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Complementary geometric and optical
information for match-propagation-based 3D

reconstruction

Patricio A. Galindo and Rhaleb Zayer

INRIA Nancy, France

Abstract. In this work, we consider the problem of propagation-based
matching for 3D reconstruction, which deals with expanding a limited
set of correspondences towards a quasi-dense map across two views. In
general, propagation based methods capture well the scene structure.
However, the recovered geometry often presents an overall choppy na-
ture which can be attributed to matching errors and abrupt variations
in the estimated local affine transformations. We propose to control the
reconstructed geometry by means of a local patch fitting which corrects
both the matching locations and affine transformations throughout the
propagation process. In this way, matchings that propagate from geo-
metrically consolidated locations bring coherence to both positions and
affine transformations. Results of our approach are not only more visu-
ally appealing but also more accurate and complete as substantiated by
results on standard benchmarks.

1 Introduction

This paper revisits the problem of match propagation across a pair of views in
the context of quasi-dense matching [1], and its extension to wide-baseline views
which accounts for affine distortion [2]. We focus on these approaches due to their
inherent simplicity and minimal requirements, however the proposed solutions
can be applied to other propagation approaches. Alternative approaches such
as [3, 4] which require image rectification and further problem reformulations
will not be addressed here.

Propagation-based matching is the workhorse of many surface reconstruc-
tion approaches e.g. [5–8]. In practice, it comes in different flavors, e.g. [1, 9, 10],
but they all require corrective steps and/or postprocessing techniques to filter
out mismatches. Furthermore, the resulting geometry exhibits a choppy nature
which is often not addressed directly and is left to mesh reconstruction algo-
rithms, e.g. [11]. Figures 1 and 2 show typical chaps and clefts observed when
performing scene reconstruction using a state of the art propagation approach,
in this case [2]. We are aware that the use of additional images can help re-
duce such effects relatively, e.g. [12, 7], however, addressing the challenges of the
fundamental problem on a pair of images remains necessary to take full advan-
tage of the available data and can also be beneficial when additional views are
accessible.
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Fig. 1: Reconstruction from views 3-4 of the Herz-Jesu P8 dataset using [2]
(right). Geometric artifacts are clearly visible in the closeups (middle). Whereas,
the geometry of the scene is better captured with our approach (left).

In this paper, we argue that such problems can be resolved during the propa-
gation process by including geometric cues which help consolidate the geometric
reconstruction and the estimation of the local affine transformations, thus avoid-
ing tedious post processing operations in the first place. The use of geometric
information in propagation based methods is not new, for instance [13], pro-
poses a splatting inspired approach based on local plane fitting. However, this
approach is limited to narrow baselines and requires a relatively large number
of images. Our approach, on the other hand, proceeds by fitting small surface
patches on which initial 3D points are projected to adjust the matches and the
local affine transformations. By operating in such way, the propagated informa-
tion is confirmed by both optical and geometrical cues throughout the whole
matching process.

In section 2, we outline the propagation algorithm using only optical informa-
tion and in section 3, we proceed to outline and detail our approach. In section 4,
results are shown and discussed.

2 Background

To keep this exposition succinct and self contained, we briefly summarize the
key ideas in quasi-dense propagation and we adopt the formalisms of [1, 2].
The reader is referred to those papers and the references therein for a detailed
description. Match propagation aims to obtain a larger number of matches be-
tween two views (I, I ′) starting from an initial set of matches (seeds) S =
{s(x,x′),x ∈ I, x′ ∈ I′}. When dealing with wide-baseline views, it is prefer-
able to have the fundamental matrix between the views as well as the local affine
transforms A associated with the individual seeds [2]. The affine transforms can
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Fig. 2: Reconstruction from views 2-3 of the Fountain P11 dataset using [2]
(left). Geometric artifacts are clearly visible in the closeups (middle). Whereas,
the geometry of the scene is better captured with our approach (right).

