1 0

2

1⊥
1 1 0

0 3 3
0⊥

1 0

3

⊥ ⊥ 0
1 0 1

si ti (si, ti)

offCE
2

clkCE
2

0

0

0

0

1

2

3

4

⊥ 0

1⊥

⊥

⊥

0 ⊥
∗ ∗

1

1
1 1

1 1

∗ ∗

∗ ∗

0

(a)

0 1

0 1

0 1
⊥

∗ ∗

0 1
⊥

∗ ∗

1

2

3

4

⊥ 0
1 1

1⊥
1 1

⊥

⊥

0 ⊥
∗ ∗
0

0
0 ⊥
∗ ∗

3 3
⊥

0 ⊥
∗ ∗

⊥

0
0 ⊥
∗ ∗

3 3
⊥

0
0 ⊥
∗ ∗

3 3
⊥

0
0 ⊥
∗ ∗

3 3
⊥

0

1

2

3

4

(b)

0

∗ ∗

3
1
3
⊥

∗
⊥

1 0

4

⊥ ⊥

(c)

s1

s2

s3

s4

s5 s10

s9

s8

s7

s6 t1

t2

t3

t4

t5

0
∗ ∗
0

3
⊥
3
⊥

∗
⊥ 0

3
⊥
3

1

1⊥
∗ ∗∗

0 3
⊥
3
⊥2

0

2

0⊥
1 1 0

00 2

0
⊥

02
⊥

2

0 3 3
0⊥

0

3

1 0
1? 1

2
⊥

0
∗ ∗
0

⊥⊥
∗
⊥ 0

(s1, t1)

(s2, t2)

(s3, t3)

(s4, t4)

(s5, t5)

(s6, t1)

(s7, t2)

(s8, t3)

(s9, t4)

sinit tinit (sinit, tinit)

.

2

2

2

2

30103302010

Fig. 6: Composition of M1 and M2: fragment of (a) ρ([[M1]]); (b) ρ([[M2]]) and
(c) ρ(ρ([[M1]]) || ρ([[M2]]))

6 Conclusion and Further Work

We present in this paper a simple yet powerful model for synchronous interfaces.
Contrary to most other interface models one finds in the literature, the modeling
language we use is inspired by a specific application domain, resulting in a model
that resembles a high-level programming language, hence is easy to use. At the
same time, we allow explicit use of time and of shared variables that are treated in

14 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

a flexible way, resulting in a rich model which satisfies most common engineering
needs. We develop our model into an interface theory, allowing for high-level
reasoning and component-based design using (shared) refinement, composition
and pruning. We propose to use our interface theory as an elegant solution for
incremental computation of time-triggered schedules.

In the future, we plan to implement the SI framework and apply it to differ-
ent scheduling problems. We also believe that the state-based type of analysis on
SI makes our approach a good candidate for development of efficient and flex-
ible heuristics, by assigning value functions to states and restricting the search
space to the assigned values. Finally, we plan to extend our approach in order
to incorporate deeper information about the platform on which the system is
running, like in the spirit of recent works [5,27] done in the context of untimed
BIP and UPPAAL frameworks.

References

1. F. Aarts and F. W. Vaandrager. Learning I/O automata. In CONCUR, volume
6269 of LNCS, pages 71–85. Springer, 2010.

2. Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed automata. TCS,
354(2):272–300, 2006.

3. T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time
applications. In EMSOFT, pages 229–238. ACM, 2010.

4. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In CONCUR ’98, volume 1466 of LNCS, pages 163–178. Springer, 1998.

5. A. Basu, S. Bensalem, P. Bourgos, M. Bozga, K. Huang, and J. Sifakis. Rigorous
system level modeling and analysis of mixed HW/SW systems. In Memocode.
IEEE, 2011. to appear.

6. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and
J. Sifakis. Rigorous component-based system design using the BIP framework.
IEEE Software, 28(3):41–48, 2011.

