
HAL Id: hal-01088188
https://hal.inria.fr/hal-01088188

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Anonymity Evaluation of Voting Protocols
Fabrizio Biondi, Axel Legay

To cite this version:
Fabrizio Biondi, Axel Legay. Quantitative Anonymity Evaluation of Voting Protocols. 12th In-
ternational Conference on Software Engineering and Formal Methods, Sep 2014, Grenoble, France.
�hal-01088188�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49577552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01088188
https://hal.archives-ouvertes.fr


Quantitative Anonymity Evaluation
of Voting Protocols

Fabrizio Biondi1 and Axel Legay1

INRIA Rennes, France

Abstract. In an election, it is imperative that the vote of the single voters remain
anonymous and undisclosed. Alas, modern anonymity approaches acknowledge
that there is an unavoidable leak of anonymity just by publishing data related to
the secret, like the election’s result. Information theory is applied to quantify this
leak and ascertain that it remains below an acceptable threshold.
We apply modern quantitative anonymity analysis techniques via the state-of-the-
art QUAIL tool to the voting scenario. We consider different voting typologies
and establish which are more effective in protecting the voter’s privacy. We further
demonstrate the effectiveness of the protocols in protecting the privacy of the
single voters, deriving an important desirable property of protocols depending on
composite secrets.

1 Introduction

Voting is the backbone of the democratic process [15]. To be effective, a voting system
must allow the voters to freely express their opinion and elect the public officials that
will represent them in the government. An effective voting system guarantees that each
vote is counted exactly once, that no malicious agent can tamper with the results of the
vote, and that no vote can be traced back to the voter who cast it.

Various traditional and electronic voting systems have been proposed to assure such
guarantees. The use of cryptography and certification authorities can guarantee that only
eligible voters can vote and that their vote is counted exactly once, and the production
of fake credentials can safeguard voters against being coerced to reveal their vote [12].
The anonymity of the vote is harder to guarantee; current proposals include assumptions
on the absolute anonymity of the voting channels [12,14] or expect enterprises and
universities to provide public proxy servers to hide the IP address of the voter [10]. The
problem with these approaches to anonymity is that the anonymity of a vote is considered
a qualitative, yes/no property, verifying whether it is possible for an attacker to infer any
amount of information about the identity of the voters; this is known as the possibilistic
approach. The probabilistic approach instead considers anonymity as a quantity that can
be decreased by the attack of an external agent and by other factor in the voting process
including the magnitude of the electoral seat, the electoral formula used, the results
of the elections and the number of candidates. Since none of these factors completely
compromise anonymity, a qualitative technique has to either ignore them or consider any
voting protocol unsafe.

Current approaches to anonymity consider a secret, like the identity of the caster of a
vote, as a quantitative amount of information, and use information theory to quantify



how much of this secret information is inferred by a malicious attacker [8,9]. This
amount is called information leakage. The qualitative approach tags as insecure even a
negligible amount of loss of information, in practice considering any real system insecure
except under very strong assumptions. On the other hand, the quantitative approach
allows the analyzer to determine a bound above which a loss of anonymity is considered
noteworthy. Quantitative anonymity analysis has been applied among others to study
the trade-off between anonymity and utility of operations on databases [2] and to define
information-theoretical bounds to differential privacy [4]. To the best of our knowledge,
these techniques have not been applied to voting protocols.

Completely automated tools have been created to quantify information leakage for
any secret-dependent protocol. Previously we have introduced a theoretical framework to
model protocols with Markov chains and efficiently and precisely compute their leakage
[5]. We implemented the approach in the QUAIL tool, the first tool able to perform an
arbitrary-precision leakage analysis of a non-deterministic secret-dependent protocol
[7].

In this work we will use QUAIL to analyze different typologies of electoral formulae.
QUAIL considers the combined votes of the voters as a precise amount of secret bits
and quantifies precisely how many of these bits are inferred by an attacker able to read
the published results of the elections, i.e. the information leakage. Since these results
are public, there is no way to avoid this loss of anonymity. Consequently any qualitative
method that claims to perfectly guarantee anonymity of the voters is ignoring this non-
negative information leakage. By quantifying exactly this amount we establish a lower
bound on the amount of anonymity that any implementation or formula can guarantee.

