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Abstract: A function f : V (G)→ {1, . . . , k} is a (proper) k-colouring of G if |f(u)− f(v)| ≥ 1,
for every edge uv ∈ E(G). The chromatic number χ(G) is the smallest integer k for which there
exists a proper k-colouring of G.
Given a graph G and a subgraph H of G, a circular q-backbone k-colouring f of (G,H) is a
k-colouring of G such that q ≤ |c(u) − c(v)| ≤ k − q, for each edge uv ∈ E(H). The circular
q-backbone chromatic number of a graph pair (G,H), denoted CBCq(G,H), is the minimum k
such that (G,H) admits a circular q-backbone k-colouring.
Steinberg conjectured that if G is planar and G contains no cycles on 4 or 5 vertices, then χ(G) ≤ 3.
If this conjecture is correct, then one could deduce that CBC2(G,H) ≤ 6, for any H ⊆ G. In this
work, we first show that if G is a planar graph containing no cycle on 4 or 5 vertices and H ⊆ G
is a forest, then CBC2(G,H) ≤ 7. Then, we prove that if H ⊆ G is a forest whose connected
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Théorème de type Steinberg pour la coloration backbone
Résumé : Une fonction f : V (G) → {1, . . . , k} est une k-coloration (propre) de G si |f(u) −
f(v)| ≥ 1, pour toute arête uv ∈ E(G). Le nombre chromatique χ(G) est le plus petit entier k
tel qu’il existe une k-coloration propre de G.

Etant donnés un graphe G et un sous-graphe H de G, une k-coloration q-backbone circulaire
f de (G,H) est une k-coloration de G telle que q ≤ |c(u) − c(v)| ≤ k − q, pour tout arête
uv ∈ E(H). Le nombre chromatique q-backbone circulaire d’une paire de graphes (G,H), noté
CBCq(G,H), est le plus petit k tel que (G,H) admette une k-coloration q-backbone circulaire.

Steinberg a conjecturé que si G est planaire et si G ne contient pas de cycles à 4 ou 5
sommets, alors χ(G) ≤ 3. tSi cette conjecture est correcte, alors on pourrait en déduire que
CBC2(G,H) ≤ 6, pour tout H ⊆ G. Dans ce papier, nous montrons que si G est un graphe
planaire sans cycle à 4 ou 5 sommets et H ⊆ G est une forêt, alors CBC2(G,H) ≤ 7. Ensuite,
nous prouvons que siH ⊆ G est une forêt dont toutes les composantes connexes sont des chemins,
alors CBC2(G,H) ≤ 6.

Mots-clés : coloration de graphe, graphe planaire, coloration backbone, conjecture de Steinberg



Steinberg-like theorems for backbone colouring 3

1 Introduction
In this paper, all graphs are considered to be simple and we use standard terminology as the one
in [?].

Let G = (V,E) be a graph, and H = (V,E(H)) be a spanning subgraph of G, called its
backbone. A k-colouring of G is a mapping f : V → {1, . . . , k}. Let f be a k-colouring of G. It
is a proper colouring if |f(u)− f(v)| ≥ 1 for every edge uv ∈ E(G). It is a q-backbone colouring
for (G,H) if f is a proper colouring of G and |f(u) − f(v)| ≥ q for all edges uv ∈ E(H). The
chromatic number χ(G) is the smallest integer k for which there exists a proper k-colouring of
G. The q-backbone chromatic number of (G,H), denoted by BBCq(G,H), is the smallest integer
k for which there exists a q-backbone k-colouring of (G,H) [2].

Note that if f is a proper k-colouring of G, then the function g : V → {1, . . . , q · k − q + 1}
defined by g(v) = q · f(v)− q+ 1 is a q-backbone colouring of (G,H), for any spanning subgraph
H of G. Moreover it is well-known that if G = H and f is a proper χ(G)-colouring of G, this
q-backbone colouring g of (G,H) is optimal. Therefore, since BBCq(H,H) ≤ BBCq(G,H) ≤
BBCq(G,G), we have

q · χ(H)− q + 1 ≤ BBCq(G,H) ≤ q · χ(G)− q + 1. (1)

One can generalise the notion of backbone colouring by allowing a more complicated structure
of the colour space. A natural choice is to impose a circular metric on the colours. We can see
Zk

1 as a cycle of length k with vertex set {1, . . . , k} together with the graphical distance | · |k.
Then |a − b|k ≥ q if and only if q ≤ |a − b| ≤ k − q. A circular q-backbone k-colouring of G
or q-backbone Zk-colouring of (G,H) is a mapping f : V (G) → Zk such that c(v) 6= c(u), for
each edge uv ∈ E(G), and |c(u)− c(v)|k ≥ q for each edge uv ∈ E(H). The circular q-backbone
chromatic number of a graph pair (G,H), denoted CBCq(G,H), is the minimum k such that
(G,H) admits a circular q-backbone k-colouring.

Note that if f is a circular q-backbone k-colouring of (G,H), then f is also a q-backbone
k-colouring of (G,H). On the other hand, observe that a q-backbone k-colouring f of (G,H) is
a circular q-backbone (k + q − 1)-colouring of (G,H). Hence for every graph pair (G,H), where
H is a spanning subgraph of G, we have

BBCq(G,H) ≤ CBCq(G,H) ≤ BBCq(G,H) + q − 1. (2)

Combining Inequalities (1) and (2), we observe that

q · χ(H) ≤ CBCq(G,H) ≤ q · χ(G). (3)

In this paper, we focus on the particular case when G is a planar graph and H is a forest (i.e.
an acyclic graph). Inequality (1) and the Four-Colour Theorem [1] imply that for any planar
graph G and spanning subgraph H, BBCq(G,H) ≤ 3q + 1. However, for q = 2, Broersma et al.
[2] conjectured that this is not best possible if the backbone is a forest.

Conjecture 1. If G is planar and H is a forest in G, then BBC2(G,H) ≤ 6.

This conjecture would be tight even if H is a Hamilton path as there are examples of planar
graph G and Hamilton path H in G, for which BBC2(G,H) = 6. Furthermore, Havet et al. [5]
proved that given a planar graph G and a Hamilton path H in G, it is NP-complete to decide
whether BBC2(G,H) ≤ 5. Campos et al. [3] proved Conjecture 1 when H is a tree of diameter
at most 4.

For larger values of q, Havet et al. [5] proved the following.
1Whenever we refer to Zk, we mean the group of integers modulo k, also denoted by Z/nZ.
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4 J. Araujo & F. Havet & M. Schmitt

Theorem 2. If G is planar and H is a forest in G, then BBCq(G,H) ≤ q + 6.

For q ≥ 4, they also show that Theorem 2 is best possible. On the other hand, they conjecture
that if q = 3, Theorem 2 is not best possible.

Conjecture 3. If G is planar and H is a forest in G, then BBC3(G,H) ≤ 8.

Regarding circular backbone colouring, Havet et al. [5] proved the following.

Theorem 4. If G is planar and H is a forest in G, then CBCq(G,H) ≤ 2q + 4.

