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Optimal Immediately-Decodable Inter-Session Network Coding (IDNC)
Schemes for Two Unicast Sessions with Hard Deadline Constraints

Xiaohang Li, Chih-Chun Wang, and Xiaojun Lin

Abstract— In this paper, we study inter-session network
coding for sending two unicast sessions over an unreliable
wireless channel. Each unicast session transmits a stored video
file, whose packets have hard sequential deadline constraints.
We first characterize the capacity region (with inter-session
network coding) for the transmission rates of the two unicast
sessions under heterogeneous channel conditions and hetero-
geneous deadline constraints. We then develop immediately-
decodable network coding (IDNC) schemes for controlling
packet transmissions for the unicast sessions subject to hard
deadline constraints. In contrast to our prior work that focuses
on a single multicast session with homogeneous channel con-
ditions and deadline constraints, the design and performance
analysis of the IDNC scheme is much more complicated for
unicast-sessions because of the asymmetry due to heterogeneous
channel conditions and heterogeneous deadlines. Nonetheless,
we establish the asymptotic optimality of the proposed IDNC
scheme when the file sizes are sufficiently large.

I. INTRODUCTION

The advance of broadband wireless technologies has en-
abled a number of innovative wireless services. It is now
common to use multimedia services in 3G/4G cellular net-
works or WiFi, most of which have stringent Quality-of-
Service (QoS) requirements. Among them, video streaming
over wireless networks has gained a significant amount of
interest. For such multimedia traffic, unicast is the prevalent
mode of operation since different users often request different
contents. In this paper, we study inter-session network coding
for sending two unicast sessions over an unreliable wireless
channel. Each unicast session downloads a stored-video file
from the base-station (BS). Note that in video streaming,
each packet has a delivery deadline, which is sequentially
placed along the time horizon (e.g., the first frame’s deadline
is at the 1/30 second, while the second frame’s deadline
is at the 2/30 second, and so on). If a packet is not
delivered before the deadline, it is considered useless to the
receiver. Unfortunately, the random and unreliable wireless
channel makes it much more difficult to meet the deadline
constraints of video packets, while maintaining a high system
throughput at the same time. Meanwhile, the asymmetry
due to heterogeneous channel conditions and heterogeneous
deadlines imposes further difficulties for jointly scheduling
multiple deadline-constrained unicast sessions. In this paper,
we will focus on using inter-session network coding (NC) to
improve the deadline-constrained streaming throughput in a
single-cell.

X. Li, C.-C. Wang and X. Lin are with Center for Wireless Systems and
Applications, School of ECE, Purdue University, West Lafayette, IN, 47907.
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It is well-known that without deadline constraints, NC
can increase the throughput of communication networks [1],
[2] while still admitting efficient implementation [3], [4].
While it has been shown that NC is particularly attractive
for wireless broadcast in our prior work [5], [6], it is notable
that NC can also improve the throughput for multiple unicast
sessions as well. However, if not properly designed, NC
could introduce “decoding delay,” i.e., the receiver may not
be able to decode the information packet right away. For
example, in the generation-based NC schemes [4], each user
must accumulate a sufficient number of coded packets from a
generation before it can decode any information packet. Such
a long decoding delay can be detrimental to delay-sensitive
applications such as video streaming. Hence, how to design
a NC scheme subject to the deadline constraints becomes a
challenging problem.

Existing studies have discussed different aspects of inter-
session NC transmission schemes. However, they either do
not account for the lossy wireless network setting, or do
not consider the delay aspect. Specifically, [7]–[9] discuss
how to use NC to control the inter-session network traffic,
but consider lossless channels only. [10] proposes a prac-
tical network coding scheme for multiple unicast-sessions
while [11], [12] characterize the corresponding information-
theoretic capacity region. [13] combines intra- and inter-
session network coding to enhance the throughput of unicast
flows. Recently, [14] characterizes the capacity of 2-session
unicast for an access-point network. These studies do not
focus on delay. In contrast, our paper focuses on the delay
aspect of multiple unicast sessions. Readers are referred
to [6], [15]–[19] and the references therein for the delay
analysis in the simpler setting of a single multicast/broadcast
session.

To combat the delay inefficiency of NC, recent practical
protocols have focused more on the “immediately decodable”
NC (IDNC) schemes [10], [20]. An IDNC scheme for two
unicast sessions has the following structure. Suppose that
two users d1 and d2 are interested in different packets X
and Y , respectively, and suppose that d1 has overheard
Y and d2 has overheard X . By exploiting this mismatch
of reception, the BS can send [X + Y ], which serves
two receivers simultaneously (and is thus more efficient
than traditional uncoded retransmission). Note that in this
example, the desired packet X (resp. Y ) can be immediately
decoded by d1 (resp. d2) upon receiving [X+Y ]. Compared
to the generation-based solutions, the IDNC schemes have
substantially smaller decoding delay, and incur much lower
encoding complexity since only binary field is used. As a



result, IDNC schemes generally demonstrate much faster
startup phase [21], and is more suitable for time-sensitive
applications.

In this work, we are interested in developing new IDNC
schemes to maximize the throughput for each unicast ses-
sion under the sequential deadline constraints of stored-
video streaming. Unfortunately, the performance analysis of
these IDNC schemes turns out to be highly non-trivial. In
contrast to our prior work [5], [6] that focus on a single
multicast session with homogeneous channel conditions and
deadline constraints, the design and performance analysis of
the IDNC scheme is much more complicated for unicast-
sessions because of the asymmetry due to heterogeneous
channel conditions and heterogeneous deadline constraints
(see further discussions in Section II-B). Nonetheless, we
establish the asymptotic optimality of the proposed IDNC
scheme when the file sizes are large. In this analysis, we
use a novel form of Lyapunov function, which reveals new
and intricate dynamics of an IDNC system. Our numerical
simulations show that the throughput of the IDNC scheme is
close-to-optimal even for small file sizes. We believe that our
study on the 2-user case uncovers non-trivial and interesting
insights that could serve as a precursor to the full design
and analysis for the case of a larger number of users. Prior
studies of similar IDNC schemes either do not consider
deadline-constraints at all [22], or only consider the multicast
case [6]. To the best of our knowledge, there have been no
analytical studies in the literature that analyze the throughput
of IDNC schemes subject to sequential deadline constraints
in the multi-unicast setting.

The rest of this paper is organized as follows. Section II
introduces the system model. Section III describes the IDNC
schemes for deadline-constrained streaming. Section IV pro-
vides the throughput analysis of IDNC schemes under het-
erogeneous deadline constraints and heterogeneous channel
conditions, which is the main contribution of this paper.
Section V presents the simulation results for the proposed
IDNC schemes. Section VI concludes the paper.

II. THE SETTING

We consider the scenario that the base station (BS) sends
two video files to 2 users, d1 and d2, respectively. The
two video files contain N1 and N2 packets, respectively
and are denoted by {X1,n}N1

n=1, {X2,n}N2
n=1, respectively.

We sometimes use session 1 and session 2 to refer to (the
transmission of) the data packets for d1 and d2, respectively.

We define the time when the BS starts transmission as
the time origin, and assume that all packets are available
at the BS at time 0. We assume slotted transmission. Each
packet Xj,n (j = 1, 2) has a deadline τj,n such that after
time slot τj,n the packet Xj,n is no longer useful for user j.
We assume that for j = 1, 2

τj,n = λj · n, n ∈ {1, . . . , Nj}

where λj is the (sequential) deadline increment for session
j. In this work, we consider the heterogeneous deadlines, i.e.

λ1 and λ2 may be different. We assume that λ1N1 = λ2N2,
that is, the total display time for each video file is the same1.

We consider random and unreliable wireless channels.
Both users can overhear the transmission with certain prob-
ability. For j = 1, 2, we use Cj(t) = 1 to denote the event
that user j can receive a packet successfully at time t; and
Cj(t) = 0, otherwise. In this work, we assume channels are
independently and identically distributed (i.i.d.) across time,
and C1(t) and C2(t) are independent with each other. The
success probabilities for channels 1 and 2 are denoted by p1
and p2, respectively. We consider heterogeneous channels
i.e., p1 may be different from p2. We assume that both p1
and p2 are known to the BS. We also assume that at the
end of each time slot, the BS has perfect feedback from
both users regarding whether the transmitted packet has been
successfully received by each user.

If coding is not allowed, the BS can only transmit uncoded
packets. Suppose packet X1,n is transmitted at time t, and
user 1 does not receive it. After receiving the feedback at
the end of time t, the BS may decide to retransmit X1,n;
or may decide to move to the next packet X1,n+1; or may
decide to send packet X2,n′ for the other session instead. In
one slot, the BS can add a set of unexpired packets together
and send the resultant coded packet to all users. We say that
(unexpired) packet X1,n is a (potential) coding opportunity
involving user 1 when packet X1,n has been received by user
2 but not by user 1. Symmetrically, (unexpired) packet X2,n

is a (potential) coding opportunity involving user 2 when
packet X2,n has been received by user 1 but not by user 2. A
coding opportunity of user 1 can be combined with a coding
opportunity of user 2 to form a coded packet. When coding
is used, we say that the original packet is correctly received
only if it can be “decoded” from the coded transmission
before the corresponding deadline.