We study two very general typologies of electoral formulae: Single Preference
formulae, where each voter expresses a preference for a candidate, and Preference
Ranking formulae, where each voter ranks all candidates from the best to the worst.
Our results are valid for any electoral formula in the typologies. This classification is
traversal to the common division in proportional and majoritarian systems, as it depends
only on the way the vote is expressed.

We consider that the secret is not a single entity, but a composite of the secret votes.
If we have 10 secrets and each is 2 bits and the leakage of the system is 2 bits, we need
to identify whether the leaked information corresponds to the secret of one of the voters
or only to general information about the result of the vote. The theoretical bases for
the study of leakage of composite secrets are very recent [3], and to the best of our
knowledge no large scale study of practical cases has been published.

Our analysis shows the exact impact of the magnitude of the electoral seat and the
number of candidates on the anonymity of the vote. The results suggest the data from
seats of low magnitude, like hospital seats, should be aggregated before publication to
protect the voters’ anonymity. Also we show that the leakage on a single voter’s secret is
strictly less than the leakage on all secrets divided by the number of voters, proving that
the voting protocols analyzed are effective in protecting the single voters’ secrets. This
is a generally desirable property for protocols on composite secrets.

The rest of the paper is organized as follows: Section 2 introduces common concepts
in probability and information theory and Section 3 details the leakage theory and how it
is implemented in the QUAIL analyzer. Section 4 presents the two typologies of electoral
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formulae we analyze and in Section 5 we discuss the results obtained. Section 6 explains
which problems we are facing in obtaining more results and what steps we are taking to
solve them.

2 Background

We define common concepts in probability theory and information theory that are used
through the paper. We refer to books on the subject [13] for the basic definitions on
probability theory. We call X a discrete random variable and X a discrete stochastic
process, i.e. an indexed infinite sequence of discrete random variables (X0.X1, X2, ...)
ranging over the same sample space S. The index of the random variables in a stochastic
process can be understood as modeling a concept of discrete time, so Xk is the random
variable representing the system at time unit k.

2.1 Markov Chains

A discrete stochastic process is a Markov chain C = (C0, C1, C2, ...) iff ∀k ∈ N.
P (Ck|Ck−1, ..., C0) = P (Ck|Ck−1). A Markov chain on a sample space S can also be
defined as follows:

Definition 1. A tuple C = (S, s0, P ) is a Markov Chain (MC), if S is a finite set of
states, s0∈S is the initial state and P is an |S| × |S| probability transition matrix, so
∀s, t∈S. Ps,t≥0 and ∀s∈S.

∑
t∈S Ps,t = 1.

We call π(k) the probability distribution vector over S at time k and π(k)
s the prob-

ability πk(s) of visiting the state s at time k. This means that, considering a Markov
chain C as a time-indexed discrete stochastic process (C0, C1, ...), we write π(k) for the
probability distribution over the random variable Ck. Since we assume that the chain
starts in state s0, then π(0)

s is 1 if s = s0 and 0 otherwise. Note that π(k) = π0P
k, where

P k is matrix P elevated to power k, and P 0 is the identity matrix of size |S| × |S|.
A state s ∈ S is absorbing if Ps,s = 1. In the figures we will not draw the looping

transition of the absorbing states, to reduce clutter. We say that a Markov chain is
one-step if all states except the starting state s0 are absorbing. We will usually refer to
one-step Markov chains as C.

Let ξ(s, t) denote the expected residence time in a state t in an execution starting
from state s given by ξ(s, t) =

∑∞
n=0 P

n
s,t. We will write ξs for ξ(s0, s).

We will enrich our Markov chains with a finite set V of natural-valued variables, and
for simplicity we assume that there is a very large finite bit-size M such that a variable is
at most M bit long. We define an assignment function A : S → [0, 2M − 1]|V| assigning
to each state the values of the variables in that state. We will use the expression v(s) to
denote the value of the variable v ∈ V in the state s ∈ S.