They also conjectured that this upper bound can be reduced by at least 1.

Conjecture 5. If G is planar and H is a forest in G, then CBCq(G,H) ≤ 2q + 3.

Observe that Inequalities (1) and (3) imply that Conjectures 1, 3, and 5 for q ≤ 3, hold if
G is has a 3-colouring. There are many sufficient conditions implying that a planar graph has a
3-colouring. For example, the celebrated Grötzsch’s Theorem [4] asserts that planar graphs with
girth at least 4 admit a 3-colouring.

One of the most famous conjectures on planar graphs was posed in 1976 by Steinberg (see [6]).

Conjecture 6 (Steinberg, 1976). If G is a planar graph with no cycles of length 4 or 5, then
χ(G) ≤ 3.

Note that this long standing conjecture could be proved by showing that CBC2(G,G) = 6,
for a planar graph G containing no C4 nor C5 as a subgraph.

In this paper, we give evidences to the above conjectures. We first settle Conjecture 5 for
q = 2 when G is a planar graph without cycles of length 4 or 5.

Theorem 7. If G is a planar graph with no cycles of length 4 or 5 and H is a forest in G, then
CBC2(G,H) ≤ 7.

We then improve the upper bound when H is a path forest. A forest is a path forest if all its
connected components are paths.

Theorem 8. If G is a planar graph without cycles of length 4 or 5, and H is a path forest in
G, then CBC2(G,H) ≤ 6.

Hence when G is a planar graph with no cycles of length 4 or 5 and H is a path forest,
Conjecture 1 and Conjecture 5 for q = 2 hold. It also implies that Conjecture 5 for q = 3 holds
for such graph pair (G,H) thanks to the following lemma.

Lemma 9. Let k and q be positive integers, G a graph and H a subgraph of G. If CBCq(G,H) ≤
q × k, then CBCq′(G,H) ≤ q′ × k, for all q′ ≥ q.

Proof. Let c be a q-backbone qk-colouring of (G,H). Define k intervals of colours Ij = {(j −
1)q+1, . . . , jq}, for every 1 ≤ j ≤ k. We now define a proper q′-backbone q′k-colouring of (G,H)
c′ as the following: if c(v) ∈ Ij , then c′(v) = c(v) + (j − 1)(q′ − q), for every 1 ≤ j ≤ k and
v ∈ V (G). Note that c′ must be a proper colouring of G since c is a proper colouring of G.
Moreover, for an edge uv ∈ E(H), we have that c(u) and c(v) cannot lie on the same interval Ij ,
for some 1 ≤ j ≤ k. Thus, k − q′ = (k − q) + (q′ − q) ≥ |c(u)− c(v)| ≥ q + (q′ − q) = q′.

Corollary 10. If G is a planar graph without cycles of length 4 or 5, and H is a path forest in
G, then CBC3(G,H) ≤ 9.

The remainder of this paper is devoted to the proofs of Theorems 7 and 8. Both results
are proved by supposing that a minimal counter-example with respect to the number of vertices
exists. In Section 2, we present general properties of such counter-examples that we use in both
proofs. Then, we prove Theorems 7 and 8 in Sections 3 and 4, respectively.

Inria
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2 Preliminaries

In this section, we first introduce some useful definitions and notations. We then establish
properties that we shall use to prove the two above-mentioned theorems. We first prove simple
properties of a planar graph without cycles on 4 or 5 vertices, then we establish some properties
of minimal counter-examples to Theorems 7 and 8.

2.1 Definitions and notations

Let S ⊆ V (G) be a subset of vertices of G and F ⊆ E(G) be a subset its edges. We denote
by G[S] the subgraph of G induced by S, by G\F the graph obtained from G by removing the
edges in F from its edge set E(G), by G − S the graph G[V (G) \ S], by (G,H) − S the graph
pair (G− S,H − S), by (G,H)[S] the graph pair (G[S], H[S]) and by (G,H)\F the graph pair
((G\F ), (H\F )).

Let (G,H) and (G′, H ′) be graph pairs such that H ⊆ G and H ′ ⊆ G′. We say that (G′, H ′)
is a subpair of (G,H) if H ′ ⊆ H and G′ ⊆ G. We say that (G′, H ′) is a proper subpair of (G,H)
if it is a subpair of (G,H) and H ′ ⊂ H or G′ ⊂ G. Note that the previous or condition is not
exclusive.

A graph pair (G,H) is (k, 2)-minimal if CBC2(G,H) > k, but CBC2(G′, H ′) ≤ k for every
proper subpair (G′, H ′) of (G,H).

For every colour 1 ≤ a ≤ k, let [a]k be the set of colours b ∈ {1, . . . , k} satisfying |a− b| < 2
or |a− b| > k − 2. Note that [a]k has always 3 colours.

We say that c is a partial circular 2-backbone k-colouring of (G,H) if c is a circular 2-backbone
k-colouring of a subpair of (G,H). Let c be a partial circular 2-backbone k-colouring of a graph
pair (G,H). We say that a colour a is available (or possible) at vertex v ∈ V (G) if none of its
neighbours in G is coloured a and none of its neighbours in H has a colour in [a]k. We denote
by Avc(G,H, v) the set of available colours at v in c.

We emphasize that this definition of available colour does not require that the vertex v is not
coloured. If v is already coloured, observe that it can be recoloured by any available colour and
we obtain another feasible partial circular 2-backbone colouring of the same subpair of (G,H).

Similarly, we say that a colour a is forbidden at vertex v due to S ⊆ NG(v) if there exists
u ∈ S∩NG(v) coloured a, or if there exists u ∈ S∩NH(v) with colour in [a]k. When we consider
S = NG(v), we simply mention forbidden at vertex v. We denote the set of forbidden colours at
v in c by Fbc(G,H, v).

We also define a colour a is strongly forbidden at vertex v due to S ⊆ NG(v) if one cannot
obtain a partial circular 2-backbone k-colouring by assigning to v the colour a and (re)colouring
each vertex u ∈ S with one colour in Avc(G,H, u).

We often omit G, H and c from these notations when they are clear in the context. Observe
that Av(v) = Zk \ Fb(v).

In the following sections, the graph H is a forest. Then, a vertex of degree 0 (resp. 1, at least
2) in H is called an isolated vertex (resp. a leaf, a node). We also denote by leaf(H) the number
of leaves in H, by isol(H) the number of isolated vertices in H and by comp(H) the number of
its connected components.

Planar graphs with no cycles of length 4 or 5.

A well-known result on planar graphs is Euler’s Formula:

RR n° 8641



6 J. Araujo & F. Havet & M. Schmitt

Theorem 11 (Euler’s Formula). If G is a connected plane graph, then

|V (G)| − |E(G)|+ |F (G)| = 2.

Let τ(G) denote the number of triangles of a graph G.

Lemma 12. If G is a planar graph with no C4, then the three statements hold:

(i) every two (not identical) triangles do not share an edge;

(ii) every vertex v ∈ V (G) belongs to at most bdG(v)/2c triangles;

(iii) 3τ(G) ≤ |E(G)|.