7. A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis. Using BIP for modeling
and verification of networked systems – a case study on TinyOS-based networks.
In NCA, pages 257–260. IEEE Computer Society, 2007.

8. S. S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker. On weak modal compati-
bility, refinement, and the MIO workbench. In TACAS, pages 175–189, 2010.

9. S. Bensalem, M. Bozga, S. Graf, D. Peled, and S. Quinton. Methods for knowledge
based controlling of distributed systems. In ATVA’10, volume 6252 of LNCS, pages
52–66. Springer, 2010.

10. A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofro-
nis. Multiple viewpoint contract-based specification and design. In FMCO, volume
5382 of LNCS, pages 200–225. Springer, October 2008.

11. P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in
weighted timed automata with energy constraints. In FORMATS, pages 33–47,
2008.

12. A. Burns. Preemptive priority based scheduling: An appropriate engineering ap-
proach. PRTS, pages 225 – 248, 1994.

13. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Synchronous
and bidirectional component interfaces. In CAV, volume 2404 of LNCS, pages
414–427, 2002.

Synchronous Interface Theories and Time Triggered Scheduling 15

14. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. ECDAR: An
environment for compositional design and analysis of real time systems. In ATVA,
volume 6252 of LNCS, pages 365–370. Springer, 2010.

15. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed I/O
automata: a complete specification theory for real-time systems. In HSCC, pages
91–100. ACM ACM, 2010.

16. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable
interfaces. In FroCos, volume 3717 of LNCS, pages 81–105. Springer, 2005.

17. L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with
an application to timed games. In CAV, volume 4590 of LNCS, pages 108–120.
Springer, 2007.

18. L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC / SIGSOFT FSE,
pages 109–120, 2001.

19. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design.
In EMSOFT, volume 2211 of LNCS. Springer, 2001.

20. L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In EMSOFT,
volume 2491 of LNCS, pages 108–122. Springer, 2002.

21. L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with
component reuse. In EMSOFT, pages 79–88. ACM, 2008.

22. A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental schedulability analysis
of hierarchical real-time components. In EMSOFT, pages 272–281. ACM, 2006.

23. M. Emmi, D. Giannakopoulou, and C. S. Pasareanu. Assume-guarantee verification
for interface automata. In FM, volume 5014 of LNCS, pages 116–131. Springer,
2008.

24. E. Fersman, P. Krčál, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. I&C, 205(8):1149–1172, 2007.

25. S. Graf, D. Peled, and S. Quinton. Monitoring distributed systems using knowledge.
In FMOODS/FORTE’11, volume 6722 of LNCS, pages 183–197. Springer, 2011.

26. H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered
ethernet (TTE) design. In ISORC’05, pages 22–33. IEEE Computer Society, 2005.

27. M. Mikučionis, K. G. Larsen, J. I. Rasmussen, B. Nielsen, A. Skou, S. U. Palm,
J. S. Pedersen, and P. Hougaard. Schedulability analysis using Uppaal: Herschel-
Planck case study. In ISoLA (2), volume 6416 of LNCS, pages 175–190. Springer,
2010.

28. S. Palm. Herschel-Planck ACC ASW: sizing, timing and schedulability analysis.
Tech. rep., Terma A/S, 2006.

29. S. Quinton and S. Graf. Contract-based verification of hierarchical systems of
components. In SEFM’08, pages 377–381. IEEE Computer Society, 2008.

30. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone.
Modal interfaces: unifying interface automata and modal specifications. In EM-
SOFT, pages 87–96. ACM, 2009.

31. J. I. Rasmussen, K. G. Larsen, and K. Subramani. On using priced timed automata
to achieve optimal scheduling. FMSD, 29(1):97–114, 2006.