Given a Markov chain C = (S, s0, P ) let a discrimination relation R be an equiv-
alence relation over S. We use discrimination relation to quotient one-step Markov
chains:
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Definition 2. Given a one-step Markov chain C = (S, s0, P ) and a discrimination
relation R over S, we define the quotient C/R of C over R as the one-step Markov
chain C/R = (S̄, s̄0, P̄ ) where

– S̄ is the set of equivalence classes of S induced byR;
– s̄0 is the equivalence class of s0;
– for each equivalence class s̄ ∈ S′, P̄s̄0,s̄ =

∑
s∈s̄ Ps0,s and P̄s̄,s̄ = 1.

2.2 Information Theory

The entropy of a probability distribution is a measure of the unpredictability of the events
considered in the distribution [17].

Definition 3. [13] Let X and Y be two random variables with probability mass func-
tions p(x) and p(y) respectively and joint pmf p(x, y). Then we define the following
non-negative real-valued functions:

– Entropy H(X) = −
∑

x∈X p(x) log2 p(x)
– Joint entropy H(X,Y ) = −

∑
x∈X

∑
y∈Y p(x, y) log2 p(x, y)

– Conditional entropy H(X|Y ) = −
∑

x∈X
∑

y∈Y p(x, y) log2 p(x|y) =
=
∑

y∈Y p(y)H(X|Y = y) =
∑

y∈Y p(y)
∑

x∈X p(x|y) log2 p(x|y) =
= H(X,Y )−H(Y ) (chain rule)

– Mutual information I(X;Y ) =
∑

x∈X
∑

y∈Y p(x, y) log2

(
p(x,y)

p(x)p(y)

)
=

= H(X) +H(Y )−H(X,Y ) ≤ min(H(X), H(Y ))

Since every state s in a MC C has a discrete probability distribution over the successor
states we can calculate the entropy of this distribution. We will call it local entropy, L(s),
of s: L(s) = −

∑
t∈S Ps,t log2 Ps,t. Note that L(s) ≤ log2(|S|).

As a MC C can be seen as a discrete probability distribution over all of its possible
traces, we can assign a single entropy value H(C) to it. The global entropy H(C) of C
can be computed by considering the local entropy L(s) as the expected reward of a state
s and then computing the expected total reward of the chain [6]: H(C) =

∑
s∈S L(s)ξs

If a Markov chain is one-step its entropy corresponds to the local entropy of the initial
state s0.

3 Information Leakage of Markov Chains

3.1 Theoretical background

We use information theory to compute the amount of bits of a secret variable h that can
be inferred by an attacker able to observe the value of an observable variable o after the
termination of a protocol. We call this amount Shannon leakage or just leakage, and it
corresponds to the mutual information between the distribution on the secret and the
distribution on the observable variable. This analysis assumes the worst possible attacker:
the attacker has access to the source code of the protocol and to unlimited computational
power.

We will model system-attacker scenarios with Markov chains in which to each state
we associate a unique assignment of values to all variables [5]. Then we define leakage
as follows:
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Fig. 1: Bit XOR example: a) Markov chain semantics C. b) Observable reduction C. c)
Joint quotient C|(o,h). d) Secret’s quotient C|h. e) Observer’s quotient C|o.

Definition 4. Let C be a Markov chain enriched with variable from the set V. Let h
represent the secret variables and O the variables whose value is observable to the
attacker. Then we define the Shannon leakage of C as the mutual information I(O; h)
between the secret and observable variables.

Note that to compute leakage we need to have a prior probability distribution over
the secret, modeling what the attacker knows before observing the observable output of
the protocol. We will assume for simplicity that the attacker knows the possible values
of the secret, since he can read the source code and verify which kind of variable holds
it, but has no additional information about it.

The modeling of a system-attacker scenario as a Markov chain starts by dividing
the system’s variables in private and public variables. Private variables, including the
secret variable h, are the ones whose value is not defined at compilation time. In each
state of the Markov chain a set of allowed values is assigned to each private variable.
Public variables, including the observable variable o and the program counter pc, are
variable whose value is known to the analyst. On each state a given value is assigned to
each public variable.

Given the source code of the system and a prior distribution over the private variables,
we have enough information to build the Markov chain semantics C of the protocol, since
for each state we can determine its successor states and the corresponding transition
probabilities.