Proof. To prove (i), observe that two triangles with different vertex sets cannot share at least
one edge, otherwise there would be a C4 in G. (ii) follows directly from (i) by observing that
the graph induced by the neighbourhood of v contains no path of length 2, since there is no
4-cycles. Finally, we derive (iii) from (ii). Indeed (ii) implies 3τ(G) ≤

∑
v∈V (G)bdG(v)/2c. Since∑

v∈V (G) dG(v)/2 = |E(G)|, we obtain 3τ(G) ≤ |E(G)|.

Lemma 13. If G is a connected planar graph with no cycles of length 4 or 5 and G 6= K3, then
|E(G)| ≤ 2|V (G)| − 4.

Proof. Without loss of generality, we may assume tat G is embedded in the plane. By Euler’s
Formula, we have 6|E(G)| = 6|V (G)|+ 6|F (G)| − 12. Hence

4|E(G)| = 6|V (G)| −
∑

f∈F (G)

(d(f)− 6)− 12 ≤ 6|V (G)|+ 3|F3(G)| − 12

where F3(G) is the set of 3-faces in G. Since G 6= K3, we observe that |F3(G)| ≤ τ(G), and
then 3|F3(G)| ≤ |E(G)|, by Lemma 12-(iii). Hence, 3|E(G)| ≤ 6|V (G)| − 12, that is |E(G)| ≤
2|V (G)| − 4.

Properties of (k, 2)-minimal pairs
Lemma 14. Let (G,H) be a (k, 2)-minimal pair and c be a partial 2-backbone k-colouring of
(G,H). If uv ∈ E(H) and 1 ≤ |Av(u)| ≤ 3, then at most 4 − |Av(u)| colours are strongly
forbidden at v due to u.

Proof. Observe that a colour cannot be assigned to v due to u with uv ∈ E(H) if and only if it
is in the set F =

⋂
a∈Av(u)[a]k. Note that this set F is maximized when Av(u) has consecutive

colours. Thus, F has at most 3 colours when |Av(u)| = 1, F has at most 2 colours when
|Av(u)| = 2 and F has at most 1 colour when |Av(u)| = 3.

The total degree of a vertex v in (G,H) is dt(v,G,H) = dG(v) + 2dH(v). We often simplify
the notation dt(v,G,H) to dt(v) when G and H are clear from the context. Note that dt(v) is
an upper bound on the maximum number of forbidden colours at v, when extending a circular
2-backbone k-colouring of (G,H)− v to v.

Lemma 15. If (G,H) is a (k, 2)-minimal pair, then G is connected.

Proof. By contradiction, suppose that G is not connected and let C ⊂ V (G) be a connected
component of G. Since (G,H) is (k, 2)-minimal, observe that (G,H) − C and (G,H)[C] admit
circular 2-backbone k-colourings c and c′, respectively. Combining c and c′, one obtains a circular
2-backbone k-colouring of (G,H). This is a contradiction to the hypothesis that CBC2(G,H) >
k.

Inria
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Lemma 16. If (G,H) is a (k, 2)-minimal pair, then dt(v) ≥ k, for all v ∈ V (G).

Proof. Assume for a contradiction that there is a vertex v such that dt(v) < k. By minimality
of (G,H), (G,H) − v admits a circular 2-backbone k-colouring c. Now at most dt(v) colours
are forbidden at v. Hence c can be extended into a circular 2-backbone k-colouring of (G,H), a
contradiction.

Lemma 17. Let (G,H) be a (k, 2)-minimal pair. If uv ∈ E(H), then dt(u) + dt(v) ≥ 2k + 2.

Proof. Let x ∈ {u, v}. Set r(x) = dt(x)− k. If r(x) ≥ 2, then we have the result by Lemma 16.
So we may assume that r(x) ≤ 1. By minimality of (G,H), there exists a circular 2-backbone
k-colouring c of (G,H) − {u, v}. Since uv ∈ E(H), the total degree of x in (G,H) − {u, v} is
k + r(x)− 3. Hence there is a set Av(x) of k − (k + r(x)− 3) = 3− r(x) available colours at x.

Let F be the set of strongly forbidden colours at u due to v. By Lemma 14, |F | ≤ r(u) + 1.
Since (G,H) is a (k, 2)-minimal pair, the colouring c cannot be modified into a circular 2-backbone
k-colouring of (G,H). Thus |F | ≥ |Av(x)|, so r(u)+1 ≥ 3−r(v). Hence dt(u)+dt(v) ≥ 2k+2.

3 Forest backbone
The aim of this section is to prove the following.
Theorem 7. If G is a planar graph with no cycles of length 4 or 5 and H is a forest in G, then
CBC2(G,H) ≤ 7.

From this point to the end of Section 3, let (G,H) be a minimal counter-example to Theorem 8
and whenever we use the notation [a], when a is a colour, we mean [a]7. By Lemmas 15, 16 and 17,
observe that G must be connected, each vertex must have total degree at least 7 and, for each
edge uv ∈ H, dt(u) + dt(v) ≥ 16. We now prove extra properties of such a counter-example.

Lemma 18. Let P = uvw be a path in H and c be a circular 2-backbone 7-colouring of (G,H)−
{u, v, w}. If |Av(u)| = 3 and |Av(w)| = 3, then at most 3 colours are strongly forbidden at v
due to {u,w} (no matter whether uw ∈ E(G)).

Proof. Suppose |Av(u)| = 3 and |Av(w)| = 3. Note that if we show that at most 3 colours are
strongly forbidden when uw ∈ E(G), then we also show that the same holds when uw /∈ E(G).
In fact, we have the same amount of colours and one constraint less, the one that u and w must
receive disjoint colours, to extend c to (G,H). So let us assume uw ∈ E(G).

Let A1 = Av(u) and A2 = av(w). Let N be the set colours of Z7 that are consecutive to some
colour of Av(u). Observe that |N | ≥ 4 and that |N | = 4 if and only if Av(u) = {i, i + 2, i + 4}
for some i and N = Z7 \Av(u).

If N ∩ Av(w) = ∅, then |N | = |Z7| − |Av(w)| = 4. It follows that Av(w) = Av(u) =
{i, i+ 2, i+ 4} for some i, and the set of strongly forbidden colours at v is {i + 1, i+ 3} (recall
that uw ∈ E(G)).

Henceforth we may assume that N and Av(w) intersect. Thus there are two consecutive
colours a1 ∈ Av(u) and a2 ∈ Av(w). Without loss of generality, we may assume that a2 = a1 +1.
Observe that the three colours not in [a1] ∪ [a2] are not strongly forbidden at v.

