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Abstract. Within the Constraints Satisfiability Problems (CSP) con-
text, a methodology that has proved to be particularly performant con-
sists in using a portfolio of different constraint solvers. Nevertheless, com-
paratively few studies and investigations has been done in the world of
Constraint Optimization Problems (COP). In this work, we provide a
generalization to COP as well as an empirical evaluation of different
state of the art existing CSP portfolio approaches properly adapted to
deal with COP. Experimental results confirm the effectiveness of portfo-
lios even in the optimization field, and could give rise to some interesting
future research.

1 Introduction

Constraint Programming (CP) is a declarative paradigm that allows to express
relations between different entities in form of constraints that must be satis-
fied. One of the main goals of CP is to model and solve Constraint Satisfaction
Problems (CSP) [20]. Several techniques and constraint solvers were developed
starting from the 1960s for solving CSPs and simplified CSPs problems such as
the well-known boolean satisfiability problem (SAT), the Satisfiability Modulo
Theories (SMT), and Answer Set Programming (ASP). The interest in this re-
search area is still alive and active and, in particular, one of the more recent
trends - especially in the SAT field - is trying to solve a given problem by using
a portfolio approach [9]. An algorithm portfolio is a general methodology that
exploits a number of different algorithms in order to get an overall better al-
gorithm. A portfolio of CP solvers can therefore be seen as a particular solver,
dubbed portfolio solver, that exploits a collection of m > 1 different constituent
solvers s1, . . . , sm in order to obtain a globally better CP solver. When a new
unseen instance i comes, the portfolio solver tries to predict which are the best
constituent solvers s1, . . . , sk (k ≤ m) for solving i and then runs such solver(s)
on i. This solver selection process is clearly a fundamental part for the success of
the approach and it is usually performed by exploiting Machine Learning (ML)
techniques.

Exploiting the fact that different solvers are better at solving different prob-
lems, portfolios have proved to be particularly effective. For example, the over-
all winners of international solving competitions like [8, 28] are often portfolio



solvers. Despite the proven effectiveness of the portfolio approach in the CSP
case, and in particular in the SAT field, a few studies have tried to apply portfo-
lio techniques to Constraint Optimization Problems (COPs). In these problems
constraints are used to narrow the space of admissible solutions and then one
has to find a solution that minimizes (maximizes) a specific objective function.
This is done by using suitable constraint solvers integrated with techniques for
comparing different solutions. Clearly a COP is more general than a CSP. More-
over, when considering portfolio approaches, some issues which are obvious for
CSPs are less clear for COPs. For example, as we discuss later, defining a suit-
able metric which allows to compare different solvers is not immediate. These
difficulties explain in part the lack of exhaustive studies on portfolios consisting
of different COP solvers. Indeed, to the best of our knowledge, a few works deal
with portfolios of COP solvers and some of them refer only to a specific prob-
lem like the Traveling Salesman Problem, while others use runtime prediction
techniques for tuning the parameters of a single solver.

Nevertheless, this area is of particular interest since in many real-life appli-
cations we do not want to find just “a” solution for a given problem but “the”
optimal solution, or at least a good one. In this work we tackle this problem
and we perform a first step toward the definition of COP portfolios. We first
formalize a suitable model for adapting the “classical” satisfaction-based portfo-
lios to address COPs, providing also a metric to measure portfolio performances.
Then, by using an exhaustive benchmark of 2670 instances, we test the perfor-
mances of different portfolio approaches using portfolios composed from 2 to
12 different solvers. In particular, we adapt two among the best effective SAT
portfolios, namely SATzilla and 3S, to the optimization field. We compare their
performances w.r.t. some off-the-shelf approaches - built on top of the widely
used ML classifiers - and w.r.t. SUNNY, a recent portfolio approach introduced
in [3] that (on the contrary of those mentioned above) does not require an offline
training phase.