Our goal is to design a coding/scheduling policy that
maximizes the number of successful (unexpired) packet
receptions. More specifically, let Dj(n) = 1 if user j can
successfully decode/recover Xj,n before its deadline τj,n;
and Dj(n) = 0, otherwise. We define the total number
of unexpired successes by N success

1
∆
=
∑N1

n=1 D1(n) and
N success

2
∆
=
∑N2

n=1 D2(n). Our goal is to maximize the nor-
malized throughput, defined as min

(
E{N success

1 }
N1

,
E{N success

2 }
N2

)
.

A. The Capacity Region

Consider an interval (0, T ]. Suppose that during this inter-
val, r1T packets from session 1 must be delivered. Hence,
transmitting those packets (either in a uncoded or a coded
way) would require r1T

p1
number of time slots on average. In

the same interval (0, T ], suppose r2T packets from session 2
must be delivered. Further, suppose that on average session 1
has more coding opportunities than that could be combined
with session 2’s coding opportunities. Note that even though

1If the display time of one file is longer than that of the other, then after
the completion time of the other file (before which both files were inter-
session coded) we can treat the remaining packets as a single, separate
unicast session since there is no other session to be coded with.



sometimes we may use NC to serve two destinations simul-
taneously, before doing so each session-2 packet needs to be
first transmitted uncodedly until it is received by at least one
of the destinations. Note that if this uncoded transmission is
received by d2, then no further transmission of this packet is
needed. If the uncoded transmission is received by d1, then
the following coded transmission is already counted in the
term r1T

p1
. As a result, the uncoded transmission of session-2

packets only takes r2·T
1−(1−p1)(1−p2)

number of time slots on
average. In this case, since the time slots used to convey
session-1 packets (either uncodedly or codedly) must be
disjoint from the time slots to transmit session-2 uncodedly,
we must have

r1T

p1
+

r2T

p1 + p2 − p1p2
≤ T

⇔ r1
p1

+
r2

p1 + p2 − p1p2
≤ 1. (1)

By swapping the roles of sessions 1 and 2, we also have
r2
p2

+
r1

p1 + p2 − p1p2
≤ 1. (2)

The work in [14] has shown that (1) and (2) together
describe the exact capacity region in a classic throughput-
based setting without hard deadline constraints. Note that
the capacity without deadlines is always an upper bound
of the capacity with deadlines. Moreover, we also notice
that when T = λ1N1 = λ2N2, the best possible perfor-
mance of a deadline-constrained system is to successfully
send N1 and N2 packets, respectively, while respecting the
deadlines. Therefore, the maximum possible effective-rate
of a deadline-constrained system becomes

(
1
λ1
, 1
λ2

)
. By

combining the above two observations, one can easily prove
the following upper bound:

Proposition 1: For any scheme in a deadline con-
strained system, the expected achievable throughput
vector

(
E{N success

1 }
λ1N1

,
E{N success

2 }
λ2N2

)
, defined in Section II, must be

in the following region:

R =
{
(r1, r2) : 0 ≤ r1 ≤

1

λ1
, 0 ≤ r2 ≤

1

λ2
, and (r1, r2)

satisfies (1) and (2) simultaneously
}
. (3)

B. The Challenges When Designing NC Schemes For
Deadline-Constrained Systems

To motivate our design choices, we describe in the follow-
ing a couple of challenges that will arise when designing an
IDNC scheme. We refer to the simpler setting of a single
multicast session with homogeneous channel (p1 = p2)
and homogeneous deadlines, which has been studied in [6].
Namely, both destinations d1 and d2 are interested in the
packets of the same video file (in contrast with the setting
of this work in which each dj is requesting different packets
Xj,n). For the single-multicast setting, the following IDNC
scheme turns out to be optimal even with deadline constraints
[6]: Whenever there coexist two coding-opportunities that
could be combined (one for d1 and one for d2), we mix

packets together and send a coded packet. Whenever there
are no coding opportunities that can be combined, among
those packets that have never been heard by any destination,
we choose the oldest one and keep sending it until it is
heard by at least one destination. If this uncoded packet is
received by the intended user, we move to the next packet.
Otherwise, it becomes a new coding opportunity. We then
check again whether there are coding opportunities that could
be combined, and so on. For the following discussion, we
refer to the above scheme as “the simple IDNC scheme.”

In the multiple-unicast setting, one might expect that the
simple IDNC scheme will also achieve the optimal capacity
region in (3). However, this is not true and the behavior is
quite different. Again consider the setting of homogeneous
channel p1 = p2 and homogeneous deadlines λ1 = λ2 but
with two coexisting sessions, {X1,n : ∀n} and {X2,n : ∀n}.
Suppose that the best possible scenario (in which all packets
can be successfully decoded in time) is simply not sustain-
able by the underlying channel quality (p1, p2). Namely,
when the rate pair (1/λ1, 1/λ2) violates either (1) or (2), it
is simply impossible to meet the deadlines of all packets. We
call this the under-provisioned scenario.2 As we will explain
below, the simple IDNC scheme is strictly suboptimal for
the 2-unicast setting considered in this work. The intuition
behind this performance loss is the following. In the 2-unicast
setting, each uncoded transmission, say sending Xj,n, can
only benefits one particular user, dj , while sending a code
packet [X1,n1+X2,n2 ] can benefit both users. Since sending a
coded packet achieves higher throughput, an optimal scheme
needs to send as many coded packets as possible. On the
other hand, in the simple IDNC scheme, a packet, say
X1,n, needs to be overheard by the other user d2 (when
we send X1,n uncodedly) before it can participate in coded
transmission. In other words, a coded transmission involving
X1,n can happen only after we have sent X1,n uncodedly
first. As a result, in terms of the “life cycle” of a given packet,
the first half of the life cycle is when the packet has not been
heard by any destination (thus is ready to be sent uncodedly),
and the second half of the life cycle is when the packet has
been overheard by the other destination (thus is ready to
be sent codedly). This causality relationship, i.e., sending
uncoded X1,n (first half of the life cycle) before sending a
coded packet involving X1,n (second half of the life cycle),
causes a new problem in the under-provisioned scenario.
More specifically, since we have a deadline for each packet
and the system is under-provisioned, the packet is likely to
expire. Therefore, most packet expiration will happen when a
packet is waiting to be sent codedly. We thus will not have as
many coded transmission as we would have hoped for. Note
that this problem does not arise in multicast with deadlines
[6], because there, an uncoded transmission benefits as many
users as a coded transmission. To solve this problem, we
propose to actively drop a certain number of packets in
advance. By deliberately discarding some packets we relax

2The concept of under provisioning can be defined similarly for the
single-multicast setting.



the deadlines for those not-discarded packets. Therefore,
those not-discarded packets are less likely to expire, and can
stay as “coding-ready” phase (the second halves of their life
cycles) longer. More coded packets will thus be transmitted,
and the throughput will improve.

The second challenge arises from the heterogeneity of the
channel and the deadlines, which is orthogonal from the
previous under-provisioned scenario. Suppose that the system
is over-provisioned, i.e., the rate vector (1/λ1, 1/λ2) satisfies
both (1) and (2). Due to the heterogeneity of the channels
and deadlines, one user, say user 1, may on average have
more coding opportunities than that could be combined with
user 2’s coding opportunities. In the simple IDNC scheme,
when there is no matched coding opportunity, the BS will
keep transmitting new uncoded packets. As a result, user-1’s
outstanding coding opportunities will likely to expire, which
will reduce the throughput. In contrast, the optimal solution is
to retransmit those coding opportunities of user 1 uncodedly
rather than waiting for future coding opportunities to come.

To make the above discussion rigorous, consider an over-
provisioned scenario for which we can send at rate (r1, r2) =
( 1
λ1
, 1
λ2
) that satisfy both (1) and (2). Recall that in (1),

r1T
p1

counts all the uncoded and coded transmissions com-
bined for conveying r1T session-1 packets. Similarly, in (2),

r1T
p1+p2−p1p2

counts all the uncoded transmissions of session-
1 packets. As a result, the difference of the two is the number
of coded transmissions for session 1. By the same argument,
the difference between r2T

p1+p2−p1p2
and r2T

p2
is the number

of coded transmissions for session 2. If we have
r1T

p1
− r1T

p1 + p2 − p1p2
>

r2T

p2
− r2T

p1 + p2 − p1p2

⇔ λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)
< 1, (4)

then from our previous arguments, we will have much more
user-1 coding opportunities than those of user 2. As a result,
some user-1 coding opportunities may expire even before
being coded together with the user-2 packets. To recover
this sub-optimality, when (4) is satisfied, an optimal IDNC
scheme should continue sending some user-1 packet in an
uncoded way even after it has been overheard by user 2. For
future reference, we say “user 1 is a leading user” if (4) is
satisfied since user-1 now has more coding opportunities than
that could be combined with user-2’s coding opportunities.
In the next section, we combine the above two intuitions
and design a new IDNC scheme that is capable of achieving
the upper bound of deadline-constrained capacity given in
Proposition 1.