If a1− 1 or a2 + 1 is not strongly forbidden, we have the result. So we may assume that both
a1 − 1 and a2 + 1 are strongly forbidden. Then Av(u) = [a1 − 1] or [a1 − 1] contains exactly two
colours of each set Av(u) and Av(w) and the colour of Av(u) \ [a1 − 1] is the same as the colour
of Av(w) \ [a1 − 1]. Similarly, either Av(w) = [a2 + 1] or [a2 + 1] contains exactly two colours of
Av(u) and exactly two colours of Av(w) and the colour of Av(u)\[a2+1] is the same as the colour
of Av(w) \ [a2 + 1]. Consequently, we necessarily have Av(u) = [a1 − 1] and Av(w) = [a2 + 1].

RR n° 8641



8 J. Araujo & F. Havet & M. Schmitt

Now a1 and a2 are not strongly forbidden at v and there are just two strongly forbidden colours
at v due to {u,w}.

Lemma 19. If S = {s1, . . . , st} is the set of neighbours of v in H such that dt(si) = 7, for every
1 ≤ i ≤ t, then dt(v) ≥ 8 + t.

Proof. The total degree of v in (G,H) is dt(v) = 3t+ d̃ with d̃ the total degree of v in (G,H)−S.
In particular, if t ≥ 4, then dt(v) ≥ 3t ≥ 8 + t. Therefore, we may assume that t ≤ 3. If t = 1,
then Lemma 17 yields the results. Henceforth, we now assume t ∈ {2, 3}.

By minimality of (G,H), there exists a circular 2-backbone 7-colouring c of (G,H)−(S∪{v}).
In (G,H) − (S ∪ {v}), the total degree of si is at most 4. Hence, there is a set Ai of at least 3
available colours at si.

Let F1,2 (resp. F3) be the set of strongly forbidden colours at v by {s1, s2} (resp. {s3}). By
Lemmas 17 and 18, we have |F3| ≤ 4− |A3| ≤ 1 and |F1,2| ≤ 3.

Since (G,H) is minimal, then all seven colours must be strongly forbidden at v. If t = 2, this
yields 7 ≤ d̃+ |F1,2|. But dt(v) = d̃+ 6. So dt(v) ≥ 13− |F1,2| ≥ 10.

If t = 3, this yields 7 ≤ d̃+|F1,2|+|F3|. But dt(v) = d̃+9. So dt(v) ≥ 16−|F1,2|−|F3| ≥ 11.

Corollary 20. If (G,H) be a (7, 2)-minimal pair such that G is a planar graph and H is a
spanning forest of G, then ∑

v∈V (G)

dt(v) ≥ 8|V (G)| − isol(H)

.

Proof. Recall that Lemma 16 states that dt(v) ≥ 7, for every v ∈ V (G). In particular, if v is an
isolated vertex of H, then dt(v) ≥ 7. If v is not isolated and dt(v) = 7, then v each neighbour u
of v in H has total degree at least 9, by Lemma 17.

Let u be a vertex such that dt(u) ≥ 9 and define t(u) as the number of neighbours v of
u in H such that dt(v) = 7. Lemma 19 states that dt(u) ≥ 8 + t(u). In particular, dt(u) +∑

v∈NH(u) d
t(v) ≥ 8.

Thus, let S9+ (resp. S8, S7) be the set of non-isolated vertices with total degree at least
9 (resp. exactly 8, exactly 7). Let SI denote the set of isolated vertices of H. Observe that
{S9+ , S8, S7, SI} form a partition of V (G) and then:

∑
v∈V (G)

dt(v) =
∑

v∈S9+

dt(v) +
∑
v∈S8

dt(v) +
∑
v∈S7

dt(v) +
∑
v∈SI

dt(v)

≥ 8 · |S8|+ 8 · |S9+ ∪ S7|+ 7 · isol(H)

= 8 · |V (G)| − isol(H)

Proposition 21. Let G be a connected plane graph and H be a spanning forest of G. Then∑
v∈V (G)

(2dt(v)− 14) +
∑

f∈F (G)

(d(f)− 6) = −12− 8 comp(H).
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Steinberg-like theorems for backbone colouring 9

Proof. Since H is a spanning forest of G, note that |E(H)| ≤ |V (G)| − comp(H). Consequently,
by using Euler’s Formula, we have:∑

v∈V (G)

(2dt(v)− 14) +
∑

f∈F (G)

(d(f)− 6)

= 2
∑

v∈V (G)

dG(v) + 4
∑

v∈V (G)

dH(v)− 14|V (G)|+ 2|E(G)| − 6|F (G)|

= 4|E(G)|+ 8|E(H)| − 14|V (G)|+ 2|E(G)| − 6|F (G)|
≤ 6|E(G)| − 6|V (G)| − 6|F (G)| − 8 comp(H) = −12− 8 comp(H).

We are now ready to prove Theorem 7.

Proof of Theorem 7. Let (G,H) be a minimal counter-example with respect to the number of
vertices. It is easy to check that the theorem holds when |V (G)| ≤ 3. Hence we have |V (G)| ≥ 4,
and (G,H) is (7, 2)-minimal. By Lemma 15, G must be connected.

Set Σ :=
∑

v∈V (G)(2d
t(v) − 14) +

∑
f∈F (G)(d(f) − 6). Proposition 21 states that Σ ≤

−12−8 comp(H). We prove that such a counter-example does not exist by finding a contraction
to this fact.

By Corollary 20, recall that
∑

v∈V (G) d
t(v) ≥ 8|V (G)|−isol(H). Consequently,

∑
v∈V (G)(2d

t(v)−
14) ≥ 2|V (G)| − 2 isol(H).

Since G has no cycle of length 4 or 5,
∑

f∈F (G)(d(f)−6) ≥ −3τ(G) ≥ −|E(G)| ≥ 4−2|V (G)|,
by Lemmas 12 and 13. Combining these inequalities, we get Σ ≥ 4− 2 isol(H) ≥ 4− 2 comp(H),
because isol(H) ≤ comp(H) for any graph H.

Hence 4 − 2 comp(H) ≤ Σ ≤ −12 − 8 comp(H), which is contradiction because comp(H) is
positive.

4 Path forest backbone

Recall that a path forest is a forest whose connected components are paths. The aim of this
section is to prove the following.
Theorem 8. If G is a planar graph without cycles of length 4 and 5, and H is a path forest,
then CBC2(G,H) ≤ 6.

In order to prove this theorem, we also consider a minimum counter-example of Theorem 8.
We also consider that G is embedded in the plane, so that its face set is defined. In Subsection 4.1,
we establish some properties of this counter-example. Then, in Subsection 4.2, we use these
properties to derive a contradiction via the Discharging Method.

We first need some definitions. For convenience, in this section we often abbreviate circular
2-backbone 6-colouring by colouring. With a slight abuse of notation, we also refer to the set
of colours as Z6 so that the modulo operation is already defined (recall that initially the set of
colours of a proper k-colouring is {1, . . . , k}). We also write [c] instead of [c]6. Moreover, we say
that two colours a and b are opposite if |a− b|6 = 3.