Empirical results indicate that these approaches always significantly outper-
form the Single Best Solver available. Moreover, taking as reference the perfor-
mances in the CSP field, we notice a closure of the performance gap between
SATzilla and 3S w.r.t. off-the shelf approaches. Hence, we argue that a study
of ad-hoc techniques for COPs may lead to further improvements of portfolio
approaches like SATzilla and 3S in order to replicate the excellent results they
achieved in the satisfaction field [1, 27]. Finally, we observe that the generaliza-
tion of SUNNY to COPs appears to be particularly effective, since this algorithm
has indeed reached the peak performances in our experiments.

Paper structure. In Section 2 we introduce the metrics adopted to evaluate
the portfolio approaches for COPs. Section 3 presents the methodology and
the portfolio algorithms we used to conduct the tests. The obtained results are
detailed in Section 4 while related work is discussed in Section 5. We finally give
concluding remarks and discuss feature extensions in Section 6.



2 Solution quality evaluation

When satisfaction problems are considered, the definition and the evaluation of
a portfolio solver is straightforward. Indeed, the outcome of a solver run for a
given time on a given instance can be either ’solved’ (i.e. a solution is found
or the unsatisfiability is proven) or ’not solved’ (i.e. the solver does not say
anything about the problem). Building and evaluating a CSP portfolio is then
conceptually easy: the goal is to maximize the number of solved instances, solving
them in less time as possible. Unfortunately, in the COP world the dichotomy
solved/not solved is no longer suitable. A COP solver in fact can provide sub-
optimal solutions or even give the optimal one without being able to prove
its optimality. Moreover, on the contrary of what happens in the satisfiability
world, in order to speed up the search COP solvers could be executed in a non
independent way. Indeed, the knowledge of a sub-optimal solution can be used
by a solver to further prune its search space, and therefore to speed up the search
process. Thus, the independent (even parallel) execution of a sequence of solvers
may differ from a “cooperative” execution where the best solution found by a
given solver is used as a lower bound by the solvers that are lunched afterwards.

Although the ideal goal is to prove the optimality in less time as possible,
in the real world there is often the need of compromises. For many real life
applications it is far better to get a good solution in a relatively short time rather
than consume too much time to find the optimal value (or proving its optimality).
In order to study the effectiveness of the portfolio approaches we therefore need
new and more sophisticated evaluation metrics. In this work we then propose
to give to each COP solver (portfolio based or not) a reward proportional to
the distance between the best solution it finds and the best known solution.
An additional reward is given if the optimality is proven, while a punishment is
given if no solution are found without proving unsatisfiability.
In particular, given an instance i, we assign to a solver s a score of 1 if it proves
optimality for i, 0 if s does not find solutions. Otherwise, we give to s a score
corresponding to the value of its best solution scaled into the range [0.25, 0.75],
weighting 0.25 and 0.75 respectively the worst and the best known solutions of
the known COP solvers.

In order to formally define the scoring function and to evaluate the quality
of a solver, we denote with U the universe of the available solvers and with
T the solving timeout in seconds that we are willing to wait at most. We use
the function sol to define the solver outcomes. In particular we associate to
sol(s, i, t) the outcome of the solver s for the instance i at time t. The value
sol(s, i, t) can be either unk, if s does not find any solution for i; sat, if s finds
at least a solution for i but does not prove the optimality; opt or uns if s proves
optimality or unsatisfiability. Similarly, we use the function val to define the
values of the objective function. In particular, with val(s, i, t) we indicate the
best value of the objective function found by solver s for instance i at time t. If
s does not find any solution for i at time t, the value val(s, i, t) is undefined. We
assume the solvers behave monotonically, i.e. as time goes the solution quality
gradually improves and never degrades.