III. THE SCHEME

To begin with, we will introduce some definitions. In our
new IDNC scheme, the BS keeps two registers n1 and n2.
One can view the purpose of ni as to keep track of the
next uncoded packet to be sent for session i. Since both n1

and n2 evolve over time, we sometimes use ni(t) to denote
the value of ni at the end of time t. The BS also keeps two
lists of packets: L10 and L01. List L01 contains all unexpired

coding opportunities of user 1 (those heard by d2 but not yet
by d1). Symmetrically, list L10 contains all unexpired coding
opportunities of user 2. Each packet is also associated with a
status, which can take one of the following four values “not-
processed”, “dropped”, “uncoded-Tx-only” and “coding-
eligible”. The BS uses two arrays status1[i], i = 1, · · · , N1,
and status2[i], i = 1, · · · , N2 to keep track of the status of
the session-1 and session-2 packets, respectively. In addition,
the BS keeps 4 floating-point registers, denoted by x1, x2,
y1, and y2. We also assume that in the end of each time slot,
both users send an ACK or NACK message back to the BS
depending on whether that user has successfully received the
transmitted packet in the same time slot.

In the following, we present our IDNC scheme. In the time
origin, the BS first initializes the following variables: n1 ←
1, n2 ← 1, L10 ← ∅, L01 ← ∅, status1[i]←not-processed,
status2[i] ←not-processed, for all i; x1, y1, x2, y2 ← 0.
For convenience, we use γ to denote a constant value used
throughout the algorithm, which can be easily computed by
the BS. That is,

γ
∆
= min

( 1
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

,
1

1/λ1

p1+p2−p1p2
+ 1/λ2

p2

)
. (5)

The detailed steps are now described as fol-
lows.

1: for t = 1 to λ1N1 do
2: In the beginning of time t, run the sub-routine

SCHEDULE-PACKET-TRANSMISSION
3: In the end of time t, run the sub-routine UPDATE-

PACKET-STATUS
4: end for

The two sub-routines are described separately as follows.

§ SCHEDULE-PACKET-TRANSMISSION

1: if n2 ≤ N2 & n1 ≤ N1 then
2: while status1[n1] =not-processed do
3: x1 ← x1 +min(γ, 1)
4: if ⌊x1⌋ > y1 where ⌊·⌋ is the floor function then
5: y1 ← ⌊x1⌋
6: Generate a number a independently and uni-

formly randomly from [0, 1]

7: if a ≥ 1−
N2(

p1
p2

−p1)

N1(
p2
p1

−p2)
then

8: status1[n1]← coding-eligible
9: else

10: status1[n1]← uncoded-Tx-only
11: end if
12: else
13: status1[n1]←dropped
14: n1 ← n1 + 1
15: end if
16: end while
17: Repeat the steps from Line 2 to Line 16 with the roles

of users 1 and 2 swapped, i.e, we focus on user 2 now.

18: if both L10 and L01 are non-empty then



19: Choose the oldest packet X1,j∗1
from L01 and the

oldest packet X2,j∗2
from L10. Broadcast the linear

sum [X1,j∗1
+X2,j∗2

].
20: else
21: if n1λ1 ≤ n2λ2 then
22: Send uncoded packet X1,n1 directly.
23: else if n1λ1 > n2λ2 then
24: Send uncoded packet X2,n2 directly.
25: end if
26: end if
27: else
28: Choose the oldest unexpired packets in the system

(including those in L01 ∪L10 and those haven’t been
sent) and send that packet uncodedly.

29: end if

§ UPDATE-PACKET-STATUS

1: if an uncoded packet X1,n1 was sent in the current time
slot then

2: if X1,n1 is received by d1 then
3: n1 ← n1 + 1.
4: else if X1,n1 was received only by d2 and

status1[n1] =coding-eligible then
5: Add X1,n1 to L01 and set n1 ← n1 + 1
6: end if
7: else if an uncoded packet X2,n2 was sent in the current

time slot then
8: Repeat the steps from Line 1 to Line 6 with the roles

of users 1 and 2 swapped.
9: else

10: Suppose the coded packet being sent is [X1,j∗1
+

X2,j∗2
], the linear sum of X1,j∗1

and X2,j∗2
.

11: if [X1,j∗1
+X2,j∗2

] was received by d1 then
12: Remove X1,j∗1

from L01.
13: end if
14: if [X1,j∗1

+X2,j∗2
] was received by d2 then

15: Remove X2,j∗2
from L10.

16: end if
17: end if
18: Remove all expired packets from the system.

The high-level ideas of the proposed IDNC scheme is as
follows. Let us first focus on the sub-routine SCHEDULE-
PACKET-TRANSMISSION. Line 1 checks whether we have
reached the end of the transmission. When we reach the
end of the transmission, i.e., when either n1 > N1 or
n2 > N2 holds, we simply choose the oldest available
packet to transmit. When we are in the main loop of the
transmission, i.e., when both n1 ≤ N1 and n2 ≤ N2 hold,
we first assign the packet status for both X1,n1 and X2,n2 .
More specifically, in Lines 2 to 16, we first find an “next-
to-be-transmitted” packet and will assign the corresponding
packet status. To do so, we use the variables x1 and y1 to
decide whether we would like to set the current status to
“dropped”. As can be easily seen in Lines 3, 4, and 13,

when γ ≥ 1, we never drop a packet (i.e., no packets are
set to dropped). The value of γ is indeed to decide whether
the system is over-provisioned (γ ≥ 1) or under-provisioned
(γ < 1). As explained in Section II-B, we drop a packet
only when γ < 1, and Lines 3 to 5 decide the optimal packet
dropping ratio. If we decide to drop the packet, then we need
to move on and decide the status of the next packet, see
Lines 13 and 14. For those packets that are transmitted, as
explained in Section II-B, we sometimes need to forcefully
send packets in an uncoded form for the “leading user”. If
user 1 is the leading user, then λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
< 1. Lines

6 to 11 ensure that some user-1 packets have their status
set to uncoded-Tx-only. Note that if user 2 is the leading
user, then λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
> 1 and Lines 6 to 11 automatically

ensure that all user-1 packets have their status set to coding-
eligible. Once we finish setting the packet status, we give
priority to transmitting the coded packet first (Lines 18 and
19). If sending coded packets is not possible, then we evenly
alternate between sending uncoded packets for users 1 and
2, by comparing the values of n1λ1 and n2λ2, see Lines 21
to 25. Namely, we choose the next uncoded packet depending
on which is the closest to expire. This observation also leads
to the following self-explanatory lemma.

Lemma 1: For any time slot t, we have −max(λ1, λ2) ≤
λ1n1(t)− λ2n2(t) ≤ max(λ1, λ2).

Let us now focus on the sub-routine UPDATE-PACKET-
STATUS. If an uncoded packet X1,n1 was sent and received
by d1 (see Lines 1-3), then there is no need to retransmit
this packet. We simply shift our focus to the next packet
(n1 ← n1 + 1). If X1,n1 is received by d2 but not by
d1, then this packet may become a new coding opportunity.
However, as mentioned earlier, if user 1 is the leading user,
then sometimes we need to forgo an coding opportunity and
continue sending it in an uncoded way. This is decided by the
packet status. If packet status was set to uncoded-Tx-only,
then we do not put the overheard packet X1,n1 in the coding
list L01. That is, X1,n1 will not participate in any future
coding operations and will be transmitted again in the form
of uncoded packet. Only when the packet status is coding-
eligible (see Line 4) will the overheard X1,n1 be put into
the list L01. Lines 11 to 18 simply perform packet update to
remove the packets that have either expired or have already
been decoded by the target user.

IV. MAIN RESULT: PERFORMANCE ANALYSIS OF THE
NEW IDNC SCHEME

The performance of the proposed new IDNC scheme is
characterized as follows.

Proposition 2: For any given system parameters p1, p2,
λ1, and λ2, let β∗ denote the largest β value such that 0 ≤
β ≤ 1 and the rate vector (r1, r2) =

(
β
λ1
, β
λ2

)
satisfies both

(1) and (2). For any ϵ > 0, there exists a sufficiently large
N1 (and N2 = λ1N1

λ2
) such that the proposed IDNC scheme

achieves E{N success
1 }/N1 ≥ β∗

λ1
− ϵ and E{N success

2 }/N2 ≥
β∗

λ2
− ϵ.