Recall that (G′, H ′) is a subpair of (G,H) if H ′ ⊆ H and G′ ⊆ G. We say that (G′, H ′) is
an induced subpair of (G,H) if V (H ′) = V (G′) and H ′ = H[V (G′)] and G′ = G[V (G′)] are the
corresponding induced subgraphs. A configuration of (G,H) is an induced subpair in which the
total degree of some of the vertices is constrained to given values.

RR n° 8641



10 J. Araujo & F. Havet & M. Schmitt

In the remainder of this section, we represent a configuration (G′, H ′) by a representation
of the graph G′ with the edges of H ′ in bold and a number t inside the circle corresponding to
vertex v if the total degree of v must be equal to t, except for the last configuration where we
use ≤ 8 inside a circle to represent that the corresponding vertex has total degree at most 8.

Let C = (G′, H ′) be a configuration of (G,H). A vertex of C whose degree is not constrained
to some value is called external. The set of external vertices of C is by Ext(C). The vertices
of C whose degree is fixed to a number are the internal vertices of C and they form the set
Int(C). Thus, Ext(C) and Int(C) form a partition of V (G′). We emphasize that, in all figures
of configurations in this section, we depict all neighbours of an internal vertex.

In order to reach a contradiction and prove that no minimum counter-example to Theorem 8
exists, we show that several configurations are forbidden. By forbidden we mean that for these
configurations one may extend some circular 2-backbone 6-colouring of (G,H)−Int(C) to (G,H).

One last notion we require is the following: given a configuration C of (G,H) and a vertex
x ∈ Ext(C), we say that two colourings c1, c2 of (G,H)− Int(C) are C-twin at x, if c1(x) 6= c2(x)
and c1(x′) = c2(x′), for every x′ ∈ Ext(C) \ {x} (recall that by colouring we now mean circular
2-backbone 6-colouring).

4.1 Properties of a minimal counter-example

In the remainder of this section, (G,H) is always a minimum counter-example to Theorem 8.
It means that G is planar containing no cycles on 4 or 5 vertices, H ⊆ G is a spanning path
forest of G and (G,H) is a minimal (6, 2)-pair. In particular, recall that for every vertex set
S ⊆ V (G), (G,H)−S admits a circular 2-backbone 6-colouring and (G,H)\e also does, for every
edge e ∈ E(G).

We now establish some properties of (G,H). First recall that Lemmas 12, 16 and 17 yield
the following.

Property 22. Every vertex v ∈ V (G) is incident to at most bd(v)/2c triangles.

Property 23. For each vertex v ∈ V (G), dt(v) ≥ 6.

Property 24. If uv ∈ E(H), then dt(u) + dt(v) ≥ 14.

We now study more deeply the structure of (G,H). Let C0 be a configuration consisting of
path uvw in H such that uw /∈ E(G) and dt(v) = 6, i.e. Int(C) = {v} and Ext(C) = {u,w}.
Let C ′

0 be the configuration C0 when the edge uw ∈ E(G) exists (see Figure 1).

6 6
u v w u v w

Figure 1: The configurations C0 (left) and C ′
0 (right).

Property 25. If (G,H) contains a configuration C ∈ {C0, C
′
0}, then

(i) there is no pair of C-twin colourings at u, and

(ii) if C = C ′
0 and u is a node in H, then dt(u) ≥ 9.

Inria



Steinberg-like theorems for backbone colouring 11

Proof. (i) Suppose, for a contradiction, that there exist two colourings c and c′ that are C-twin at
u. One colour of {c(u), c′(u)}, say c(u), is not opposite to c(w) = c′(w). Thus F = [c(u)]∪[c(w)] 6=
Z6. Hence, choosing c(v) in Z6 \ F , we obtain a colouring of (G,H), a contradiction.

(ii) Suppose again for a contradiction that C = C ′
0, u is a node and dt(u) ≤ 8. Due to the

minimality of (G,H), (G′, H ′) = (G,H)\{uv, uw} has a circular 2-backbone 6-colouring c. Since
dt(G′,H′)(u) ≤ 4, vertex u has at least two available colours with respect to c. Moreover, since u
is a node (i.e. a vertex of degree at least 2 in H) there are three consecutive colours in Z6 that
are forbidden to u. So there are at least two available colours at u that are not opposite. Hence
one can assign to u one of its available colours that does not belong to {c(w), c(w) + 3} and
there would be at least one available colour to extend c to v. Consequently there is a circular
2-backbone 6-colouring of (G,H), a contradiction.

Let C1 be a configuration on 5 vertices u′, u, v, v′ and u′′, such that u′uvv′ form an induced
path P1 in G and in H, u′′ is not a neighbour of a vertex of P1 in H, but it has exactly two
neighbours of P1 in G: u and v. Moreover, the total degree of u and v must be equal to 7, i.e.
Int(C1) = {u, v} (see Figure 2).

77
u' u v v'

u''

Figure 2: The configuration C1.

Property 26. If (G,H) contains a configuration C1, then

(i) there is no pair of C1-twin colourings at u′, and

(ii) dt(u′) ≥ 8.

Proof. (i) Suppose for a contradiction that (G,H)−{u, v} admits two C1-twin colourings c and
c′ at u′. One of them, say c, satisfies c(u′) 6= c(v′). Note that c(u′′) is forbidden to u and v.
Consequently, with respect to the colouring c, the sets Av(u) and Av(v) of available colours at
u and v have size at least 2 and they are not equal, since c(u′) 6= c(v′). Thus we can choose
c(u) ∈ Av(u) and c(v) ∈ Av(v) so that |c(u)− c(v)|6 ≥ 2. We then obtain a colouring of (G,H),
a contradiction.

(ii) Suppose for a contradiction that dt(G,H)(u
′) ≤ 7. The graph (G,H) − {u, v} admits a

circular 2-backbone 6-colouring c. The number of available colours at u′ in this colouring is
at least 2. Hence, we can extend c into two C1-twin colourings of (G,H) − {u, v} at u′. This
contradicts (i).

Let C2 be a configuration on eight vertices u′, u, v, v′, w, u′′, v′′ and z, such that u′uvv′w
form an induced path P2 in G and inH, the vertices u′′, v′′ and z are not neighbours of a vertex of
P2 in H, but u′′ and v′′ have exactly two neighbours of P1 in G: u and v, v and v′, respectively;
and the only neighbour of z in P2 is v′. Moreover, tdt(u) = 7 and dt(v) = dt(v′) = 8. The
configuration C ′

2 is obtained from C2 by removing z and changing on the total degree of v′ to 7
(see Figure 3). Note that Int(C2) = Int(C ′

2) = {u, v, v′}.

Property 27. If (G,H) contains a configuration C ∈ {C2, C
′
2}, then
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12 J. Araujo & F. Havet & M. Schmitt

87 8 87 7
u' u v v' w

u'' v'' z

u' u v v' w

u'' v''

Figure 3: The configurations C2 (left) and C ′
2 (right).

(i) there is no pair of C-twin colourings at u′, and

(ii) dt(u′) ≥ 8.