be obtained using existing affine covariant region detectors [14]. In order to re-
duce geometric distortions, the reference view for each seed is defined so as the
affine transformation across the image pair is always magnifying. Similarity is
measured using the zero-mean normalized cross-correlation (ZNCC) of geomet-
rically normalized image patches. Once the initialization data is set, the match
propagation operates on a priority queue based on correlation scores of the seeds
and proceeds by repeating the following steps:

– remove the seed s with best score from queue
– search new candidates in a neighborhood of s based on local affine transform
– compute correlation scores for all candidates
– append candidates to the matches and seeds if they have high correlation

score, satisfy the epipolar constraint and are not yet filled
– update candidate’s affine transform based on optical information
– mark the corresponding pixels as filled

3 Geometry based image match propagation

3.1 Overview

The central idea of our approach is to couple geometric and optical information
in a complementary fashion, in the sense that they correct and confirm each
other. In this regard, when a sufficient number of data points are available in a
localized region, a surface fitting can be performed and subsequently the matches
and their affine transformation will be updated geometrically.
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In practice, three main recurrent stages take place in our method: propaga-
tion, region search, and update by surface fitting. In the next paragraphs we
briefly describe these stages and we later explain them in greater algorithmic
detail in the next sub-sections.

i) Propagation: In a propagation step the best seed (s) from the queue is se-
lected and new candidates within a neighborhood of s are obtained using its
corresponding affine transform. Candidates with correlation scores which pass a
minimum threshold and comply with map occupancy and epipolar constraints
are added to the queue (see figure 3) and are marked as unconfirmed matches.

ii) Best candidate region querying: When new matches are found in the propa-
gation step, the search for a suitable region for local surface fitting is initiated.
This search is performed by sliding corresponding windows in the two image
planes (depicted by the windows in figure 5). Candidate regions where the data
points provide enough support for surface fitting are validated and sorted giving
preference to the ones with the most confirmed points.

iii) Local fitting and re-projection: When a suitable region is found in the pre-
vious step a local surface patch fitting is performed. A sub-set of the points
representing the core of the region (see figure 5), are then projected onto the
local surface patch. These new positions are re-projected to the image planes to
update the correspondences.

Points that re-project too far in the image planes or yield a large change in
their affine transformation remain marked as unconfirmed. Matches which im-
prove their correlation scores are updated and marked as confirmed. This update
serves the purpose of correcting point locations as well as steering subsequent
propagation (see figure 4).

(a) Propagation step n (b) Propagation step n+1 (c) Propagation step n+2

Fig. 3: Illustration of a few propagation steps before performing any geometric
updates.

3.2 Propagation

In principle, the propagation stage proceeds similarly to the wide baseline match-
ing proposed in [2] but presents three important differences. First, newly prop-
agated matches are not defined as final matches; instead, they are stored as
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(a) Candidate region se-
lected

(b) Local surface fitting (c) New propagation re-
places initial points

Fig. 4: Illustration of the geometric fitting steps. First, the candidate region is
selected (a), the support and the core are colored in green and blue respectively.
Second, local surface fitting is performed (b). Third, the core points are projected
onto the surface (c).

unconfirmed matches. Second, the seeds sorting operation gives preference to
geometrically confirmed seeds and checks for correlation score in a secondary
sorting step. Third, new matches stemming from a geometrically confirmed
seed can replace previous unconfirmed matches if their correlation score is higher.
Note that this second set of conditions do not come into play from the beginning
since it takes several propagation steps to obtain a set of geometrically confirmed
matches. This categorization of points is depicted in figure 5 where blue indicates
confirmed points and red indicates unconfirmed (replaceable) ones. In order to
fix the ideas, we describe the steps of our propagation stage in algorithms 1
and 2. Note that the 3D positions originating from each pair of matches are ob-
tained at this stage since they are needed for the later region search and surface
fitting.