We show a simple example, and refer to [5] for the complete semantics. Let secret
variable h be a secret bit, observable variable o an observable bit and public variable r a
random bit being assigned the value 0 with probability 0.75 and 1 otherwise. We assign
to o the result of the exclusive OR between h and r and terminate. We want to quantify
the amount of information about h that can be inferred by knowing the value of o. The
Markov chain semantics C for the example is shown in Fig. 1a. Each state is enriched
with information about the allowed values of private variables and the values of public
variables, e.g. in state S1 secret variable h can be either 0 or 1 and public variable r is 0.
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Subsequently we need to model the fact that the attacker has to wait for the protocol
to terminate to read the observable output. Equivalently, we can say that the attacker is
not aware of the internal behavior of the system; this is modeled by hiding in the Markov
chain model the internal states, i.e. all states except the initial state and the absorbing
states. We call the resulting Markov chain the observable reduction C. The observable
reduction for the example is shown in Fig. 1b.

Note that the observable reduction is a one-step Markov chain, so we can compute
quotients on it following Definition 2. To compute the leakage we need to compute three
quotients from the observable reduction:

Joint quotient The joint quotient process C|(o,h) models the joint behavior of the secret
and observable variables. It is shown in Fig. 1c.

Secret’s quotient The secret’s quotient process C|h models the behavior of the secret
variable. It is shown in Fig. 1d.

Observer’s quotient The observer’s quotient process C|o models the behavior of the
observable variable. It is shown in Fig. 1e.

Finally we compute leakage as the mutual information I(O; h), as between the secret
and observable variable, as explained in Definition 4. To compute it we apply the formula
I(X;Y ) = H(X) +H(Y )−H(X,Y ) from Definition 3, obtaining

I(o; h) = I(C|o;C|h) = H(C|o) +H(C|h)−H(C|(o,h))

meaning that the leakage can be computed as the sum of the entropies of the secret and
observable quotient minus the entropy of the joint quotient. In our example we have
(C|o) = 1, H(C|h) = 1 and H(C|(o,h)) = 1.8112..., so we conclude that the program
leaks 1 + 1− 1.8112... ≈ 0.1887 bits, or 18.87% of the secret.

3.2 QUAIL Implementation

The QUAIL tool quantifies the Shannon leakage of a probabilistic process in a fully
automated way. The user just provides the source code for the process in the QUAIL
imperative language, specifying the size of the variables and whether each variable
is public, private, secret or observable. QUAIL computes the expected amount of in-
formation about the secret variables that an attacker is able to infer by knowing the
values of the observable variables after the protocol has terminated and produced output,
implementing the theory presented in Section 3.1.

The QUAIL language is a WHILE language enriched with for loops, multidimen-
sional arrays and constant declarations. For simplicity all variables are integer variables;
the bit length of each variable is defined by the coder at declaration time. Also, assign-
ment to private or secret variables is not allowed, and all variables have to be declared at
the beginning of the program. We refer to [1] for the source code and full semantics of
QUAIL.

QUAIL is able to handle secret and private variables with a large number of possible
values. Alas, the representation of arbitrary probability distributions on such variables
on a real machine is untreatable: a probability distribution over a 64-bit variable is
composed of 264 ≈ 1/8 · 1019 rational numbers. For this reason QUAIL does not allow
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the user to define arbitrary prior distributions over the secret, and always assumes that
the prior distribution is uniform.

1 secret int1 h;
2 observable int1 o;
3 public int1 r;
4 random r := randombit

(0.75);
5 assign o := h ^ r;
6 return;

Fig. 2: Bit XOR example: source
code.

The QUAIL source code for the bit XOR exam-
ple presented in Section 3.1 is shown in Fig. 2. In
lines 1 to 3 the variables are declared, then in line
4 variable r is assigned value 0 with probability
0.75 and 1 otherwise, and in line 5 variable o is
assigned with the exclusive OR of variables h and
r.

We save the source code in Fig. 2 in a file
bitxor.quail and invoke QUAIL with the
command

./quail bitxor.quail -v 0 -p 5
where -v 0 suppresses all output except for the
leakage result and -p 5 specifies that we want 5
significant digits in the answer. QUAIL outputs

0.18872
showing that the program leaks ≈ 0.18872 bits of the secret, in accordance to what we
computed theoretically in Section 3.1.