Proof. (i) Suppose for a contradiction that there are two C-twin colourings at u′, say c and c′.
First we claim that we can extend c and c′ to v′ with a colour c(v′) = c′(v′) which is not

opposite to c(v′′). Indeed, if c(v′′) ∈ [c(w)], one we can choose c(v′) = c′(v′) in {c(w) + 2, c(w) +
3, c(w) + 4} \ {c(z), c(v′′) + 3}. Otherwise, c(v′′) /∈ [c(w)] and in this case one can choose
c(v′) = c′(v′) in {c(w) + 2, c(w) + 3, c(w) + 4} \ {c(v′′), c(z)}.

Consider now that c and c′ were extended to v′ so that c(v′) = c′(v′) is not opposite to c(v′′).
If |c(v′) − c(v′′)|6 = 1, then c(v′′) is forbidden to v by both v′′ and v′. So this case behaves
exactly as if the edge vv′′ did not exist in C and we have a configuration equivalent to C1. Thus,
similarly to the proof of Property 26-(i), one derives that no pair of C-twin colourings at u′
exists. Henceforth |c(v′) − c(v′′)|6 = 2. Without loss of generality, assume that c(v′′) = 1 and
c(v′) = 3. Observe that Av(v) = {5, 6} \ {c(u′′)} for both colourings c and c′.

We distinguish few cases according to the value of c(u′′). In each of them, we extend c to a
colouring of (G,H), which is a contradiction.

• Case 1: c(u′′) = 1. Recall that c and c′ are C-twin colourings at u′. Thus, without
loss of generality, assume that c(u′) 6= 3. One can then choose c(u) ∈ [3] \ [c(u′)] and
c(v) ∈ {5, 6} \ [c(u)].

• Case 2: c(u′′) ∈ {2, 3}. The set Av(u) of available colours at u is Z6 \ [c(u′)] ∪ {c(u′′)}, in
the colouring c. Observe that Av(v) = {5, 6}, |Av(u)| ≥ 2 and Av(u) 6= Av(v), since u′
forbids three consecutive colours and c(u′′) ∈ {2, 3}. Thus one can find c(u) ∈ Av(u) and
c(v) ∈ Av(v) so that |c(u)− c(v)|6 ≥ 2.

• Case 3: c(u′′) ∈ {4, 6}. Without loss of generality, we may assume that c(u′) 6= 2. Then,
choose c(u) ∈ [2] \ [c(u′)] and set c(v) = 5.

• Case 4: c(u′′) = 5. Without loss of generality, assume that c(u′) 6= 3. Then, one can choose
c(u) ∈ [3] \ [c(u′)] and set c(v) = 6.

(ii) Suppose for a contradiction that dt(G,H)(u
′) ≤ 7. The graph (G,H)−{u, v, u′, v′} admits

a colouring c. The number of available colours at u′ in c is at least 2. Hence, we can extend c
into two C-twin colourings at u′. This contradicts (i).

Let C3 be a configuration of (G,H) on four vertices u, w, v and z such that the only edges
of H are uw and vw and the edges in E(G) \ E(H) are uv and wz. Moreover, the total degree
of w must be 7 (see Figure 4).

Property 28. If (G,H) contains a configuration C3, then

(i) dt(u) ≥ 7, and
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Steinberg-like theorems for backbone colouring 13

7
u w v

z

Figure 4: Configuration C3

(ii) if u is a node, then dt(u) ≥ 8.

Proof. Let c be a colouring of (G′, H ′) = (G,H) \ {uw, uv}. Without loss of generality, we may
assume that c(v) = 1 and c(z) /∈ {2, 3}.

Suppose for a contradiction that dt(G,H)(u) ≤ 6 or that u is a node and dt(G,H)(u) = 7. If
dt(G,H)(u) ≤ 6, u has at least four available colours in c, otherwise u has three available colours
which are consecutive. In both cases, we can assign to u a colour c(u) ∈ {2, 5, 6}. If c(u) ∈ {5, 6},
then setting c(w) = 3, we obtain a colouring of (G,H), a contradiction. If c(u) = 2, then choosing
c(w) ∈ {4, 5} \ {c(z)}, we obtain a colouring of (G,H), a contradiction.

Let C4 be a configuration of (G,H) on eight vertices u, u′, u′′, v, v′, v′′, w and z such that
the only edges of H are u′u, uw, wv and vv′ and the only edges in E(G) \ E(H) are u′′u, uv,
vv′′ and wz. The vertices of Int(C4) are u, w and v and they must have total degree equal to 8,
7 and 8, respectively (see Figure 5).

78 8
u' u w v v'

u'' z v''

Figure 5: Configuration C4

Property 29. If (G,H) contains a configuration C4, then

(i) dt(u′) ≥ 8, and

(ii) if u′u′′ ∈ E(G−H) and u′ is a node, then dt(u′) ≥ 9.

Proof. Let us first prove a claim that we use to prove both statements.
We claim that there exists no colouring c of (G,H)−{u, v, w} such that c(u′′) 6= c(u′)+3, no

matter whether u′u′′ ∈ E(G) \ E(H). Let us prove this claim by contradiction and let c such a
colouring. Observe that |Av(u)| ≥ 2 and |Av(v)| ≥ 2, and that Av(u) contains two consecutive
colours, since c(u′) 6= c(u′′) + 3. Without loss of generality, we assume that {1, 2} ⊆ A(u) and
that c(z) ∈ {2, 3, 4}. Since |Av(v)| ≥ 2, we first extend the colouring c to v by colouring v with
a colour c(v) 6= 5. Then, in order to reach a contradiction, we show that for every possible colour
c(v) 6= 5 one can extend c into a colouring of (G,H):

• Case 1: c(v) ∈ {1, 2, 3}. Set c(w) = 5 and choose c(u) ∈ {1, 2} \ {c(v)}.

• Case 2: c(v) = 4. Set c(u) = 2 and c(w) = 6.
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14 J. Araujo & F. Havet & M. Schmitt

• Case 3: c(v) = 6. Set c(u) = 1 and choose c(w) ∈ {3, 4} \ {c(z)}.

This completes the proof of the claim.

(i) By contradiction, suppose that dt(u′) ≤ 7. Let c be a colouring of (G,H)−{u, v, w}. Since
u is not coloured by c and u′u ∈ E(H), vertex u′ has at least two available colours in c. Thus
one can, if necessary, recolour u′ so that c(u′′) 6= c(u′) + 3, contradicting the previous claim.

(ii) By contradiction, suppose that u′u′′ ∈ E(G−H) and u′ is a node, and dt(u′) ≤ 8. Let c
be a colouring of (G,H)−{u, v, w} and t′ be the neighbour of u′ in H that is distinct from u. By
definition, we have c(t′) /∈ [c(u′)] and by the previous claim, c(u′′) = c(u′) + 3. Combining these
facts, one deduces that c(u′′) ∈ [c(t′)]. Moreover, since dt(u′) ≤ 8, u′ has at most one neighbour
in G− {u, u′′, t′} that is already coloured by c. Therefore, since u is not yet coloured, u′ has at
least two available colours in c. Hence, one can recolour u′ with a colour distinct from c(u′′) + 3,
contradicting to the above claim.