3.3 Candidate region querying

The goal at this stage is to identify regions with adequate point distribution and
density to support a local patch fitting. The region querying is initiated once a set
of new unconfirmed points are obtained. In order to steer clear from problematic
regions during this search we avoid: i) areas which present large jumps, ii) points
which do not remain within their respective patch perimeter when projected on
the corresponding images planes. These requirements help prevent fitting and
consequentially smoothing sharp features, e.g. the stairs in figure 9. On the
other hand, we favor regions that present the most confirmed points so that the
large bodies of confirmed points expand first instead of creating several isolated
clusters of confirmed points. A typical scenario is shown in figure 5 where a set
of confirmed matches (in blue) is surrounded by a set of unconfirmed points (in
red). The green windows represent the support region (outer square) and the
core window (inner square). Only unconfirmed points inside the core window
will be fit in the next stage. In the same figure, the points inside the orange
region represent newly matched points that enable a surface to be fit at the
depicted location.

The conditions that define wether surface fitting can be performed are:
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Input: Set of seeds with local affine transforms, projection matrices P1,P2

Output: Matches, Seeds, 3D point Cloud

while Seeds 6= ∅ do
Sort(Seeds);
foreach seed (x, x′) do

Local = ∅ ;
/* Local stores new candidates */

foreach (u, u′) in N(x, x′) do
if SampsonDistance(u, u′) < sd and ((map1(u) and map2(u′) are
not filled) or (s is confirmed and correspondence occupying map1(u)
and map2(u′) is not)) then

Compute z = ZNCC(u, u′) and standard deviations d, d′;
if z > min correlation and d > t and d′ > t then

store (u,u′,z) in Local;
end

end

end
sort(Local);
foreach L(u, u′) in Local do

if map1(u) and map2(u′) are not taken then
X ← Compute3D(u1, u2, P1, P2);
AO ← UpdateAffineEstimationOptical(u,u′);
mark map1(u) and map2(u′) as taken by an unconfirmed point;
store (u,u′,AO) in Seeds;
store (u,u′,AO) in Matches;
store (X) in Cloud;

end

end
while R← BestCandidateRegionQuerying(map1,map2,Cloud,Matches)
exists do

FitSurfacePatch(R,Cloud,Seeds,Matches);
end

end

end
Algorithm 1: Main match propagation. Parameter values used in all our
experiments: min correlation = 0.75, t = 2, sd = 1. The FitSurfacePatch is
summarized in algorithm 2. The SampsonDistance is defined as in [15] and the
Sort function follows the conditions set in 3.1

– points inside the support and core regions defined on the first image should
also lay inside the corresponding support and core regions defined on the
second image

– there should be at least one point in the core that was not yet confirmed
– regions inside the support window but to the north, south, east and west of

the core window should be sufficiently populated (at least 50%)
– points inside the core window should be dense enough, any 2x2 window

should contain at least one match(pixels)
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The sizes of the windows in all of our experiments are 15×15 for the support
and 5× 5 for the core. These windows are defined in the view that presents the
most fronto-parallel surface with respect to the image plane and are transformed
to the other view using the affine transformation estimation of the point at the
center of the window.

Fig. 5: Searching for best region to fit a surface patch. Confirmed points are
depicted in blue, unconfirmed ones in red. Points in the orange region were
obtained in the preceding propagation step. In green, support (outer) and core
(inner) windows.

3.4 Fit surface and update

In this stage, we perform a surface fitting to the selected points inside a region
obtained in the previous stage. For this purpose we use a least squares quadratic
polynomial fitting of the form ax2 + by2 + cxy + dx + ey + f [16]. Although
it is possible to perform higher order fitting, we found in our experiments that
quadratic fitting is fairly satisfactory for our purpose. The selected points used
in this fitting stage are either part of the core region or of the support region.
The core region encompasses a small set of points that are surrounded by a set
of support points; this is because points should be fit and projected only when
there is enough information to describe the local surface.