Proposition 2 shows that our IDNC scheme achieves the
upper bound in Proposition 1 for both over-provisioned
(β∗ = 1) and under-provisioned (β∗ < 1) scenarios. Before
proving Proposition 2, we present Lemma 2, which is critical
to our proof.

Lemma 2: Consider our IDNC scheme with system pa-
rameter values λ1, λ2, p1, and p2. Then for any ϵ > 0, there
exists a B > 0 such that for all fixed t1 and t2 satisfying
(t2 − t1) = B, we have for j = 1, 2,

E
{
nj(t2)− nj(t1)

∣∣∣t2 < min(λ1n1(t1), λ2n2(t1))
}

≤ (t2 − t1)max(γ, 1)(1 + ϵ)

λj
. (6)

The high-level intuition of this lemma is provided as follows.
Consider any two fixed time instants t1 and t2. For j = 1,
the term (n1(t2)−n1(t1)) quantifies how many new session-
1 packets have been “injected” to the system during the
time interval (t1, t2]. Lemma 2 shows that this value cannot
grow much faster than max(γ,1)(t2−t1)

λ1
. In other words, the

growth of n1(t) is proportional to how fast the packets
of session 1 expire. Also note that when conditioning on
t2 < min(λ1n1(t1), λ2n2(t1)), none of these newly injected
packets X1,n1(t1), X1,n1(t1)+1, · · · , X1,n1(t2)−1 will expire
during the interval (t1, t2]. Therefore those packets will
have similar behavior as if in a system without deadline
constraints. Then by the law of large numbers (recall that
t2−t1 is sufficiently large), we can explicitly quantify/upper-
bound the numbers of uncoded and coded transmissions in
this time interval (t1, t2], which in turn give us the inequality
in (6). Next we present a detailed proof of Lemma 2 for the
over-provisioned case, that is, γ ≥ 1.

Proof: We first discuss the case that user 1 is the leading
user, that is, λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
< 1. So 1

γ = 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
.

The following discussion is conditioned on the event that in
the end of time t1, we have At1

∆
= {t2 < λ1n1(t1), t2 <

λ2n2(t1)}. Define

∆n1 =

 (t2 − t1)(
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
λ1

+ 1,

∆n2 =

 (t2 − t1)(
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
λ2

+ 1.

Note that by our definition, ∆n1λ1 ≈ ∆n2λ2.
From the beginning of time t1 + 1, let us temporarily

suspend the “expiration mechanism” and use our proposed
scheme to transmit packets while allowing the supposedly
expired packets to remain in the system. We first examine
how long it takes before the register n1(t) evolves from its
current value n1(t1) to a different value n1(t1) + ∆n1, and
the register n2(t) evolves from its current value n2(t1) to a
different value n2(t1)+∆n2. More specifically, we use t3 to
denote the (random) time slot for which in the end of time
t3, both n1(t) is at least n1(t1) +∆n1 and n2(t) is at least
n2(t1) + ∆n2 for the first time.

We define UT1 (which stands for “Uncoded Transmis-
sion”) as the number of time slots in [t1 + 1, t3] when the
proposed scheme schedules an uncoded packet transmission
for Session 1. Note that by our definitions, all those uncoded
transmissions must be used to transmit X1,n for some n ≥
n1(t1). Similarly, we also define UT2 as the number of time
slots in [t1 + 1, t3] when the proposed scheme schedules an
uncoded packet transmission for Session 2 packets X2,n with
the indices being n ≥ n2(t1).

Define

H1,n =
∣∣{t > t1 : in the beginning of time t, the scheme

schedules an uncoded transmission of X1,n}
∣∣. (7)

Since we stop an uncoded transmission if any one of the
destinations successfully receives it, we have

E{H1,n|At1} =
1

1− (1− p1)(1− p2)
=

1

p1 + p2 − p1p2
(8)

for all n ≥ n1(t1). As a result, the total number of time slots
to transmit the uncoded session-1 packets is

UT1 ≥
n1(t1)+∆n1−1∑
i=n1(t1)+1

H1,i,

where the inequality is because uncoded session 1 packets
with indices less than n1(t1) + 1 or larger than n1(t1) +
∆n1 − 1 may also be transmitted during [t1 + 1, t3].

Similarly, the total number of time slots to transmit the
uncoded session 2 packets in time [t1 + 1, t3] is at least

UT2 ≥
n2(t1)+∆n2−1∑
i=n2(t1)+1

H2,i.

Since each H1,i and H2,j are i.i.d. (conditional) geometric
distribution with expectation (8), for any ϵ1, δ1 > 0, we can
choose a sufficiently large B1 such that if ∆n1 > B1 and
∆n2 > B1

λ1

λ2
, then

P

(
UT1 + UT2 > (1− ϵ1)

∆n1 +∆n2 − 2

p1 + p2 − p1p2

∣∣∣∣At1

)
= P

(
∆n1+∆n2∑

i=1

Hi > (1− ϵ1)
∆n1 +∆n2 − 2

p1 + p2 − p1p2

)
> 1− δ1,

(9)

where {Hi} are i.i.d. geometric random variables with ex-
pectation 1

p2+p2−p1p2
and (9) follows from the weak law of

large numbers.
Let O1,n denote a Bernoulli random variable that is 1 if

when sending X1,n uncodedly, it was d2 that received X1,n

first; O1,n = 0, if d1 and d2 received X1,n simultaneously or
d1 received it first. Symmetrically, we define the Bernoulli
random variable O2,n such that O2,n is 1 if when sending
X2,n uncodedly, it was d1 that received X2,n first; O2,n = 0,
if d1 and d2 received X2,n simultaneously or d2 received it
first.



When X1,n has been received by user 2 first and not by
user 1, the BS would decide whether to keep transmitting
this packet in the uncoded fashion until it’s received by user
1, or not. We define FC1,n (which stands for “Flip a Coin”)
as a Bernoulli random variable to indicate the decision result.
FC1,n = 1 if the BS decides to keep transmitting this packet
uncodedly until it’s received by user 1; FC1,n = 0 if not. By

our algorithm, FC1,n = 1 with probability 1 −
N2(

p1
p2

−p1)

N1(
p2
p1

−p2)
,

FC1,n = 0 with probability
N2(

p1
p2

−p1)

N1(
p2
p1

−p2)
.

To distinguish from the uncoded transmission, we name
the retransmission of coding opportunity of user 1 as “Single
Transmission”, as the single transmission is meant for user
1 only. We define ST1,n as

ST1,n
∆
=
∣∣{t > t1 : in time t, coding opportunity for user 1

X1,n is transmitted until user 1 receives it.
}∣∣,

(10)

Note that for any i ≥ n1(t1), ST1,n = 0 whenever O1,n =
0; ST1,n = 0 whenever O1,n = 1 and FC1,n = 0; whenever
we have O1,n = 1, and FC1,n = 1, random variable
ST1,n is geometrically distributed with successful probability
p1. As a result, ST1,n is with epectation p2−p1p2

p1+p2−p1p2

(
1 −

N2(p1−p1p2)
p1
p2

N1(p2−p1p2)

)
1
p1

for any n ≥ n1(t1) (recall that we have
temporarily suspended “expiration”). By the weak law of
large numbers, we also have for any δ4 > 0, ϵ4 > 0, there
exists a B4 such that if ∆n1 > B4, we have

P
( n1(t1)+∆n1−1∑

i=n1(t1)+1

ST1,i ≤ (∆n1 − 1)
p2 − p1p2

p1 + p2 − p1p2

×
(
1−

N2(p1 − p1p2)
p1

p2

N1(p2 − p1p2)

) 1

p1
(1− ϵ4)

∣∣∣At1

)
≤ δ4.

(11)

We now define CT1,n as follows:

CT1,n
∆
=
∣∣{t > t1 : in time t, packet X1,n is mixed (coded)

with some other X2,n′ packets.
}∣∣, (12)

where CT1,n stands for the coded transmission for packet
X1,n. Define TCT as the total number of coded transmission
in time [t1 + 1, t3]. We then notice the following facts: (i)
In the beginning of time t3, the scheme must either transmit
an uncoded packet X1,n1(t1)+∆n1−1, or transmit an uncoded
packet X2,n2(t1)+∆n2−1 and it is received by one of the
destinations (that is why n1(t) changes to n1(t1) + ∆n1,
or n2(t) changes to n2(t1) + ∆n2 ). (ii) Therefore, at the
end of time t3−1, there must have min (L10, L01) = 0. That
are no packets to be coded in the end of time t3 − 1. (iii)
Therefore, at the end of time t3 − 1, either (a) there is no
{X1,n : n ∈ (n1(t1), n1(t1)+∆n1−1]} in L01, or (b) there
is no {X2,n : n ∈ (n2(t1), n2(t1)+∆n2− 1]} in L10. From

the above three facts, we have

TCT =min
( n1(t1)+∆n1−1∑

i=1

CT1,i,

n2(t1)+∆n2−1∑
i=1

CT2,i

)
.