4.2 Proof of Theorem 8

The proof uses the Discharging Method. Recall that (G,H) is a minimal counter-example to
Theorem 8 and that G is embedded in the plane. We first assign an initial weight to each
vertex and face of G, and prove that the total initial weight is negative. We then apply some
discharging rules that do not change the total weight. Finally, using the properties established in
the previous section, we prove that the final weight of each vertex and face of G is non-negative,
which contradicts the negativity of the total weight. This implies that no such a counter-example
exists and proves Theorem 8.

4.2.1 Initial weight

Let us define a function initial weights ϕ : V (G) ∪ F (G) → Z of the vertices and faces of G as
follows:

• If v is an isolated vertex in H, i.e. dH(v) = 0, then ϕ(v) = 2dt(v)− 6;

• If v is a leaf in H, i.e. dH(v) = 1, then ϕ(v) = 2dt(v)− 10;

• If v is a node in H, i.e. dH(v) = 2, then ϕ(v) = 2dt(v)− 14;

• Every face f ∈ F (G) has weight ϕ(f) = d(f)− 6.

Observe that the only faces with negative weight are the 3-faces for which the weight is −3,
since G has no C4 nor C5. Let Φ =

∑
v∈V ϕ(v) +

∑
f∈F ϕ(f) be the total initial weight. The

following lemma shows that Φ is negative.

Lemma 30. The total initial weight Φ equals −12.

Proof. We have

Φ =
∑
v∈V

(2dt(v)− 14) +
∑
f∈F

(d(f)− 6) + 4 leaf(H) + 8 isol(H).

We shall use Euler’s Formula, and the three following easy facts, whose proof is left to the
reader. ∑

v∈V

d(v) =
∑
f∈F

d(f) = 2|E(G)| (4)
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∑
v∈V

dt(v) = 2|E(G)|+ 4|E(H)| (5)

|E(H)| = |V (G)| − leaf(H)/2− isol(H) (6)

By (4) and (5), we have

Φ = 6|E(G)|+ 8|E(H)| − 14|V (G)| − 6|F (G)|+ 4 leaf(H) + 8 isol(H)

Then using (6), we get Φ = 6|E(G)|−6|F (G)|−6|V (G)|. Finally, by Euler’s Formula, we obtain
Φ = −12.

4.2.2 Discharging rules

We now apply a set of discharging rules that we apply to convert ϕ into a final function of weights
ϕ′ in such a way that no charge is lost, i.e. the total charge should be the same in ϕ′.

• Rule 1: Each vertex sends one unit of charge to each of its incident 3-faces.

• Rule 2: Each q-face, for every q ≥ 6, sharing two consecutive backbone edges with a 3-face
sends one unit of charge to the node of total degree 6 this 3-face, if it exists.

• Rules 3: For each of the configurations depicted in Figure 6, vertex s sends one unit of
charge to vertex t, if ϕ(s) ≥ 4.

7
s t

(a) Rule 3.1

78 8
s t

(b) Rule 3.2

7
st

(c) Rule 3.3

87
t s
(d) Rule 3.4

Figure 6: Rules 3. To send charge s must have initial weight at least 4.

• Rules 4: For each of the configurations depicted in Figure 7, vertex s sends one unit of
charge to vertex t.

Lemma 31. Whenever one of the Rules 4 is applied, the vertex s has total degree at least 8.

Proof. The total degree of s is imposed to be 8 in Rules 4.2 and 4.4. It is at least 8 in Rules 4.1,
4.3, and 4.5 by Properties 24, 26, and 27, respectively.

Lemma 32. By Rules 3 and 4, a node sends at most two units of charge and a leaf sends at
most one unit of charge.

RR n° 8641



16 J. Araujo & F. Havet & M. Schmitt

6
s t

(a) Rule 4.1

78 8
s t

(b) Rule 4.2

77
s t

(c) Rule 4.3

87
t s
(d) Rule 4.4

87 8
s t

(e) Rule 4.5

Figure 7: Rules 4. The dotted line means that the edge does not belong to E(G).

Proof. In Rules 3 and 4, a vertex s sends charge to a vertex a distance at most 2 in H. Moreover,
each time its sends to a vertex t at distance 2 in H, then the common neighbour of s and t in
H does not send nor receive any charge by Rules 3 or 4. Therefore, by Rules 3 and 4, a vertex
sends at most 1 in each direction along its path in H.

4.2.3 Final weight

We now show that all vertices and all faces have a non-negative final weight. Recall that we
denote by ϕ′ the final weight function after all applications of the previously described rules.

Lemma 33. Every face f ∈ F (G) has a non-negative final weight.

Proof. If f is a 3-face, then ϕ(f) = −3, and f receives 1 for each of its vertices by Rule 1. So
ϕ′(f) = 0.

If f is not a 3-face, then f has degree at least 6. So we have ϕ(f) ≥ 0. However, we have to be
sure that Rule 2, the only rule to change the weight of faces, cannot create a face with negative
weight. Assume that f shares two backbone edges with k 3-faces Ti, 1 ≤ i ≤ k. Recall that
no two triangles share an edge, by Lemma 12. Thus, one can find a cycle C in G by replacing
the two backbone edges in Ti ∩ f (and their common endvertex) by the third edge of Ti. The
cycles obtained from f by taking k or k − 1 of such shortcuts are cycles of length d(f)− k and
d(f)− k + 1, respectively. Since G has no cycles of length 4 and 5, it follows that d(f)− k ≥ 6.
Hence ϕ′(f) = d(f)− 6− k ≥ 0.

Lemma 34. If x is an isolated vertex, then ϕ′(x) ≥ 0.

Proof. Assume x is an isolated vertex. Observe that the charge of x is ϕ(x) = 2dt(x)−6 ≥ dt(x),
by Property 23. No isolated vertex is involved in Rules 2, 3 or 4, so x is concerned only by Rule
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1. Since x is adjacent to at most bd(x)/2c 3-faces, by Property 22, we deduce that ϕ′(x) ≥
dt(x)− bd(x)/2c ≥ 0.

Lemma 35. If x is a leaf, then ϕ′(x) ≥ 0.

Proof. Assume x is a leaf. Then ϕ(x) = 2dt(x)− 10. Vertex x sends at most one unit of charge
by Rules 3 and 4, by Lemma 32. By Property 22, x is incident to at most bd(x)/2c 3-faces. Since
bd(x)/2c = bdt(x)/2c − 1, we have ϕ′(x) ≥ 2dt(x)− 10− (bdt(x)/2c − 1)− 1. Thus, if dt(x) ≥ 7
then ϕ′(x) ≥ 0.

Suppose now that dt(x) < 7, so dt(x) = 6 by Property 23. We have ϕ(x) = 2, so x does
not send charge by Rules 3. By Lemma 31, x does not send charge by Rules 4. Moreover x is
incident to at most two 3-faces. So we have ϕ′(x) ≥ ϕ(x)− 2 ≥ 0.