We are now ready to associate to every instance i and solver s a weight that
quantitatively represents how good is s when solving i. We define the scoring
value of s (shortly, score) on the instance i at a given time t as a function score

such that score(s, i, t) can be either:

(i) 0 if sol(s, i, t) = unk

(ii) 1 if sol(s, i, t) ∈ {opt, uns}
(iii) 0.75 if sol(s, i, t) = sat and MIN(i) = MAX(i)

(iv)

∥∥∥∥0.75− (val(s, i, t)− MIN(i)) · 0.5
MAX(i)− MIN(i)

∥∥∥∥ if sol(s, i, t) = sat, MIN(i) 6= MAX(i)

and i is a minimization problem

(v)

∥∥∥∥ (val(s, i, t)− MIN(i)) · 0.5
MAX(i)− MIN(i)

+ 0.25

∥∥∥∥ if sol(s, i, t) = sat, MIN(i) 6= MAX(i)

and i is a maximization problem

where MIN(i) and MAX(i) are the minimal and maximal objective function
values found by any solver s at the time limit T 1 and ‖x‖ = x if x ≥ 0; 0
otherwise.2
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Fig. 1: Solver performances example.

As an example, consider the sce-
nario in Fig. 1 depicting the perfor-
mances of three different solvers run
on the same minimization problem.
By choosing T = 500 as time limit,
the score assigned to s1 is 0.75 be-
cause it finds the solution with min-
imal value (40), the score of s2 is 0.25
since it finds the solution with maxi-
mal value (50), and the score of s3 is 0
because it does not find a solution. If
instead T = 800, the score assigned to
s1 becomes 0.75−(40−10)∗0.5/(50−
10) = 0.375 while the score of s2 is 0.25 and the score of s3 is 0.75. If instead
T = 1000, since s3 proves the optimality of the value 10 at time 900 (see the
point marked with a star in Fig. 1 ) it receives a corresponding reward reaching
then the score 1.

The score of a solver is therefore a measure in the range [0, 1] that is linearly
dependent on the distance between the best solution it founds and the best
solutions found by every other available solver. We decided to scale the values
of the objective function in a linear way essentially for the sake of simplicity.
Other choices, like for instance using the logarithm of the objective function

1 Formally, MIN(i) = minVi and MAX(i) = maxVi where Vi = {val(s, i, T ) . s ∈ U}.
2 Avoiding negative scores was necessary because a solver executed by a portfolio

solver for t < T seconds could produce a solution that is worse than any solution
found by any solver of the universe after T seconds. In this case, the score would be
less than 0.25 and therefore could potentially be less than 0. This however is very
uncommon: in our experiments we noticed that the 0 score was assigned only to the
solvers that did not find any solution.



for scaling or considering the subtended area
∫ T
0
val(s, i, t) dt could be equally

useful and justifiable in a real scenario. The exploration of the impact of such
alternative choices is however outside the scope of this paper, and left as a future
work. Moreover in this work we assume the independent execution of the solvers,
leaving as a future research the study of portfolio approaches that exploit the
collaboration between different solver in order to boost the search speed.

In order to compare different portfolio approaches, we then considered the
following evaluation metrics:

– Average Score (AS): the average of the scores achieved by the selected
solver(s) on all the instances of the dataset;

– Percentage of Optimums Found (POF): the percentage of instances of the
dataset for which optimality is proven;

– Average Optimization Time (AOT): the average time needed for proving
optimality on every instance of the dataset, using a time penalty of T seconds
when optimality is nor proven.

3 Methodology

Taking as baseline the methodology and the results of [1] in this section we
present the main ingredients and the procedure that we have used for conducting
our experiments and for evaluating the portfolio approaches.

3.1 Solvers, dataset, and features

In order to build our portfolios we used a universe U of 12 solvers retrieved
from the MiniZinc Challenge 2012, namely: BProlog, Fzn2smt, CPX, G12/FD,
G12/LazyFD, G12/MIP, Gecode, izplus, JaCoP, MinisatID, Mistral and OR-
Tools. We used all of them with their default parameters, their global constraint
redefinitions when available, and keeping track of each solution found by every
solver within a timeout of T = 1800 seconds.