During the fitting process, the impact of each point in the least squares
formulation can be controlled through a set of weights [16]. We formulate the
weights as the product of three values: the correlation score of the corresponding
matching points, the inverse 3D distance of the reconstructed point to the center
of the region, and the nature of the point (confirmed or unconfirmed). More
specifically, w = z3 × (1 + is confirmed)/distance(X,Xc), where z is elevated
to the third power in order to stretch the range. Once the surface is fit, each 3d
point p is projected to a point p′ that lies on the fitted surface.

Each newly obtained point p′ can then be reprojected to the image planes I
and I ′, obtaining the respective matching image positions ur and u′r. Further-
more, an estimation of the associated affine transformation is recovered. This
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affine transformation estimation (AG) is obtained by sampling two additional
points around p′, projecting them to the image planes and computing the affine
transformation that describes their local motion using the re-projection of p′ as
center of coordinates. Once these new estimations are obtained, we first require
that the new 2D matching points induce only a small adjustment of the initial
matching positions. Namely, distance(ur, u) < γ and distance(u, u′r) < γ (with
γ = 1.5 pixels used in all our experiments). In this manner we ensure that points
near surface edges do not drift away from their original location. Next, we verify
if AG does not represent a large change in transformation estimation with respect
to the current estimation A. At the same time we need to verify that AG does
not yield a large shear. Specifically, we verify if θ ≤ det(A)/det(AG) ≤ 1/θ,
with θ = 0.5 for all of our cases. We then define the eigen-values rations

eigratiog = eig1(AG)
eig2(AG) and eigratio = eig1(A)

eig2(A) and verify if θ ≤ eigratiog ≤ 1/θ

and if θ ≤ eigratiog/eigratio1/ ≤ θ. A point will remain as unconfirmed is it
does not fulfill all of these requirements. Note that the common use of θ for all
the previous tests is not required. Independent values can be used for the three
verifications but in all of our experiments the same value was used.

The steps described above are summarized in algorithm 2.

Input: region R, list of Matches, point Cloud, list of Seeds
Output: Updated: Cloud, Matches and Seeds
w ← (z3 × 1/distance(X,Xc)× (1 + is confirmed));
perform least squares surface fitting to obtain surface Q;
foreach 3D point p inside the core of region R do

obtain p′ by projecting p to surface Q;
if distance(p′, p) < ε then

p′1 ← re-project p′ to I;
p′2 ← re-project p′ to I ′;
AG ← compute affine transformation using Q and p′;
if AG does not represent a large change from A and does not represent
too much distortion then

Obtain normalized windows using AG;
z new ← ZNCC(p′1, p

′
2);

if z new > z old then
UpdateCloud(p′);
UpdateMatches(p′1, p

′
2, AG);

UpdateSeeds(p′1, p
′
2, AG);

mark map1(p′1) and map2(p′2) as taken by a confirmed point;

end

end

end

end
Algorithm 2: FitSurfacePatch algorithm that performs matching correction
by surface fitting and re-projection
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4 Results

We tested our algorithm on various data sets comprising standard benchmarks
as well as in-house acquired data. Typical results of our approach compared to
those of Kannala and Brandt [2], Brox and Malik [17] and Tola et al. [18] are
shown for the views 2-3 of the Fountain-P11 dataset (figures 6 and 7), and for
the views 3-4 of the Herz-Jesu-P8 dataset (figures 8 and 9). Both datasets are
provided in [19]. We benchmarked our results measuring depth estimation error
with respect to the ground truth, in a similar way as in [12]. The benchmarked
results are presented in figures 6 and 8 as error vs occupancy histogram graphs
and as color coded depth estimation errors. We use the code provided by the
authors of [2] to perform comparisons and we used similar values for the common
parameters of the algorithms. We also use the code provided by the author of the
variational matching method [17]. For the case of [18], we use the code provided
by the author to compute the DAISY dense descriptor in combination with our
own implementation of a descriptor matching method that searches for matches
within rectified images. Since such approach does not accurately represents what
is proposed in [18], we also compare our results to those presented in the later
paper, following their own evaluation metrics (see figure 12). Notice that in both
quantitative evaluations our method achieves better results.