(13)

For the following, we will prove that for any ϵ5, δ5 > 0,
we can choose a sufficiently large B5 such that if ∆n2 > B5,
we have

P

(
TCT > (∆n2 − 1)

(
p1 − p1p2

(p1 + p2 − p1p2)p2

)
(1− ϵ5)

∣∣∣∣At1

)
> 1− δ2. (14)

To that end, we use the following union-bound arguments
and focus on the sub-series of the summations:

P
(
TCT > (∆n2 − 1)

( p1 − p1p2
(p1 + p2 − p1p2)p2

)
(1− ϵ5)

∣∣∣At1

)
= P

(
Eq. (13) > (∆n2 − 1)

(
p1 − p1p2

(p1 + p2 − p1p2)p2

)

× (1− ϵ5)
∣∣∣At1

)

≥ 1− P

(
n1(t1)+∆n1−1∑
i=n1(t1)+1

CT1,i ≤ (∆n2 − 1)

×
( p1 − p1p2
(p1 + p2 − p1p2)p2

)
(1− ϵ5)

∣∣∣At1

)

− P

(
n2(t1)+∆n2−1∑
i=n2(t1)+1

CT2,i ≤ (∆n2 − 1)

×
( p1 − p1p2
(p1 + p2 − p1p2)p2

)
(1− ϵ5)

∣∣∣At1

)
. (15)

Note that for any i ≥ n1(t1), CT1,i = 0 if O1,i =
0, and conditioning on O1,i = 1, FC1,n = 0, the ran-
dom variable CT1,i is geometrically distributed with suc-
cess probability p1. Moreover, CT1,i is with epectation(

p2−p1p2

p1+p2−p1p2
·
N2(

p1
p2

−p1)

N1(
p2
p1

−p2)
1
p1

)
for any i ≥ n1(t1) (recall that

we have temporarily suspended “expiration”). The weak law
of large numbers thus implies that for any δ6 > 0, there
exists a B6 such that if ∆n1 > B6, we have

P

(
n1(t1)+∆n1−1∑
i=n1(t1)+1

CT1,i ≤ (∆n2 − 1)
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

× (1− ϵ5)
∣∣∣At1

)
≤ δ6. (16)

Note that for any i ≥ n2(t1), CT2,i = 0 if O2,i = 0,
and conditioning on O2,i = 1, the random variable CT2,i is
geometrically distributed with success probability p2. More-
over, CT2,i is i.i.d. with epectation

(
p1−p1p2

p1+p2−p1p2
· 1
p2

)
for

any i ≥ n1(t1) (recall that we have temporarily suspended
“expiration”). By the weak law of large numbers, we also



have for any δ7 > 0, there exists a B7 such that if ∆n2 > B7,
we have

P

(
n2(t1)+∆n2−1∑
i=n2(t1)+1

CT2,i ≤ (∆n2 − 1)
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

(1− ϵ5)
∣∣∣At1

)
(17)

= P

(
n2(t1)+∆n2−1∑
i=n2(t1)+1

CT2,i ≤ (∆n2 − 1)

( p1 − p1p2
(p1 + p2 − p1p2)p2

)
(1− ϵ5)

∣∣∣At1

)
≤ δ7. (18)

Jointly (16) and (18) imply that (15) can be made arbitrarily
close to one by choosing a sufficiently large B6 (∆n1 is
sufficiently large so that ∆n2 is large enough) and B7 and
setting B2 = max(B6

λ1

λ2
, B7). Eq. (14) is thus proven.

By simple arithmetic operations, we have the following
equations:

∆n1 +∆n2 − 2

p1 + p2 − p1p2
+

(∆n2 − 1)(p1 − p1p2)

(p1 + p2 − p1p2)p2
+

(∆n1 − 1)

(
p2 − p1p2

p1 + p2 − p1p2
·
(
1−

N2(p1 − p1p2)
p1

p2

N1(p2 − p1p2)

) 1

p1

)

=
∆n1 − 1

p1 + p2 − p1p2
+

(∆n1 − 1)(p2 − p1p2)

(p1 + p2 − p1p2)p1

+
∆n2 − 1

p1 + p2 − p1p2
+

(∆n2 − 1)(p1 − p1p2)

(p1 + p2 − p1p2)p2

− (∆n1 − 1)
N2(p1 − p1p2)

1
p2

N1(p1 + p2 − p1p2)

=
∆n1 − 1

p1
+

∆n2 − 1

p2
− (∆n1 − 1)

N2(p1 − p1p2)
1
p2

N1(p1 + p2 − p1p2)

≥ ∆n1 − 1

p1
+
(∆n1λ1 − λ1 − λ2

λ2
− 1
) 1

p2

− (∆n1 − 1)
(p1 − p1p2)

1
p2

p1 + p2 − p1p2

λ1

λ2
(19)

= (∆n1 − 1)
( 1

p1
+

λ1

λ2

1

p2
− λ1

λ2

1

p2

p1 − p1p2
p1 + p2 − p1p2

)
− 2

p2

= (∆n1 − 1)
(1/λ1

p1
+

1/λ2

p1 + p2 − p1p2

)
λ1 −

2

p2

=

 (t2 − t1)(
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
λ1

(1/λ1

p1
+

1/λ2

p1 + p2 − p1p2

)
λ1

− 2

p2
≈ t2 − t1, (20)

where the inequality in (19) is due to the fact that the
difference between ∆n1λ1 and ∆n2λ2 is at most λ1 + λ2.

Since for any time slot in [t1 + 1, t3] we either send an
uncoded or a coded transmission, we must have t3 − t1 =
UT1 + UT2 + ST1 + TCT. Then by (9), (14), and (20), the
definition of ∆n1 and ∆n2, we have thus proven that for any

ϵ8, δ8 > 0, there exists a B8 > 0 such that if t2 − t1 > B8

(so that ∆n1 and ∆n2 are sufficiently large), we have

P ( (t3 − t1) > (t2 − t1)(1− ϵ8)| At1) > 1− δ8. (21)

Namely, with close to one probability, the random time t3,
at the end of which n1(t) is at least n1(t1)+∆n1 and n2(t)
is at least n2(t1) + ∆n2 for the first time, is no less than
t1+(t2−t1)(1−ϵ8). Therefore, at the end of time t1+(t2−
t1)(1−ϵ8), either n1(t) must be no larger than n1(t1)+∆n1

or n2(t) must be no larger than n2(t1)+∆n2 with close-to-
one probability since we have not reached t3 yet. (21) thus
implies

P
(
n2(t1 + (t2 − t1)(1− ϵ8)) ≥ n2(t1) + ∆n2 &

n1(t1 + (t2 − t1)(1− ϵ8)) ≥ n1(t1) + ∆n1

∣∣At1

)
< δ8.

(22)

By (22) we have

P
(
n2(t1 + (t2 − t1)(1− ϵ8)) ≤ n2(t1) + ∆n2 or

n1(t1 + (t2 − t1)(1− ϵ8)) ≤ n1(t1) + ∆n1

∣∣At1

)
> 1− δ8.

(23)

Since our algorithm tries to minimize the difference between
λ1n1(t) and λ2n2(t), if n2(t1+(t2−t1)(1−ϵ8)) ≤ n2(t1)+
∆n2, by the relationship λ2∆n2 ≤ λ1∆n1 + λ1, it implies
that

n1(t1 + (t2 − t1)(1− ϵ8))

≤ λ2n2(t1 + (t2 − t1)(1− ϵ8))

λ1
+ 1 (24)

≤ λ2n2(t1) + λ1∆n1 + λ1

λ1
+ 1

≤ λ1n1(t1) + λ2 + λ1∆n1 + λ1

λ1
+ 1 (25)

= n1(t1) + ∆n1 +
λ2

λ1
+ 2, (26)

where (24) due to the fact that λ1n1(t) ≤ λ2n2(t) + λ1 and
(25) λ2n2(t) ≤ λ1n1(t) + λ2.

By the same approach, we have if n1(t1 + (t2 − t1)(1−
ϵ8)) ≤ n1(t1) + ∆n1, it implies that

n2(t1 + (t2 − t1)(1− ϵ8)) ≤ n2(t1) + ∆n2 +
λ1

λ2
+ 2.