To conduct our experiments on a dataset of instances as realistic and large as
possible, we have considered all the COPs of the MiniZinc 1.6 benchmark [24].
In addition, we have also added all the instances of the MiniZinc Challenge 2012,
thus obtaining an initial dataset of 4977 instances in MiniZinc format.

In order to reproduce the portfolio approaches, we have extracted for each
instance a set of 155 features by exploiting the features extractor mzn2feat [2].
We filtered these features by scaling their values in the range [-1, 1] and by
removing all the constant features. In this way, we ended up with a reduced set
of 130 features on which we conducted our experiments. We have also filtered the
initial dataset by removing, on one hand, the “easiest” instances (i.e. those for
which the optimality was proven during the feature extraction) and, on the other,
the “hardest” (i.e. those for which the features extraction has required more
than T/2 = 900 seconds). These instances were discarded essentially for two
reasons. First, if an instance is already optimized during the features extraction,
no solver prediction is needed. Second, if the extraction time exceeds half of the



timeout it is reasonable to assume that the recompilation of the MiniZinc model
into FlatZinc format3 would end up in wasting the time available to solve the
instance. The final dataset ∆ on which we conducted our experiments was thus
constituted by 2670 instances.

3.2 Portfolio composition

After running every solver on each instance of the dataset ∆ keeping track of
all the solutions found, we built portfolios of different size m = 2, . . . , 12. While
in the case of CSPs the ideal choice is typically to select the portfolio of solvers
that maximizes the number of solved instances, in our case such a metric is no
longer appropriate since we have to take into account the quality of the solutions.
Since maximizing the number of optimality proven instances appeared to be a
too restrictive policy, we decided to select for each portfolio size m = 2, . . . , 12
the portfolio Pm that maximizes the total score (possible ties have been broken
by minimizing the solving time). Formally:

Pm = arg max
P∈{S⊆U . |S|=m}

∑
i∈∆

max{score(s, i, T ) . s ∈ P}

We then elected a backup solver, that is a solver designated to handle exceptional
circumstances like the premature failure of a constituent solver. After simulating
different voting scenarios, the choice fell on CPX4 that in the following we refer
also as Single Best Solver (SBS) of the portfolio. As a baseline for our experi-
ments, we have also introduced an additional solver called Virtual Best Solver
(VBS), i.e. an oracle solver that for every instance always selects and runs the
solver of the portfolio having higher score (by using the solving time for breaking
ties).

3.3 Portfolio Approaches

We tested different portfolio techniques. In particular, we have considered two
state of the art SAT approaches (SATzilla and 3S) as well as some relatively
simple off-the-shelf ML classifiers used as solver selector. Moreover, we have also
implemented a generalization of the recently introduced CSP portfolio solver
SUNNY [3] in order to deal with optimization problems.

We would like to underline that in the case of 3S and SATzilla approaches
we did not use the original methods which are tailored for the SAT domain. As

3 FlatZinc [5] is the low level language that each solver uses for solving a given MiniZ-
inc instance. A key feature of FlatZinc is that, starting from a general MiniZinc
model, every solver can produce a specialized FlatZinc by redefining the global con-
straints definitions. We noticed that, especially for huge instances, the time needed
for extracting features was strongly dominated by the FlatZinc conversion. However,
for the instances of the final dataset this time was in average 10.36 seconds, with a
maximum value of 504 seconds and a median value of 3.17 seconds.

4 Following [1] methodology, CPX won all the elections we simulated using different
criteria, viz.: Borda, Approval, and Plurality.



later detailed, we have instead adapted these two approaches for the optimiza-
tion world trying to modify them as little as possible. A study of alternative
adaptations is outside the scope of this paper.

In the following we then provide an overview of these algorithms.