4 Modeling Voting Protocols

In an election, each voter is called to express his preference for the competing candidates.
The voting system defines the way the voters express their preference: either on paper in
a traditional election, or electronically in e-voting. The voting system also comprehends
the additional procedures enforced to guarantee that the voters can vote freely, that they
can verify that their vote has been counted and that their vote remains confidential.

After the votes have been cast, the results of the vote are published, usually in an
aggregated form to protect the anonymity of the voters. Finally, the winning candidate
or candidates is chosen according to a given electoral formula.

In this section we present two different typologies of voting, representing two
different ways in which the voters can express their preference: in the Single Preference
protocol the voters declare their preference for exactly one of the candidates, while in the
Preference Ranking protocol each voter ranks the candidate from his most favorite to his
least favorite. Since each protocol we model is concerned only about how the votes are
expressed and counted and what results are published, each protocol models a number
of electoral formulae. For the same reason, the models are valid both for uninominal and
multinominal elections.

4.1 Single Preference

The Single Preference protocol typology models all electoral formulae in which each
of the N voters expresses one vote for one of the C candidates, including plurality
and majority voting systems and single non-transferable vote [15]. The votes for each
candidate are summed up and only the results are published, thus hiding information
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about which voter voted for which candidate. The candidate or candidates to be elected
are decided according to the electoral formula used.

Secret and observable encoding. The secrets and observables are modeled by the
following lines of QUAIL code:

secret array [N] of int32 vote : = [ 0 ,C−1];
observable array [C] of int32 r e s u l t ;

The secret is an array of integers with a value for each of the N voters. Each value is a
number from 0 to C-1, representing a vote for one of the C candidates. The observable is
an array of integers with the votes obtained by each of the C candidates. The full model
for this protocol is shown in the Appendix due to space constraints.

Formal leakage computation. The protocol is simple, and its information leakage can be
computed formally, as shown by the following lemma:

Lemma 1. The information leakage for the Single Preference protocol with n voters
and c candidates corresponds to

log2 c
n − 1

cn

∑
k1+k2+...+kc=n

(
n

k1 + k2 + ...+ kc

)(
log2

(
n

k1 + k2 + ...+ kc

))
The proof for Lemma 1 is in the Appendix. While the lemma characterizes the

solution computed by QUAIL for this case, it is very hard to find such a characterization
for any process, so in general QUAIL is the best way to obtain a result. We run QUAIL
with the command

./quail single_preference.quail -v 0 -p 5
with the same parameters we used in Section 3.2 and obtain

1.8112
showing that the leakage of the Single Preference protocol for 3 voters and 2 candidates
is ≈ 1.8112 bits.

4.2 Preference Ranking

The Preference Ranking protocol typology models all electoral formulae in which each of
the n voters expresses an order of preference of the c candidates, including the alternative
vote and single transferable vote systems [15]. In the Preferential Voting protocol the
voter does not express a single vote, but rather a ranking of the candidates; thus if the
candidates are A, B, C and D the voter could express the fact that he prefers B, then D,
then C and finally A. Then each candidate gets c points for each time he appears as first
choice, c− 1 points for each time he appears as second choice, and so on. The points of
each candidate are summed up and the results are published.

Secret and observable encoding. The secrets and observables are modeled by the
following lines of QUAIL code:

secret array [N] of int32 vote : = [ 0 ,C!−1] ;
observable array [C] of int32 r e s u l t ;
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The secret is an array of integers with a value for each of the N voters. Each value
is a number from 0 to C!-1, representing one of the possible C! rankings of the C
candidates. The observable is an array of integers with the points obtained by each of
the C candidates. The full model for this protocol is shown in the Appendix due to space
constraints.

5 Experimental Results

We discuss some of the initial results we have obtained by analyzing the Single Preference
and Preference Ranking voting protocols.

Single Voters

2 3 4

C
an

ds

2 1.50 1.81 2.03

3 / 3.12 3.57

4 / / 4.81

Ranking Voters

2 3 4

C
an

ds

2 1.50 1.81 2.03

3 / 2.54 2.96

4 / / timeout

Table 1: Voting protocols: leakage tables for Single Preference (on the left) and Prefer-
ence Ranking (on the right)

Leakage comparison. Table 1 shows the leakage amounts for the Single Preference
and Preference Ranking protocols for different numbers of voters and candidates. We
note that the results for 2 candidates are identical, since in this case in both protocols
the voters can vote in only 2 different ways. The table shows that the leakage for
the Preference Ranking protocol is in general lower than the leakage for the Single
Preference protocol. Nonetheless we are comparing protocols with a different secret size,
so it is more appropriate to compare posterior entropies.