32. I. Shin and I. Lee. Compositional real-time scheduling framework. In RTSS, pages
57–67. IEEE Computer Society, 2004.

33. W. Steiner. An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks. In RTSS, pages 375–384, 2010.

34. Terma A/S. Software timing and sizing budgets. Tech. rep., Terma A/S, Issue 9.

16 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

Appendix

Semantics of SI: Examples

Example 2. The execution of a SI is illustrated in Figure 7a, where the atoms
are executed in a consistent order A1, . . . , An. The SI reads latched variables,
updates external variables and writes updated control variables. In order to
proceed, some atoms may also need to read updated values of control variables
that are controlled by preceding atoms in the consistent order. This is illustrated
along with details of the execution of a round in Figure 7b.

Example 3. Consider again the SI Mex from Example 1. A part of the unfolding
of the semantics [[Mex]] of Mex is given in Figure 8. Observe that state s4 of
Figure 8 cannot be reached because it is not safe, as the two atoms are controlling
the shared variable x at the same time.

Proofs from Section 4

Proof (of Theorem 2). If the valuations of external variables in w are such that
they do not block M , then we have Succnoctrl(v)(t, v∪v′) 6= ∅ in every correspond-
ing step of the refinement relation, hence any valuation in Succnoctrl(v)(s, v ∪ v′)
can be matched by one in Succnoctrl(v)(t, v ∪ v′). ut

Proof (of Theorem 3). The conditions on composability of M ′1 and M ′2 are clearly
satisfied, and the environment for which M1 and M2 can be composed without
reaching deadlock states has the same property for M ′1 and M ′2, hence M ′1 ‖M ′2
exists. Letting R1 ⊆ SM ′1 × SM1

, R2 ⊆ SM ′2 × SM2
be the refinement relations,

we see that R1 ×R2 is a refinement relation showing M ′1 ‖M ′2 ≤M1 ‖M2. ut

Shared Refinement

We define shared refinement of SI at the semantics level. The obtained LTS
represents the intersection of the observable traces of both original SI.

Definition 8. Let M , N be two SI with [[M]] = (SM , S
0
M ,→M) and [[N]] =

(SN , S
0
N ,→N), and assume extXM ∩ intfXN = extXN ∩ intfXM = ∅. The shared

refinement of [[M]] and [[N]] is the LTS [[M ∧N]] = (S, s0,→) given by
– S ⊆ V [XM∪XN∪{m,n}]∪{sinit}, with m and n two fresh Boolean variables,

and such that s ∈ S iff s[XM] ∈ SM and s[m] = t, or s[XN] ∈ SN and
s[n] = t;

– s0 = sinit and s0[n] = s0[m] = t

– for all s, s′ ∈ S, s→ s′ iff one of the three following conditions holds:
(1): s[m] = s[n] = t and

either

{
s[XM]→M s′[XM] ∧ s′[m] = t

s[XN]→N s′[XN] ∧ s′[n] = t

Synchronous Interface Theories and Time Triggered Scheduling 17

extX

ctrX

sharedX

A2

An

A1

sharedX′
ctrX′
extX′

(a) Execution of a SI

Ai

∪ik=1ctrX′
Ak

extX′

Ai+1

∪i+1
k=1ctrX′

Ak

extX′

∪i+2
k=1ctrX′

Ak

extX′

readXAi

waitX′
Ai

Updated values

ctrX′
Ai

readXAi+1

waitX′
Ai+1

ctrX′
Ai+1

Latched values

sharedX

ctrX

extX

(b) Part of a round

Fig. 7: Illustrations of the execution of a SI and details about a round.

or



s[XM]→M s′[XM] ∧ s′[m] = t

s′[intfXN ∪ (ctrN (s′[extXN]) ∩ ctrN (s[extXN]))] =
s[intfXN ∪ (ctrN (s[extXN]) ∩ ctrN (s′[extXN]))]

s′[n] = f

∀t′ ∈ V [XN], if s[XN]→N t′, then
t′[extXN ∪ (sharedXN \ ctrN (s′[extXN]))] 6=
s′[extXN ∪ (sharedXN \ ctrN (s′[extXN]))]

or



s[XN]→N s′[XN] ∧ s′[n] = t

s′[intfXM ∪ (ctrM (s′[extXM]) ∩ ctrM (s[extXM]))] =
s[intfXM ∪ (ctrM (s[extXM]) ∩ ctrM (s′[extXM])]

s′[m] = f

∀t′ ∈ V [XM], if s[XM]→M t′, then
t′[extXM ∪ (sharedXM \ ctrM (s′[extXM]))] 6=
s′[extXM ∪ (sharedXM \ ctrM (s′[extXM]))]