In all cases our approach performs better than the state of the art pairwise
propagation approach [2] and the other methods here tested. The depth error
benchmarks presented in figures 6 and 8 clearly show that our method presents
more accurate and more complete results.

In figure (6-top-right) it can be observed that our method attains 74.2%
of the viewed Fountain scene with an error of less than 0.1; while the method
of Kannala and Brandt achieves only 68.3%. In the same error vs occupancy
graph we oppose our results to the combination of [2] with an MLS [16] in post-
processing. This combination leads only to a small improvement for errors in the
lower range but an overall decay in the quality of the results is observed.

In figure (8-top-right) our method’s score for errors lower than 0.1 in the
viewed Herz-Jesu scene is 63.6%. The method of [2] as well as its combination
with MLS post-processing yield only 58.4% and 50.9% of occupancy respectively.

The closeups to the fountain result presented in figure 7 illustrate the im-
provements gained by using our method. Our results do not exhibit the choppy
characteristic of previous work and present a clearer and more accurate structure
of the scene. The closeups to the Herz-Jesu result presented in figure 9 not only
show that the quality is improved but also the total coverage. In this example
the main stairs in the scene are accurately reconstructed thanks to the continu-
ous interpretation and improvement of the matching results that lead to better
propagations.

We also performed a comparison using two views of our own face dataset
that comprises 1.3 mega-pixels images and two views (7 and 15) of the warrior
dataset from [20]. Results are presented in figures 10 and 11 were uncolored
closeups are presented next to the full views of the results. In both cases the
results are significantly better when our approach is used.
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Fig. 6: Results of our approach on the Fountain P11 views 2-3 (top-left). On
the top-right, a chart illustrating the depth error vs occupancy of our algorithm,
[2], [17], [18] (rectified) and [2] with MLS as post-processing.On the bottom color
coded depth error using our algorithm (left) and using [2] (right).

Fig. 7: Closeups on portions of the wall and fountain-top for the Fountain P11
views 2-3 using [2] (top) and using our method (bottom)
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Fig. 8: Result of our approach on the Herz-Jesu P8 views 3-4 (top-left). On the
top-right, a chart illustrating the depth error vs occupancy of our algorithm,
[2], [17], [18] (rectified) and [2] with MLS as post-processing.On the bottom,
color coded depth error using our algorithm (left) and using [2] (right).

Fig. 9: Closeups on to results on Herz-Jesu P8 views 3-4 using [2] (top) and
using our method (bottom). A closeup to a portion of the main stairs (left) and
to the left-most stairs in the scene (right)
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Fig. 10: Results on two views of our face dataset. The two views used (top), our
result with a closeup to the cheek (middle), results using [2] (bottom)

5 Conclusion and discussion

This paper presented propagation approach which congruently uses optical and
geometric information to steer the propagation process. Although, many of un-
derlying ideas are fairly simple, they lead to significant improvements both in the
accuracy and completeness. Furthermore, as it could be argued that performing
an equivalent MLS fitting as post processing would yield equivalent results, our
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comparisons to such a scenario, suggest that actually the results get worse. The
reason being that in our case the subsequent matches depend on the fitting,
whereas the use of fitting in post processing cannot alter how the matches are
propagated.

Fig. 11: Results on views 7 and 15 of the warrior dataset from [20]. The two
views used are showed at the top row along with the 7 features matched. On
the bottom row, our result (left) and results using [2] (right). Notice that our
method returns less holes and it is able to reconstruct the warrior’s hammer.
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Fig. 12: Comparisons of our results to those of DAISY [18]. Results on the Foun-
tain scene (left) and the Herz-Jesu scene (right) for pairs of images with increas-
ing baselines. The charts present the percentage of correct depth estimations for
each pair of views. A depth estimation is considered correct if it presents and
error of less than 1% of the scene’s depth range [18] when compared to the laser
scanned data.
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