(27)

So combinging (23), (26), and (27), we have

P
(
n2(t1 + (t2 − t1)(1− ϵ8)) ≤ n2(t1) + ∆n2 +

λ1

λ2
+ 2 &

n1(t1 + (t2 − t1)(1− ϵ8)) ≤ n1(t1) + ∆n1 +
λ2

λ1
+ 2∣∣∣At1

)
> 1− δ5. (28)

Then we have

P
(
n2(t1 + (t2 − t1)(1− ϵ8)) > n2(t1) + ∆n2 +

λ1

λ2
+ 2∣∣At1

)
< δ8, (29)



and

P
(
n1(t1 + (t2 − t1)(1− ϵ8)) > n1(t1) + ∆n1 +

λ2

λ1
+ 2∣∣At1

)
< δ8. (30)

That is

P
(
n2(t1 + (t2 − t1)(1− ϵ8)) ≤ n2(t1) + ∆n2 +

λ1

λ2
+ 2∣∣At1

)
> 1− δ8, (31)

and

P
(
n1(t1 + (t2 − t1)(1− ϵ8)) ≤ n1(t1) + ∆n1 +

λ2

λ1
+ 2∣∣At1

)
> 1− δ8. (32)

We then notice the following two facts: (i) the difference
between t2 and (t1 + (t2 − t1)(1 − ϵ8)) is (t2 − t1)ϵ8; and
(ii) for any t′1 < t′2, either n1(t

′
2)−n1(t

′
1) or n2(t

′
2)−n2(t

′
1)

is no larger than t′2 − t′1 since the register n1(t) or n2(t) at
most increments by one in every time slots. As a result, (32)
implies

P

(
n1(t2)− n1(t1) ≤ ∆n1 +

λ2

λ1
+ 2 + (t2 − t1)ϵ8

∣∣∣∣At1

)
> 1− δ8. (33)

We can then reuse the above fact (ii) to upper bound the
expectation of n1(t2)− n1(t1):

E
{
n1(t2)− n1(t1)|At1

}
≤
(
∆n1 +

λ2

λ1
+ 2 + (t2 − t1)ϵ8

)
× (1− δ8) + δ8(t2 − t1). (34)

By noticing that ∆n1 is linearly proportional to (t2 − t1)
while all other terms are sub-linear (with either a ϵ or a δ
coefficient), (34) thus implies that for any ϵ > 0, there exists
a sufficiently large B such that if t2 − t1 > B, then

E
{
n1(t2)− n1(t1)|At1

}
≤ (t2 − t1)γ(1 + ϵ)

λ1
. (35)

By similar arguement, we have

E
{
n2(t2)− n2(t1)|At1

}
≤ (t2 − t1)γ(1 + ϵ)

rλ2
. (36)

.
In the above analysis, we have not considered the impact

of when allowing expiration. In the following, we will
include expiration back to our analysis. To that end, we first
notice that we can still define H1,n, H2,n, ST1,n, CT1,n,
CT2,n as in (7), (10), and (12), respectively. Note that now
these five random variables are no longer independently
distributed as the results of one, say H1,n, may affect
the other, say CT2,n′ , due to expiration. Define a set of
shadow random variables H̃1,n, H̃2,n, S̃T1,n, C̃T1,n, C̃T2,n

that characterize the behaviors when there is no expriation
involved. More specifically, we choose H̃1,n = H1,n if
H1,n stops “growing” due to the X1,n packet being received
by one of the two destinations. If H1,n stops growing due
to the expiration of X1,n, then we let H̃1,n continue to

grow as an independent geometric random variable with
success probability (p1 + p2 − p1p2). In this way, H̃1,n

mimics the behavior of a system with no expiration and
H̃1,n is independent from all other random variables. We
choose S̃T1,n = ST1,n if ST1,n stops growing due to
the single transmission involving X1,n being received by
d1. Similarly, we choose C̃T1,n = CT1,n if CT1,n stops
growing due to the mixed coded transmission involving X1,n

being received by d1. If CT1,n stops growing due to the
expiration of X1,n, then we let C̃T1,n continue to grow
as an independent geometric random variable. In this way,
C̃T1,n mimics the behavior of a system with no expiration
and C̃T1,n is independent from all other random variables.

Then we need to prove the following version of (21): For
any ϵ8, δ8 > 0, there exists a sufficiently large B8 such that
for any t2 − t1 > B8, we have

δ8 ≥ P (UT1 + UT2 + ST1 + TCT ≤ (t2 − t1)(1− ϵ8)|At1)

= P

(
n1(t1)+∆n1−1∑
i=n1(t1)+1

H1,i +

n2(t1)+∆n2−1∑
j=n2(t1)+1

H2,j

+

n1(t1)+∆n1−1∑
j=n1(t1)+1

ST1,j

+min
( n1(t1)+∆n1−1∑

k=1

CT1,k,

n2(t1)+∆n2−1∑
l=1

CT2,l

)
≤ (t2 − t1)(1− ϵ8)

∣∣∣∣∣At1

)
(37)

Note that conditioning on At1 , during time [t1, t1 + (t2 −
t1)(1− ϵ8)], no packets with indices ≥ n1(t1) for session 1
and packets with indices ≥ n2(t1) for session 2 will expire.
Therefore, conditioning on At1 any realization of H1,i, H2,j ,
ST1,k, CT1,k, and CT2,l in (37) must not result in any
expiration for packets with indices ≥ n1(t1) for session 1
and packets with indices ≥ n2(t1) for session 2. As a result,
we have

P

(
n1(t1)+∆n1−1∑
i=n1(t1)+1

H1,i +

n2(t1)+∆n2−1∑
j=n2(t1)+1

H2,j

+min

(
n1(t1)+∆n1−1∑

k=1

CT1,k,

n2(t1)+∆n2−1∑
l=1

CT2,l

)
+

n1(t1)+∆n1−1∑
i=n1(t1)+1

ST1,i ≤ (t2 − t1)(1− ϵ8)

∣∣∣∣∣At1

)

≤ P

(
n1(t1)+∆n1−1∑
i=n1(t1)+1

H̃1,i +

n2(t1)+∆n2−1∑
j=n2(t1)+1

H̃2,j

+min

(
n1(t1)+∆n2−1∑
k=n1(t1)+1

C̃T1,k,

n2(t1)+∆n2−1∑
l=n2(t1)+1

C̃T2,l

)
+

n1(t1)+∆n1−1∑
i=n1(t1)+1

S̃T1,i ≤ (t2 − t1)(1− ϵ8)

∣∣∣∣∣At1

)
(38)



since for those realizations, the shadow random variables
and the actual random variables of packets with indices ≥
n1(t1) for session 1 and packets with indices ≥ n2(t1) for
session 2, and transmitted between [t1+1, t2], have the same
probability. Since (21) holds for the case without expiration,
(38) can thus be made smaller than δ8 with sufficiently large
B8. (37) is thus proven. We can then follow the same analysis
as in (21) to (35).

We have shown the case when user 1 is the leading
user. By the same approach, we can also show similar
results for the case with user 2 as the leading user (that
is, λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
> 1, and 1

γ = 1/λ1

p1+p2−p1p2
+ 1/λ2

p2
). Then

the proof of Lemma 2 is complete.

For the following, we would first present the proof for
Proposition 2 of the over-provisioned case (γ ≥ 1).

Proof: For ease of exposition, we first assume that user
1 is the leading user. Since we are considering the over-
provisioned case, we have 0 < 1

γ = 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
≤ 1.

We define qj(t)
∆
= nj(t) − γt

λj(1−ϵ′) for j = 1, 2, where
ϵ′ > 0 is a small number. Suppose t2 = t1 +B0, where B0

will be chosen shortly. Note that by the definition of q1(t)

and q2(t) and by Lemma 1, we have q2(t) ≥ n1(t)λ1−λ1

λ2
−

γt
λ2(1−ϵ′) = λ1

λ2
q1(t) − λ1

λ2
. One can also check that three

conditions q1(t1) >
B0

λ1
+ 1 and q2(t1) >

B0

λ2
, t2 = t1 +B0

imply the condition that t2 < min(λ1n1(t1), λ2n2(t1)) in
Lemma 2. As a result, we can prove that for any ϵ > 0,
there exists a B > 0 such that for any B0 > B

E
{
q1(t1 +B0)− q1(t1)

∣∣∣q1(t1) > B0

λ1
+ 1
}

= E
{
q1(t1 +B0)− q1(t1)

∣∣∣q1(t1) > B0

λ1
+ 1, q2(t1) >

B0

λ2

}
= E

{
n1(t1 +B0)− n1(t1)

∣∣∣q1(t1) > B0

λ1
+ 1, q2(t1) >

B0

λ2

}
− γB0

λ1(1− ϵ′)

≤ γB0(1 + ϵ)

λ1
− rB0

λ1(1− ϵ′)
< 0, (39)

where the strict inequality in the second step of (39) is
established by choosing a sufficiently small ϵ > 0. Similarly

E
{
q2(t1 +B0)− q2(t1)

∣∣∣q2(t1) > B0

λ2
+ 1
}
< 0. (40)

Eq. (39) and (40) show that both q1(t) and q2(t) have
negative drift. Since q1(t) has a negative drift, it implies
that for any ϵ1, ϵ

′ > 0, there exists a t0 > 0 such that
P (q1(t) < ϵ′t) > 1 − ϵ1, for all t > t0. Then the following

inequality holds for any t > t0,

E{n1(t)} = E

{
γt

λ1(1− ϵ′)
+ q1(t)

}
(41)

= E

{
γt

λ1(1− ϵ′)
+ q1(t)

∣∣∣q1(t) < ϵ′t

}
P(q1(t) < ϵ′t)

+ E{n1(t)|q1(t) ≥ ϵ′t}P(q1(t) ≥ ϵ′t)

≤
( γt

λ1(1− ϵ′)
+ ϵ′t

)
(1− ϵ1) + tϵ1, (42)

where (42) is because n1(t) is always upper bounded by t
regardless whether q1(t) ≥ ϵ′t or not. Eq. (42) shows that
the expectation E{n1(t)} is upper bounded by γt

λ1
+ o(t).