Off the shelf As in the case of satisfiability field [1], off the shelf approaches were
implemented by simulating the execution of a solver predicted by a ML classifier.
We then built 5 different approaches using 5 well-known ML classifiers, viz.: IBk,
J48, PART, Random Forest, and SMO, and exploiting their implementation in
WEKA [12] with default parameters. In order to train the models we added
for each instance of the dataset a label corresponding to the best constituent
solver w.r.t. the score for such instance; for all the instances not solvable by any
solver of the portfolio we used a special label no solver. In the cases where the
solver predicted by a classifier was labeled no solver, we directly simulated the
execution of the backup solver.

3S (SAT Solver Selector) [14] is a SAT portfolio solver that conjugates a fixed-
time solver schedule with the dynamic selection of one long-running component
solver: first, it executes for 10% of the time limit short runs of solvers; then, if a
given instance is not yet solved after such time, a designated solver is selected for
the remaining time by using a k-NN algorithm. 3S originally used a portfolio of 21
SAT solvers and was the best-performing dynamic portfolio at the International
SAT Competition 2011.

The major issue when adapting 3S for optimization problems is to compute
the fixed-time schedule since, on the contrary of SAT problems, in this case
the schedule should also take into account the quality of the solutions. We then
tested different minimal modifications, trying to be as less invasive as possible
and mainly changing the objective metric of the original Integer Programming
(IP) problem used to compute the schedule. The performances of the different
versions we tried were similar. Among those considered, the IP formulation that
has achieved the best performance (with a peak AS of 0.78% more than the
original one) is the one that: first, tries to maximize the solved instances; then,
tries to maximize the sum of the score of the solved instances; finally, tries to
minimize the solving time. 5

SATzilla [33] is a SAT solver that relies on runtime prediction models to
select the solver that (hopefully) has the fastest running time on a given problem

5 The objective function of the best approach considered was obtained by replacing
that of the IP problem defined in [14] (we use the very same notation) with:

max

[
C1

∑
y

yi + C2

∑
i,S,t

score(S, i, t) · xS,t + C3

∑
S,t

t · xS,t

]

where C1 = −C2, C2 = C, C3 = − 1
C

, and adding the constraint
∑

t xS,t ≤ 1, ∀S.



instance. Its last version [32] uses a weighted random forest approach provided
with an explicit cost-sensitive loss function punishing misclassifications in direct
proportion to their impact on portfolio performance. SATzilla won the 2012 SAT
Challenge in the Sequential Portfolio Track.

Unlike 3S, reproducing this approach turned out to be more straightforward.
The only substantial difference concerns the construction of the runtimes matrix
that is exploited by SATzilla to constructs its selector based on m(m − 1)/2
pairwise cost-sensitive decision forests.6 Since our goal is to maximize the score
rather than to minimize the runtime, instead of using such a matrix we have
defined a matrix of “anti-scores” P in which every element Pi,j corresponds to
the score of solver j on instance i subtracted to 1, that is Pi,j = 1−score(j, i, T ).

SUNNY [3] is a lazy algorithm portfolio that, on the contrary of previously
mentioned approaches, does not need an offline training phase. For a given in-
stance i and a given portfolio P , SUNNY uses a k-NN algorithm to select from
the training set a subset N(i, k) of the k instances closer to i. Then, on-the-fly, it
computes a schedule of solvers by considering the smallest sub-portfolio S ⊆ P
able to solve the maximum number of instances in the neighborhood N(i, k) and
by allocating to each solver of S a time proportional to the number of solved
instances in N(i, k).

Even in this case, we faced some design choices to tailor the algorithm for
optimization problems. In particular, we decided to select the sub-portfolio S ⊆
P that maximizes the score in the neighborhood and we allocated to each solver
a time proportional to its total score in N(i, k). In particular, while in the CSP
version SUNNY allocates to the backup solver an amount of time proportional
to the number of instances not solved in N(i, k), here we have instead assigned
to it a slot of time proportional to k−h where h is the maximum score achieved
by the sub-portfolio S.