Single Voters

2 3 4

C
an

ds

2 0.50 1.19 1.97

3 / 1.63 2.76

4 / / 3.19

Ranking Voters

2 3 4

C
an

ds

2 0.5 1.19 1.97

3 / 5.21 7.37

4 / / timeout

Table 2: Voting protocols: posterior entropy tables for Single Preference (on the left) and
Preference Ranking (on the right)

Posterior entropy comparison. In Table 2 we show the posterior entropies for the same
cases as Table 1. The result confirm that the protocols are identical in case there are 2
candidates, and Preference Ranking is more efficient in protecting the anonymity of the
votes than Single Preference.
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3V-2C HO Hh HO,h IO,h IO,h% pHh

1 1.81 1.00 2.50 0.31 31.1% 0.69
2 1.81 2.00 3.00 0.81 40.5% 1.19
3 1.81 3.00 3.00 1.81 60.3% 1.19

3V-3C HO Hh HO,h IO,h IO,h% pHh

1 3.12 1.58 4.08 0.62 39.1% 0.96
2 3.12 3.16 4.75 1.53 48.5% 1.63
3 3.12 4.75 4.75 3.12 65.6% 1.63

4V-2C HO Hh HO,h IO,h IO,h% pHh

1 2.03 1.00 2.81 0.21 21.0% 0.79
2 2.03 2.00 3.50 0.53 26.5% 1.47
3 2.03 3.00 4.00 1.03 34.0% 1.97
4 2.03 4.00 4.00 2.03 50.0% 1.97

4V-3C HO Hh HO,h IO,h IO,h% pHh

1 3.57 1.58 4.70 0.45 28.7% 1.13
2 3.57 3.16 5.67 1.07 34.0% 2.09
3 3.57 4.75 6.33 1.99 41.9% 2.76
4 3.57 6.33 6.33 3.57 56.3% 2.76

5V-2C HO Hh HO,h IO,h IO,h% pHh

1 2.19 1.00 3.03 0.16 16.7% 0.84
2 2.19 2.00 3.81 0.38 19.3% 1.62
3 2.19 3.00 4.50 0.69 23.2% 2.31
4 2.19 4.00 5.00 1.19 30.0% 2.81
5 2.19 5.00 5.00 2.19 44.0% 2.81

5V-3C HO Hh HO,h IO,h IO,h% pHh

1 3.93 1.58 5.16 0.35 22.3% 1.23
2 3.93 3.16 6.29 0.80 25.5% 2.36
3 3.93 4.75 7.25 1.43 30.1% 3.32
4 3.93 6.33 7.92 2.34 37.0% 3.99
5 3.93 7.92 7.92 3.93 49.6% 3.99

Table 3: Single Preference voting protocol: entropies and leakage on varying the number
of voters, candidates and target voters.

Analysis of Single Preference with variable number of targets. In Table 3 we give
detailed results of the analysis of the Single Preference voting protocol, on varying the
number of voters, candidates and target voters. The code in bold on the top left corner of
a table shows how many voters and candidates are being considered in the experiment,
e.g. 4V-2C means 4 voters and 2 candidates. The column of the left represents the
number of target voters for the experiment, i.e. how many votes is the attacker trying to
infer. The table reports the following values:

HO is the entropy of the observer’s quotient
Hh is the (prior) entropy of the secret’s quotient
HO,h is the entropy of the joint quotient
IO,h = HO +Hh −HO,h is the information leakage
IO,h% = IO,h/Hh is the percentage of the secret that has been leaked
pHh = Hh − IO,h is the (expected) posterior entropy of the secret, i.e. the amount of

secret that has not been leaked

Discussion. Since the posterior entropy measures how hard it would be for an attacker to
learn the secret after observing the results of the voting, we focus on it as the measure of
how confidential the votes are after the attack. Note that posterior entropy increases less
than linearly with the number of targets, so if we want to learn both the votes of voters
Alice and Bob it is more convenient to consider the two votes as a single composite
secret than to try to learn the two votes separately. Note also that the posterior entropy
when all voters are targets is the same as the posterior entropy when all voters except
one are. This is because if all votes except one are known, the last one can be inferred
immediately by checking the election’s results.