Similarly, we have E{n2(t)} ≤ γt
λ2

+ o(t). We define Tj(t)
as the number of time slots when the BS transmits an
uncoded packet for session j up to time t. Since user 2 is
not the leading user, the BS transmits every session-2 packet
uncodedly until it has been received by at least one user. We
thus have

E{T2(t)} ≤ E{n2(t)}
1

p1 + p2 − p1p2
, (43)

where the inequality is because some uncoded packets are
expired before they can be received by any user, and hence
the expected transmission time for each packet is no larger
than the case when there is no expiration. Next, we consider
T1(t). Note that for session 1, some packets would be retrans-
mitted until user 1 receives it even after it has been received
by user 2. T1(t) is comprised of two types of transmissions:
The first type is when the BS transmits uncoded packets of
session 1. The other type is when the BS transmit session-1
packets that have status being uncoded-Tx-only and have
been received by user 2 first (in which case the BS continues
to transmit this type of packets until user 1 receives it). The
first part can be upper bounded by E{n1(t)} 1

p1+p2−p1p2
. We

use UCO(t) to denote the total number of time slots that
are used to “retransmit” some coded opportunities of user 1
whose status have been set to uncoded-Tx-onlyduring the
interval [1, t] (the second part of T1(t). By the same argument
as used in the proof for Lemma 2, we thus have

E
{
UCO(t)

}
≤ E{n1(t)}

(
1−

N2(p1 − p1p2)
p1

p2

N1(p2 − p1p2)

)
×
(

1

p1
− 1

p1 + p2 − p1p2

)
, (44)

where the inequality is again to take into account that some
packets may expire even before finishing its corresponding
transmission. Combining the first and second part, we obtain

E{T1(t)} ≤ E{n1(t)}
1

p1

(
1− λ1p1(p1 − p1p2)

λ2p2(p1 + p2 − p1p2)

)
.

(45)

Note that when we transmit an uncoded packet for session
1, the expected “reward” is p1 since only user 1 can get
benefits from this transmission. When we transmit a coded
packet, the expected reward for user 1 is p1 and reward for
user 2 is p2 since both destinations can benefit from the



coded transmission. As a result, for sufficiently large t, the
expected total rewards for user 1 is lower bounded by

E{N success
1 }

= p1E{T1(t)}+ p1E{t− T1(t)− T2(t)}
= p1t− p1E{T2(t)}

≥ p1t− p1
γt

λ2

1

p1 + p2 − p1p2
− o(t)

= p1t− p1γt
( 1
γ
− 1

p1λ1

)
− o(t) =

γt

λ1
− o(t)

where the inequality follows from E{n2(t)} ≤ rt
λ2

+o(t) and
(43). When t = λ1N1/γ, we have E{N success

1 } = N1 − o(t).
As a result, the achievable rate N success

1

λ1N1
approaches 1

λ1
for

sufficiently large N1. Similarly, the expected total rewards
for user 2 is lower bounded by

E{N success
2 } (46)

= p2E{T2(t)}+ p2E{t− T1(t)− T2(t)} (47)
= p2t− p2E{T1(t)} (48)

≥ p2t− p2
γt

λ1

(
1

p1
−

N2(p1 − p1p2)
1
p2

(p1 + p2 − p1p2)N1

)
− o(t)

=
γt

λ2
− o(t). (49)

When t = λ2N2/γ, we have E{N success
2 } = N2−o(t). Hence,

the achievable rate N success
2

λ2N2
also approaches 1

λ2
for sufficiently

large N2. Proposition 2 is thus proved for the case γ ≥ 1
and user 1 being the leading user. Symmetrically, we can
prove Proposition 2 when user 2 is the leading user for the
over-provisioned case.
The under-provisioned case is similar and we would provide
the sketch in the following. To prove the under-provisioned
case for Proposition 2, we first need to prove the under-
provisioned case for Lemma 2. That is, we need to show
that for any ϵ > 0, there exists a B > 0 such that for all
fixed t1 and t2 satisfying (t2−t1) = B, we have for j = 1, 2,

E
{
nj(t2)− nj(t1)

∣∣∣t2 < min(λ1n1(t1), λ2n2(t1))
}

≤ (t2 − t1)(1 + ϵ)

λj
. (50)

Note that for under-provisioned case, we have γ < 1.
Proof:

Define ∆n1 =

 (t2 − t1)(
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
λ1

+ 1,

∆n2 =

 (t2 − t1)(
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
λ2

+ 1.

We use t3 to denote the (random) time slot for which in
the end of time t3, the BS has scheduled real transmission
of ∆n1 uncoded packets for session 1 and ∆n2 uncoded
packets for session 2, respectively. We then relabel the
next ∆n1 packets including packet n1(t1) (that have been

transmitted by the BS) from session 1, as n1(t1), . . .,
n1(t1)+∆n1−1. We also relabel the next ∆n2 packets (that
have been transmitted by the BS) including packet n2(t1)
from session 2, as n2(t1), . . ., n2(t1) + ∆n2 − 1.

We first examine how long it takes before the BS finishes
transmitting packets n1(t), . . ., n1(t1)+∆n1−1, and the the
BS finishes transmitting packets n2(t), . . ., n2(t1)+∆n2−1.
That is, we want to understand the time t3. We then would
examine at the end of time t3, how would n1(t3) and n2(t3)
be. That is, we want to investigate how many packets for each
session that have been transmitted by the BS or discarded
without transmission due to congestion control by the BS.

By our congestion control algorithm, whenever x1 is
increased by 1, then for session 1 the BS would schedule to
transmit the next uncoded packet. Recall that in the under-
provisioned case, γ < 1, that is 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
> 1. So

after the BS finishes with transmitting ∆n1 uncoded packets
from session 1, the register n1 is at most increased by

∆n1(
1/λ1

p1
+

1/λ2

p1 + p2 − p1p2
) ≈ t2 − t1,

and the register n2 is at most increased by

∆n1(
1/λ1

p1
+

1/λ2

p1 + p2 − p1p2
)
λ1

λ2
≈ t2 − t1.

After this, we can apply the similar proof as in Lemma 2.
We can show that t3, with high probability, is no less than
t1 + (t2 − t1)(1 − ϵ′). Then following the same arguments
shown in the proof of Lemma 2, we have

E
{
n1(t2)− n1(t1)|At1

}
≤ (t2 − t1)(1 + ϵ)

λ1
. (51)

By similar arguement, we have

E
{
n2(t2)− n2(t1)|At1

}
≤ (t2 − t1)(1 + ϵ)

λ2
. (52)

.

Now we have shown the proof for the under-provisioned
case of Lemma 2. Next we are going to show the maximum
throughput that can be achieved by our scheme. Still, for ease
of exposition, we assume that user 1 is the leading user.

We now define q1(t)
∆
= n1(t) − t

λ1(1−ϵ′) and q2(t)
∆
=

n2(t) − t
λ2(1−ϵ′) . By the results in (51) and (52), we can

then show the negative drift of q1(t) and q2(t) by similar
approaches shown in (39) and (40). When choosing q1(t1) >
B0

λ1
+ 1 and q2(t1) >

B0

λ2
, t2 = t1 + B0, we can satisfy the

conditions that t2 < λ1n1(t1), t2 < λ2n2(t1) in Lemma 2.
More specifically, for any ϵ > 0, there exists a B > 0 such



that for any B0 > B

E
{
q1(t1 +B0)− q1(t1)

∣∣∣q1(t1) > B0

λ1
+ 1
}

= E
{
q1(t1 +B0)− q1(t1)

∣∣∣q1(t1) > B0

λ1
+ 1, q2(t1) >

B0

λ2

}
= E

{
n1(t1 +B0)− n1(t1)

∣∣∣q1(t1) > B0

λ1
+ 1, q2(t1) >

B0

λ2

}
− B0

λ1

≤ (t2 − t1)(1 + ϵ)

λ1
− B0

λ1(1− ϵ′)
< 0, (53)

where the negativeness is established by choosing a suffi-
ciently small ϵ > 0. Similarly

E
{
q2(t1 +B0)− q2(t1)

∣∣∣q2(t1) > B0

λ2
+ 1
}
< 0. (54)

Since q1(t) has a negative drift, it implies that for any ϵ1, ϵ
′ >

0, there exists a t0 > 0 such that P (q1(t) < ϵ′t) > 1 − ϵ1,
for all t > t0.