3.4 Validation

In order to validate and test each of the above approaches we used a 5-repeated
5-fold cross validation [4]. The dataset ∆ was then randomly partitioned in 5
disjoint folds ∆1, . . . ,∆5 treating in turn one fold ∆i, for i = 1, . . . , 5, as the
test set and the union of the remaining folds

⋃
j 6=i∆j as the training set. In

order to avoid possible overfitting problems we repeated the random generation
of the folds for 5 times, thus obtaining 25 different training sets (consisting of 534
instances each) and 25 different training sets (consisting of 2136 instances). For
every instance of every test set we then computed the solving strategy proposed
by the particular portfolio approach and we simulated it using a time cap of 1800
seconds. For estimating the solving time we have taken into account both the
time needed for converting a MiniZinc model to FlatZinc and the time needed for
extracting the features. In order to evaluate the performances, we then computed
the metrics introduced in the previous section.

6 For more details, we defer the interested reader to [32]
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(a) Results considering all the approaches
and the VBS.
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(b) Results considering SBS, VBS, and the
best two approaches.

Fig. 2: AS performances.

4 Results

In this section we present the obtained experimental results.7. In Fig. 2, 3, 4
we summarize the results obtained by the various techniques considering port-
folios of different sizes and by using the Average Score (AS), the Percentage of
Optimum Found (POF), and the Average Optimization Time (AOT) metrics
introduced in Section 2. For ease of reading, in all the plots we report only the
two best approaches among all the off-the-shelf classifiers we evaluated, namely
Random Forest (RF) and SMO.

The source code developed to conduct and replicate the experiments is avail-
able at http://www.cs.unibo.it/~amadini/lion_2014.zip

4.1 Average Score

Fig. 2a shows the AS performances of the various approaches, setting as base-
line the performances of the Virtual Best Solver (VBS). Fig. 2b for the sake of
readability visualizes the same results considering the VBS baseline, the two best
approaches only (SUNNY and 3S) and the Single Best Solver (SBS) performance
as additional baseline.

All the considered approaches have good performances and they greatly out-
perform the SBS. As in the case of CSP [1, 2], it is possible to notice that
off-the-shelf approaches have usually lower performances even though the gap
between the best approaches and them is not that pronounced.

7 To conduct the experiments we used Intel Dual-Core 2.93GHz computers with 2 GB
of RAM and Ubuntu operating system.

http://www.cs.unibo.it/~amadini/lion_2014.zip
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(a) Results considering all the approaches
and the VBS.
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(b) Results considering SBS, VBS, and the
best two approaches.

Fig. 3: POF performances.

The best portfolio approach is SUNNY that reaches a peak performance of
0.8802 using a portfolio of just 6 solvers. SUNNY is able to close the 91.35% of
the gap between the SBS and VBS. 3S however has performances close to those
of SUNNY and in particular its best performance (0.8718 with 6 and 12 solvers)
is very close to the peak performance of SUNNY. Strangely enough, we can
notice that both SUNNY and 3S have non monotonic performances when the
portfolio sizes increases. This is particularly evident looking at their performance
decrease when a portfolio of size 7 is used instead of one with just 6 solvers. This
instability is obviously a bad property for a portfolio approach. We think that in
this case it may be due to the noise of the addition of a solver that may disrupt
the choices made by the k-NN algorithm on which SUNNY and 3S rely.

SATzilla does not reach the performances of SUNNY or 3S, even though for
big portfolio sizes its performances are rather close. Moreover its behavior is
monotonic w.r.t. the increase of the size of the portfolio. Hence, it seems that
SATzilla is more reliable and scalable and, as also noticed in [1], it is the only
approach that does not present a degradation of performances for portfolios with
more than 6 solvers.