For nodes, we distinguish several cases according to their total degree.

Lemma 36. Let x be a node. If dt(x) ≥ 9, then ϕ′(x) ≥ 0.

Proof. Assume dt(x) ≥ 9. Then ϕ(x) = 2dt(x)− 14 ≥ dt(x)− 5. Now x gives at most 2 by Rules
3 and 4 by Lemma 32, and 1 to every 3-face. As x is incident to at most bd(x)/2c = bdt(x)/2c−2
3-faces (by Property 22), we have ϕ′(x) ≥ dt(x)−5−(bdt(x)/2c−2)−2 ≥ ddt(x)/2e−5 ≥ 0.

Lemma 37. Let x be a node. If dt(x) = 6, then ϕ′(x) ≥ 0.

Proof. Assume dt(x) = 6. Then x sends no charge by Rules 3 because ϕ(x) = −2, nor by Rules 4
by Lemma 31. Moreover, by Rule 4.1, x receives 2 (1 of each of its neighbours). Now x is adjacent
to at most one 3-face by Property 22, because d(x) = 2. If x is incident to no 3-face, then it does
not gives anything by Rule 1. So ϕ′(x) = ϕ(x)+2 = 0. If x is incident to a 3-face, then it gives 1
to this 3-face by Rule 1, but it also receives 1 by Rule 2. Hence ϕ′(x) = ϕ(x) + 2−1 + 1 = 0.

Lemma 38. Let x be a node. If dt(x) = 7, then ϕ′(x) ≥ 0.

Proof. Assume dt(x) = 7. Then x sends no charge by Rules 3 because ϕ(x) = 0, nor by Rules 4
by Lemma 31. Moreover, x is adjacent to at most one 3-face by Property 22, because d(x) = 3.

If x is incident to no 3-face, then it does not send any charge, so ϕ′(v) ≥ ϕ(x) = 0.
Assume now that x is incident to a 3-face T . Therefore x sends a charge of 1 by Rule 1.

• If T contains the two backbone edges incident to x, then we are in a Configuration C3.
Let us use the notation of the Figure 4, so our vertex x is w. Observe that dt(u) ≥ 7 and
dt(v) ≥ 7 by Property 24.

– If ϕ(u) ≥ 4 or ϕ(v) ≥ 4, then by Rule 3.1, x receives at least 1. Hence ϕ′(x) ≥
ϕ(x)− 1 + 1 = 0

– If ϕ(u) < 4 and ϕ(v) < 4, then u and v are nodes. Hence dt(u) ≤ 8 and dt(v) ≤ 8.
Consequently, by Property 28, dt(u) = dt(v) = 8. Thus, we are in a Configuration
C4 with x = w. Let us use the notation of Figure 5. If u′ is not adjacent to u′′,
then x receives 1 from u by Rule 4.2. If u′u′′ is an edge, then u′ is either a leaf with
total degree at least 7 (by Property 28), or a node with total degree at least 9 (by
Property 29). In both cases, ϕ(u′) ≥ 4, so x receives 1 from u′ by Rule 3.2. So
ϕ′(x) ≥ ϕ(x)− 1 + 1 ≥ 0.

• If T contains only one of the backbone edges incident to x, then we are in Configuration
D depicted Figure 8. Let us use the notation of this figure. By Property 24, both u′ and
v have total degree at least 7.
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u' x v

u''

Figure 8: Configuration D

– If ϕ(v) ≥ 4, then x receives 1 from v by Rule 3.3. Hence ϕ′(x) ≥ ϕ(x)− 1 + 1 = 0.

– If ϕ(v) = 2, then v is a node, so dt(v) = 8. Let v′ be the neighbour of v in H that is
distinct from x.

∗ If T is the sole 3-face to which v is incident, then x receives 1 from v by Rule 4.4.
Hence ϕ′(x) ≥ ϕ(x)− 1 + 1 = 0.

∗ If v is incident to a 3-face distinct from T , then this 3-face contains v′. If ϕ(v′) ≥ 4,
then x receives 1 from v′ by Rule 3.4. Otherwise v is a node and dt(v′) ≤ 8, so
we are in Configuration C2 or C ′

2 with x = u, and x receives 1 from u′ by Rule
4.5. In both cases, ϕ′(x) ≥ ϕ(x)− 1 + 1 = 0.

– If ϕ(v) = 0, the v is a node and dt(v) = 7. So we are in Configuration C1 with x = u.
Thus x receives 1 from u′ by Rule 4.5. Hence ϕ′(x) ≥ ϕ(x)− 1 + 1 = 0.

Lemma 39. Let x be a node. If dt(x) = 8, then ϕ′(x) ≥ 0.

Proof. Assume dt(x) = 8. Then ϕ(x) = 2, so x does not send anything by Rule 3. Vertex x sends
at most 2 by Rules 4. By Property 22, x is adjacent to at most two 3-faces, because d(x) = 4.

If x is incident to no 3-faces, it sends a charge of at most 2 in total so ϕ′(x) ≥ ϕ(x)− 2 ≥ 0.
If x is incident to two 3-faces, then none of the Rules 4 applies. So x sends a charge of at

most 2, and ϕ′(x) ≥ ϕ(x)− 2 ≥ 0.
Assume now that x is incident to exactly one 3-face. If x sends a charge of 0 or 1 by Rules

4, then ϕ′(x) ≥ ϕ(x)− 1− 1 ≥ 0. To complete the proof we shall now prove that x cannot send
a charge of 2 by Rules 4.

Suppose by contradiction that it does. Then x is the vertex s for two configurations C and
C ′ isomorphic to some depicted Figure 7. Observe that C and C ′ cannot be both isomorphic to
the configurations depicted in Figures 7(b) or 7(d), because x is incident to one 3-face. Hence
one of these two configurations, say C, is isomorphic to either C0, C1, C2, or C ′

2, depicted in
Figures 7(a), 7(c) and 7(e). Let t′ be the vertex of C ′ corresponding to t in Figure 7. Observe that
t′ is not an external vertex of C, because G has no cycle of length 4 or 5. Consider a colouring c
of (G′, H ′) = (G,H) \ (Int(C)∪{x, t′}). We have dt(G′,H′)(t

′) ≤ dt(G,H)(t
′)− 3 ≤ 4. Hence the set

A(t′) of available colours at t′ has size at least 2. Furthermore, dt(G′,H′)(x) ≤ dt(G,H)(x)−6 = 2, so
the set A(x) of available colours at x has size at least 4. Hence there exist two distinct colours c1
and c2 of A(x) and two colours c′1 and c′2 in A(t′) (not necessarily distinct) such that c1 /∈ [c′1] and
c2 /∈ [c′2]. Thus there exists two C-twin colourings at x. This contradicts Properties 25-(i), 26-(i),
or 27-(i).

Lemmas 33, 34, 35,36, 37, 38, and 39 show that all faces and vertices have non-negative final
weight. Thus Φ ≥ 0. This contradicts Lemma 30 and completes the proof of the theorem.
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