Using the negative drift of q1(t), we have for any t > t0,

E{n1(t)} ≤
t

λ1
+ o(t), (55)

where o(t) is a sublinear term, by similar steps shown in
(42). Meanwhile, we also have

E{n2(t)} ≤
t

λ2
+ o(t). (56)

We still use T1(t) to denote the number of time slots when
the BS transmits an uncoded packet for session 1 up to time
t; T2(t) as the number of time slots when the BS transmits
an uncoded packet for session 2 up to time t. By our sub-
module FNISS, for under provisioned case, the BS would
only choose to transmit at most n2(t)

(
1

1/λ1
p1

+
1/λ2

p1+p2−p1p2

)
out of the first n2(t) packets in session 2. Since for every
uncoded packet from session 2 that has been chosen to
transmit, the BS will transmit it until it has been received by
at least one user, we have

E{T2(t)}

≤ E{n2(t)}
( 1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

) 1

p1 + p2 − p1p2
, (57)

where the inequality is because some uncoded packets are
expired before they can be received by any user, so the
expected transmission time for each packet is shortened.

For session 1, since user 1 is the leading user, some
packets would be retransmitted until user 1 receives it, if
it has been received by user 2 first. T1(t) is comprised of
two parts: one part is when the BS transmits uncoded packets
of session 1, the other part is when a session 1 packet has
been received by user 2 first, the BS continues to transmit
this packet until user 1 receives it. The first part can be
upper bounded by E{n1(t)}

(
1

1/λ1
p1

+
1/λ2

p1+p2−p1p2

)
1

p1+p2−p1p2

(some packets need to be dropped by the congestion control
mechanism in FNISS). For the second part, to illustrate the

calculation, we use RN(t) as number of coding opportunities
of user 1 that the BS decides to retransmit until user 1
receives, during the interval [1, t].

We use UCO(t) to denote the total number of time slots
that are used to “retransmit” some coded opportunities of
user 1 whose status have been set to uncoded-Tx-onlyduring
the interval [1, t] (the second part of T1(t)). By the same
argument as used in the proof for Lemma 2, we thus have

E
{
UCO(t)

} 1

p1
=

1

p1

(
1−

N2(p1 − p1p2)
p1

p2

N1(p2 − p1p2)

)
×
( 1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

) p2 − p1p2
p1 + p2 − p1p2

E{n1(t)}. (58)

Combining the first and second part, we obtain

E{T1(t)} ≤ E{n1(t)}

(
1

p1 + p2 − p1p2
+

p2 − p1p2
p1 + p2 − p1p2

1

p1

(59)

− p2 − p1p2
p1 + p2 − p1p2

N2(p1 − p1p2)
p1

p2

N1(p2 − p1p2)

1

p1

)

×

(
1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
(60)

= E{n1(t)}

(
1

p1
−

N2(p1 − p1p2)
1
p2

(p1 + p2 − p1p2)N1

)

×

(
1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
, (61)

where the inequality is because some uncoded packets are
expired before they can be received by any user, so the
expected transmission time for each packet is shortened; or
because some coding opportunities may expire before they
can be received through coded transmission.

Note that when we transmit an uncoded packet for session
1, the expected “reward” is p1 since only user 1 can get
benefits from this transmission. When we transmit a coded
packet, the expected reward for user 1 is p1 and reward for
user 2 is p2 since both destinations can benefit. As a result,
for sufficiently large t, the expected total rewards for user 1
is lower bounded by

E{N success
1 } (62)

= p1E{T1(t)}+ p1E{t− T1(t)− T2(t)} (63)
= p1t− p1E{T2(t)} (64)

≥ p1t− p1
t

λ2

1

p1 + p2 − p1p2

(
1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

=
t

λ1

(
1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
. (65)

When t is λ1N1, we have E{N success
1 } =

N1

(
1

1/λ1
p1

+
1/λ2

p1+p2−p1p2

)
. The expected total rewards for



user 2 is lower bounded by

E{N success
2 } (66)

= p2E{T2(t)}+ p2E{t− T1(t)− T2(t)} (67)
= p2t− p2E{T1(t)} (68)

≥ p2t− p2
t

λ2

(
1

p1
−

N2(p1 − p1p2)
1
p2

(p1 + p2 − p1p2)N1

)

×

(
1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

=
t

λ2

(
1

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)
. (69)

When t is λ2N2, we have E{N success
2 } =

N2

(
1

1/λ1
p1

+
1/λ2

p1+p2−p1p2

)
. We have shown the throughput

performance for the under-provisioned case when user 1 is
a leading user. We can apply the same approaches for the
scenario when user 2 is a leading user. Recall that γ denotes
the value min

(
1

1/λ1
p1

+
1/λ2

p1+p2−p1p2

, 1
1/λ1

p1+p2−p1p2
+

1/λ2
p2

)
. Thus

we can conclude that, for under-provisioned case, the
throughput for user 1 is N1γ, and the throughput for user 1
is N2γ.

V. SIMULATION

Our previous analyses focus on the asymptotic case with
large file size N1 →∞ and N2 →∞. In this section, we use
simulation to verify the performance of our IDNC scheme
for finite N1 and N2.

A. Performance for Large N1 and N2

We first assume that the successful delivery probabilities
for user 1 and user 2 are p1 = 0.5 and p2 = 0.6, respectively.
Then we consider the following 5 cases with (λ1, λ2) being
(2,4), (3,4), (4,4), (5,4), and (6,4), respectively (we name
them as case 1 to case 5, respectively). For all cases we use
N1 = 40000. Recall that we require λ1N1 = λ2N2, and we
thus set N2 to be 20000, 30000, 40000, 50000, and 60000
in the 5 cases. We first show the capacity region without
deadline constraints in Fig. 1, i.e., according to (1) and (2),
as shown by the area beneath the two solid lines. We then
use different markers to denote the normalized throughput
(
N success

1

λ1N1
,
N success

2

λ2N2
) from simulation for the 5 cases. The circles

indicate the corresponding theoretical upper bound of both
sessions, which are given by

(
β∗

λ1
, β∗

λ2

)
in Proposition 1. Note

that case 1 represents the under-provisioned setting, while
the other cases represents the over-provisioned setting. We
observe that in all cases, the achievable throughput is very
close to the upper bound.

B. Performance for Small N1 and N2

In Fig. 2 we plot the normalized throughput for both users
when N1 and N2 are small. We use the same channel param-
eters p1 = 0.5 and p2 = 0.6, and the same deadlines (λ1, λ2)
being (2,4), (3,4), (4,4), (5,4), and (6,4), respectively. But
we use much smaller file sizes: (N1, N2) being (400, 200),
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Fig. 1. Average rate of receiving packets for user 1 and user 2 when N1

and N2 are large.
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Fig. 2. Average rate of receiving packets for user 1 and user 2 when N1

and N2 are small.

(400, 300), (400, 400), (400, 500), and (400, 600). In Fig. 2,
the circles still indicate the theoretical upper bound of both
sessions; we also plot the achieved normalized throughput
for all 5 cases. We can observe that, although the numbers
of packets for both session 1 and session 2 are small, the
achievable throughput are still very close to the theoretical
upper bound.

VI. CONCLUSION AND DISCUSSION

In this work, we have studied inter-session network cod-
ing for sending two unicast sessions over an unreliable
wireless channel. We consider two unicast sessions under
heterogeneous channel conditions and heterogeneous dead-
line constraints. We develop immediately-decodable network
coding (IDNC) schemes for controlling packet transmissions
for the unicast sessions in order to maximize the normal-
ized throughput subject to hard deadline constraints. Our
proposed scheme is not only proved to be asymptotically
optimal in the limit of large file sizes, it is also shown in our



simulations to achieve close-to-optimal throughput for small
file sizes.

The analysis in this paper assumes that the channel statis-
tics are known to the BS, and perfect feedback is provided
to the BS after each time-slot. In practical systems, the
assumption of instant, noise-free feedback may no longer
hold, and we also might not know the channel before-hand.
Our proposed scheme could be adapted to fit these practical
settings. For the delayed- and lossy-feedback setting, we can
modify our scheme similar to the one in Section V of [6].
On the other hand, if the channel characteristic is not known
by the BS, then we can estimate p1 and p2 by counting the
number of the “ACKs” that the BS has received for each
channel. After an initial learning period, the estimate will be
close to the real value. We can then use the channel estimate
to schedule transmissions. Our future work will analytically
quantify the performance of IDNC schemes in such practical
settings.
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