4.2 Percentage of Optimum Found

Looking at the number of optimum found it is clear from Fig. 3a and 3b that there
is a sharp demarcation of SUNNY w.r.t. other approaches. SUNNY appears to
find many more optimum w.r.t. the other techniques, reaching a maximum POF
of 57.03%. We think that the performances of SUNNY exploit the fact that
it schedules more than one solver reducing the risk of making wrong choices.
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(a) Results considering all the approaches
and the VBS.

2 3 4 5 6 7 8 9 10 11 12
750

800

850

900

950

1000

1050

Portfolio Size

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 [
s

e
c

.]
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Fig. 4: AOT performances.

Moreover, it uses this schedule for the entire time window (on the contrary, 3S
uses a static schedule only for 10% of the time window). Another interesting
fact is that SUNNY mimics the behavior of the VBS. Thus, SUNNY seems able
to properly use the addition of a solver to prove the optimality of instances
exploiting the capability of the newly added solver.

Regarding other approaches, it can be observed by the overlapping of their
curves in Fig. 3a that they are basically equivalent. What may seem surprising
is that the best among them is SMO, which instead turned out to be the worst
by considering the AS (Fig. 2a).

Even in this case, as shown in Fig. 3b all the portfolio approaches greatly
outperform the SBS. SUNNY in particular is able to close the 85.73% of the gap
between the SBS and VBS. Finally, note that there is a significant correlation
(the Pearson coefficient is about 0.78) between AS and POF. Hence, maximizing
the score is almost equivalent to maximizing the number of optimum to find.

4.3 Average Optimization Time

When the AOT metric is considered we can notice that the 3S approach does
not perform very well compared to the other approaches. We think that this is
due to the fact that 3S is a portfolio that uses more than one solver and it does
not employ heuristics to decide which solver has to be executed first. SUNNY
instead does not suffer from this problem since it schedules the solvers according
to their performances on the already known instances. However, 3S is still able
to always outperform the SBS for each portfolio size.



While the performance of SATzilla and the off-the-shelf approaches appear
to be very similar, even in this case we can observe the good performances of
SUNNY that is able to close the 94.27% of the gap SBS/VBS reaching a peak
performance of 786.05 seconds with a portfolio of 10 solvers.

The (anti-)correlation between AOT and AS is lower than the one between
POF and AS (the Pearson coefficient is -0.73) but still considerable. It is instead
very strong, as can be guessed looking at the definition of these two metrics,
the anti-correlation between AOT and POF (the Pearson coefficient is -0.98).
This means that trying to maximize the average percentage score is like trying
to minimizing the average solving time and to maximize the number of proven
optimum.

Finally, we would like to mention that the AOT metric could be too strict
and not so significant. In fact, if a solver finds the best value after few seconds
and stops its execution without proving optimality it is somewhat over penalized
with the timeout value T . In future it may therefore be interesting to study other
ways to weight and evaluate the solving time (e.g. a rationale metric could be to
consider a properly normalized area under the curve time/value defined by each
solver behavior).

5 Related work

As far as the evaluation of optimization solvers and portfolio approaches is con-
cerned, there exist a variety of metrics used to rank them. Among those used
in practice by well known solving competitions worth mentioning are those that
rank the solvers by using the number of the solved instances first, considering
solving time later in case of ties [22,28]. In [25] instead the ranking is performed
by using a Borda count, i.e. a single-winner election method in which voters rank
candidates in order of preference. Differently from the metrics defined in Section
2, these metrics address the quality of the solutions in a less direct way (i.e. by
making pairwise comparisons between the score of the different solvers).

In the previous section we have already mentioned SATZilla [33] and 3S [14]
as two of the most effectives portfolio approaches in the SAT and CSP domain.
For a comprehensive survey on portfolio approaches applied to SAT, planning,
and QBF problems we refer the interested reader to the comprehensive survey
[17] and to [1] for CSPs.