It should also be noted that the percentage of information leaked IO,h% increases
with the number of targets, again sublinearly. We argue that this is a desirable property
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in a protocol designed to protect a secret composed of several subsecrets with the same
importance. The property ensures that it is not more convenient for the attacker to try to
infer separately every single secret instead of the whole composed secret, so even if it
takes less time to infer the secret of 1 target out of 3, the time it would take to infer all
3 secrets one by one is larger than the time required to infer them all at the same time,
as we explained in the paragraph above. This guarantees that the posterior entropies
for multiple targets are in fact sound. This property also forces the attacker to decide
beforehand exactly how many votes he needs to discover to minimize the time needed
for the attack.

6 Challenges

6.1 Problem size

The examples we analyzed consider only a small number of voters and candidates. The
algorithm for the precise computation of information leakage is exponential in the size of
the secret and the size of the secret grows with the number of voters and candidates, thus
QUAIL and any other tool are too slow to analyze large cases. Analyzing the Preference
Ranking protocol also requires more time than analyzing the Single Preference protocol,
since the former protocol is more complex than the latter and has a larger secret size.

To solve this problem we are implementing a statistical analyzer in QUAIL able to
simulate the execution of the protocols a large number of times and to approximate the
information leakage value by analyzing the collected data. The statistical analyzer is
able to solve larger problems than the standard QUAIL algorithm, since it does not have
to analyze the whole space of possible program executions.

6.2 g-leakage

Information leakage quantifies the loss of information on the whole secret. We have
analyzed the behavior of leakage when we consider only some of the votes to be the
secret we are interested in, showing how the protocol is efficient in hiding the secret of
the single voters.

Recently an extension of information leakage, called g-leakage [3], has been pro-
posed exactly to deal with cases in which different subsets of the secret bits have different
values for the attacker, as is the case with composite secrets. g-leakage is very general,
since it allows for any gain function to be used in top of leakage computation; for this
reason it has not yet been implemented in any leakage analysis tool.

We are working to extend QUAIL with g-leakage computation capabilities, allowing
us to encode more naturally problems with composite secrets like voting protocols. We
expect that the results on the efficiency of the protocols in protecting the single votes
will be coherent with the results presented in this paper.

6.3 Implementation Analysis

The protocols we analyze model the abstract behavior of voting systems, giving us
theoretical lower bounds on the amount of information leaked by publishing the results

11



of the elections. It would be interesting to compare these theoretical results with actual
implementations of voting systems, to evaluate how effective the real systems are in
guaranteeing anonymity. Off-the-shelf systems are obviously not written in QUAIL
language, so a tool capable of analyzing C or Java code like the ones developed by Phan
and Malacaria [16] or by Chothia et al. [11] would have to be used.
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A Appendix

Proof (of Lemma 1). Call h the composite secret about the votes of all voters and O
the observable output of the system. Remember that information leakage corresponds
to the difference between the prior entropy on the secret H(h) and the posterior en-
tropy on the secret after observing the observable output of the system H(h|O) =∑

o∈O P (o)H(h|O = o).
The secret h has cn possible values, thus can be encoded in log2 c

n bits, thus the
prior entropy H(h) corresponds to log2 c

n.
For the posterior entropy H(h|O), consider that the possible votes on the candidates

form a multinomial distribution, thus the probability P (o) of a given outcome o ∈ O is
1/cn and the conditional posterior entropy H(h|O = o) where ki is the amount of votes
to candidate 1 ≤ i ≤ c is

(
n

k1+k2+...+kc

)
. We conclude that

I(O, h) = H(h)−
∑
o∈O

P (o)H(h|O = o)

= log2 c
n − 1

cn

∑
k1+k2+...+kc=n

(
n

k1 + k2 + ...+ kc

)(
log2

(
n

k1 + k2 + ...+ kc

))

Voting Protocol Models

Single Preference The model for the Single Preference protocol is shown on Fig. 3
on the left. Constant N represents the number of voters and constant C the number of
candidates. The observable variable result is an array with the total votes expressed
for each candidate, and the secret variable vote is the array with the preference of each
voter. The rest of the code just sums up the votes for each candidate.