18 Delahaye, Fahrenberg, Henzinger, Legay, Ničković

isCtrbx : 0
isCtrcx : 0

r : 0
b : 1
c : 8 x : 0

s2s1

r : 0
b : 2
c : 3

isCtrbx : 0
isCtrcx : 0

x : 5

.

sinit

. . .

.
r : 0
b : 4
c : 5

isCtrbx : 1
isCtrcx : 1
x :undef

s4

isCtrbx : 0
isCtrcx : 1

r : 1
b : 4
c : 5 x : 0

s5s3

r : 0
b : 4
c : 5

isCtrbx : 1
isCtrcx : 0

x : 7

Fig. 8: Semantics [[Mex]] of the SI Mex

(2): s[m] = t, s[n] = f and
s[XM]→M s′[XM] ∧ s′[m] = t

s[intfXN ∪ (ctrN (s[extXN]) ∩ ctrN (s′[extXN]))] =
s′[intfXN ∪ (ctrN (s′[extXN]) ∩ ctrN (s[extXN]))]

s′[n] = f

(3): s[m] = f, s[n] = t and
s[XN]→N s′[XN] ∧ s′[n] = t

s[intfXM ∪ (ctrM (s[extXM]) ∩ ctrM (s′[extXM]))] =
s′[intfXM ∪ (ctrM (s′[extXM]) ∩ ctrM (s[extXM]))]

s′[m] = f

The intuition behind this construction is that m and n keep track of whether
M and N still can move or previously have reached a deadlock. If no deadlock
has been reached previously (1), then either both M and N take a transition,
or only one does because the other has reached a deadlock (and then n or m
are updated to f). If N previously has reached a deadlock, but M still can take
transitions (2), then this information is remembered in s′[m] and s′[n], and we
demand (as we do in the deadlock parts of case (1)) that the variables belonging
to N do not change their values. Case (3) is symmetric to case (2).

The next theorem shows that shared refinement acts as a greatest lower
bound : Any behavior admitted by M and N is also admitted by M ∧N and vice
versa.

Theorem 5. Given two SI M and N , we have that: (1) M ∧ N ≤ M ; (2)
M ∧ N ≤ N ; and (3) for all SI M ′ such that M ′ ≤ M and M ′ ≤ N , also
M ′ ≤M ∧N .

Proof. The first two claims are clear by construction: if there is an environment in
which M (or N) admits a transition, then m = t (or n = t) in the corresponding

Synchronous Interface Theories and Time Triggered Scheduling 19

state in M ∧N and the corresponding transition exists in M ∧N . For the third
claim, let RM ⊆ SM ′ × SM , RN ⊆ SM ′ × SN be refinement relations and define
R ⊆ SM ′ × SM∧N by

R = {(S0
M ′ , sinit)} ∪ {(v′, v) | (v′, v[XM]) ∈ RM , (v′, v[XN]) ∈ RN ,

m = t iff v[XM]→M , n = t iff v[XN]→N}

Here we have used v[XM] to denote the restriction of the valuation v to variables
in M and v[XM]→M to mean that M is not deadlocked with valuations v.

To show that R is a refinement relation witnessing M ′ ≤M ∧N , let (v′, v) ∈
R. If v is not deadlocked, then by definition of M ∧N also M or N (or both) are
not deadlocked in the corresponding valuations. Hence also M ′ is not deadlocked
in v′, and then any transition v′ →M ′ ṽ

′ in M ′ can be matched by corresponding
transitions in M and N , hence also in M ∧N . ut