As far as optimization problems are concerned, in the 2008 survey on algo-
rithm selection procedures [29] the authors observe that “there have been sur-
prisingly few attempts to generalize the relevant meta-learning ideas developed
by the machine learning community, or even to follow some of the directions of
Leyton-Brown et al. in the constraint programming community.” To the best of
our knowledge, we think that the situation has not improved and we are not
aware of more recent works addressing explicitly the construction of portfolio
solvers for COPs. Indeed, in the literature, we are aware of portfolio approaches
developed just for some specific instances of COP. For instance, problems like
Mixed Integer Programming, Scheduling, Most Probable Explanation (MPE)



and Travel Salesman Problem (TSP) are addressed by means of portfolio tech-
niques exploiting ML methods in [11,13].

Other related works target the analysis of the search space of optimization
problems by using techniques like landscape analysis [16], Kolmogorov complex-
ity [6], and basin of attractions [23]. Some approaches like [18, 30] also use ML
techniques to estimate the search space of some algorithms and heuristics on op-
timization problems. These works look interesting because precise performance
evaluations can be exploited in order to built portfolios as done, for instance, by
SATzilla [33] in the SAT domain or by [19] for optimization problems solved by
using branch and bound algorithms.

Another related work is [31] where ML algorithms are used to solve the
Knapsack and the Set Partitioning problems by a run-time selection of different
heuristics during the search. In [15,34] automated algorithm configurators based
on AI techniques are used to boost the solving process of MIP and optimization
problems. In [7] a low-knowledge approach that selects solvers for optimization
problems is proposed. In this case, decisions are based only on the improvement
of the solutions quality, without relying on complex prediction models or on
extensive set of features.

6 Conclusions and Extensions

In this paper we tackled the problem of developing a portfolio approach for solv-
ing COPs. In particular, in order to evaluate the performances of a COP solver
we proposed a scoring function which takes into account the solution quality of
the solver answers. We then proposed three different metrics to evaluate and
compare COP solvers. These criteria were used to compare different portfolio
techniques adapted from the satisfiability world with others based on classifiers
and with a recently proposed lazy portfolio approach.

The results obtained clearly indicate that exploiting portfolio approaches
leads to better performances w.r.t. using a single solver. We conjecture that,
especially when trying to prove optimality, the number of times a solver can not
give an answer is not negligible and that the solving times have a heavy-tail
distribution typical of complete search methods [10]. Hence, as proven in [9], a
COP setting can be considered an ideal scenario to apply a portfolio approach
and obtain statistically better solvers exploiting existing ones.

We noticed that, even though at a first glance it can seem counterintuitive,
the best performances were obtained by the portfolio approach which uses a
schedule of more than one solver. In these cases the risk of choosing the wrong
solver is reduced and, apparently, this is more important than performing part of
the computation again, as could happen when two (or more) solvers are lunched
on the same instance.

We also noticed that the adaptation of ad-hoc methods (deriving from SAT)
does not lead to the same gain of performance that these methods provide in the
CSP and SAT field. We believe that the study of new, specific ad-hoc techniques
for COPs should be done in order to obtain the same advantages of the SAT



field, thus obtaining better portfolios than those which use off-the shelf ML
classifiers. This is however left as a future work, as well as adapting and testing
other promising portfolio approaches like [15,21,26].

Another direction for further research is the study of how cooperative strate-
gies can be used among the constituent solvers, both in the sequential case and
in a parallel setting, where more than one solver of the portfolio is allowed to be
executed at the same time.

As previously said, we would also like to study the impact of using other
metrics to evaluate the solution quality of the solvers. On the basis of the em-
pirical correlation among the metrics so far considered we are confident that
the performance of portfolio approaches should be robust, i.e. the rank of good
portfolios approaches does not depend on the specific metric used, provided that
the metric is enough “realistic”.

The final aim of this work and its future extension would be to exploit our
results in order to create a first COP portfolio solver to be submitted to the next
MiniZinc Challenge.
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