Preference Ranking The model for the Preference Ranking model is shown on Fig. 3
on the right. Constant N represents the number of voters and constant C the number of
candidates. The observable variable result is an array with the total points obtained
by each candidate, and the secret variable vote is an array with the preference ranking
of each voter. For each voter the secret has c! possible different votes, corresponding
to the possible complete orderings of the c candidates. The secret vote of each voter is
encoded as a number from 0 to c!− 1, and then transformed in a preferential order with
the algorithm in lines 30-57. The points for each candidate are counted by summing the
points given by the preference ranking of each voter.
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1 / / N i s the number o f
vo te rs

2 const N: = 3 ;
3 / / C i s the number o f

candidates
4 const C: = 2 ;
5 / / the r e s u l t i s the

number o f votes o f
each candidate

6 observable array [C] of
int32 r e s u l t ;

7 / / The secre t i s the
preference of each
vo te r

8 secret array [N] of int32
vote : = [ 0 ,C−1];

9 / / t h i s i s j u s t a counter
10 public int32 i : = 0 ;
11 public int32 j : = 0 ;
12 / / vo t i ng
13 while ( i <N) do
14 while ( j <C) do
15 i f ( vote [ i ]== j ) then
16 assign r e s u l t [ j ] : =

r e s u l t [ j ] + 1 ;
17 f i
18 assign j := j +1;
19 od
20 assign j : = 0 ;
21 assign i := i +1;
22 od
23 return ;

1 / / N i s the number o f vo te rs
2 const N: = 3 ;
3 / / C i s the number o f candidates
4 const C: = 2 ;
5 / / the r e s u l t i s the number o f votes o f

each candidate
6 observable array [C] of int32 r e s u l t ;
7 / / The secre t i s the preference of each

voter , from 0 to C!−1
8 secret array [N] of int32 vote : = [ 0 ,C

!−1];
9 / / these b i t s represent the votes

rece ived by the vo t i ng machine
10 public array [N] of int32 dec l ;
11 public array [C] of int32 temparray ;
12 public int32 pos ;
13 / / t h i s i s j u s t a counter
14 public int32 vo te r : = 0 ;
15 public int32 candidate : = 0 ;
16 public int32 k : = 0 ;
17 public int32 y : = 0 ;
18 / / vo t i ng
19 while ( voter <N) do
20 while ( candidate <C) do
21 i f ( vote [ vo te r ]== candidate ) then
22 assign dec l [ vo te r ] : = candidate ;
23 f i
24 assign candidate := candidate +1;
25 od
26 assign candidate : = 0 ;
27 assign vo te r := vo te r +1;
28 od
29 / / t rans form the secre t o f each vo te r

i n t o the order o f the preferences
30 assign vo te r : = 0 ;
31 while ( voter <N) do
32 / / b u i l d the i n i t i a l a r ray
33 assign candidate : = 0 ;
34 while ( candidate <C) do
35 assign temparray [ candidate ] : =

candidate ;
36 assign candidate := candidate +1;
37 od
38 assign k :=C;
39 / / f i n d a p o s i t i o n
40 while ( k >0) do
41 assign pos := dec l [ vo te r ]%k ;
42 assign candidate :=C−k ;
43 / / update the vote o f the candidate
44 assign r e s u l t [ candidate ] : = r e s u l t [

candidate ]+ temparray [ pos ] ;
45 / / remove the element from the

ar ray
46 assign y := pos ;
47 while ( y<C−1) do
48 assign temparray [ y ] : = temparray [ y

+ 1 ] ;
49 assign y := y +1;
50 od
51 / / update the vote o f the vo te r
52 assign dec l [ vo te r ] : = dec l [ vo te r ] / k ;
53 / / decrease the counter
54 assign k := k−1;
55 od
56 assign vo te r := vo te r +1;
57 od
58 return ;

Fig. 3: Model for the Single Preference protocol (on the left) and for the Preference
Ranking protocol (on the right). 14


