
HAL Id: hal-01088704
https://hal.inria.fr/hal-01088704

Submitted on 28 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Trajectory of a Robot Deploying Wireless
Sensor Nodes

Ines Khoufi, Erwan Livolant, Pascale Minet, Mohamed Hadded, Anis Laouiti

To cite this version:
Ines Khoufi, Erwan Livolant, Pascale Minet, Mohamed Hadded, Anis Laouiti. Optimized Trajectory
of a Robot Deploying Wireless Sensor Nodes. Wireless Days, Nov 2014, Rio de Janeiro, Brazil. �hal-
01088704�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49577114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01088704
https://hal.archives-ouvertes.fr


Optimized Trajectory of a Robot Deploying
Wireless Sensor Nodes

Ines Khoufi, Erwan Livolant, Pascale Minet,
Inria

Rocquencourt, 78153 Le Chesnay Cedex, France
Email: ines.khoufi@inria.fr, erwan.livolant@inria.fr,

pascale.minet@inria.fr

Mohamed Hadded, Anis Laouiti
TELECOM SudParis, CNRS Samovar UMR 5157

91011 Evry Cedex, France
Email: mohamed.hadded@telecom-sudparis.eu,

anis.laouiti@telecom-sudparis.eu

Abstract—Mobile robots can be used to deploy static wireless
sensor nodes to achieve the coverage and connectivity require-
ments of the applications considered. Many solutions have been
provided in the literature to compute the set of locations where
the sensor nodes should be placed. In this paper, we show how
this set of locations can be used by a mobile robot to optimize its
tour to deploy the sensor nodes to their right locations. In order
to reduce both the energy consumed by the robot, its exposure
time to a hostile environment, as well as the time at which the
wireless network becomes operational, the optimal tour of the
robot is this minimizing the delay. This delay must take into
account not only the time needed by the robot to travel the tour
distance but also the time spent in the rotations performed by the
robot each time it changes its direction. This problem is called
the Robot Deploying Sensor nodes problem, in short RDS. We
first show how this problem differs from the well-known traveling
salesman problem. We then propose an integer linear program
formulation of the RDS problem. We propose various algorithms
relevant to iterative improvement by exchanging tour edges,
genetic approach and hybridization. The solutions provided by
these algorithms are compared and their closeness to the optimal
is evaluated in various configurations.

I. CONTEXT AND MOTIVATIONS

More and more applications are supported by wireless sen-
sor networks. They cover areas as diverse as structural health
monitoring, smart metering, industrial process monitoring,
precision farming, smart cities, control of traffic lights, smart
home, etc. The main reason for this tremendous development
lies in the ease of deployment of wireless sensor networks.
However, to meet the application requirements in terms of
coverage and connectivity while minimizing the number of
wireless sensors deployed, some rules must be followed. In
short, full coverage of an area means that any event occurring
in this area will be detected by at least one sensor node.
Connectivity means that the information related to any event
detected by a sensor node can be delivered to a special wireless
node, called the sink, in charge of processing the data gathered
from the sensor nodes. Many papers in the literature deal with
these two big issues that are coverage and connectivity, leading
to various problems mainly depending on the item to cover
(area, points of interest, barrier) and on the type of coverage
requested (full/partial, permanent/intermittent). The interested
reader can refer to [1] for a survey of these problems and their
solutions.

Concerning the deployment achieved to meet these appli-
cation requirements, they differ in their goal, their constraints
and their implementation (e.g., centralized versus distributed).
Most deployments aim at minimizing the number of sensor
nodes deployed for cost reasons to achieve the application
requirements. Another goal that is frequently encountered in
crisis situation (e.g., after a disaster) where a wireless sensor
network must be fastly deployed in order to on the one hand
help rescuers to save victimes and on the other hand assist
in damage assessment. In such cases, the goal is to minimize
the time needed to deploy an operational wireless network.
This goal is also targeted in hostile environment, where the
exposure duration must be reduced. For cost reasons, static
sensor nodes are more frequent than mobile ones. That is why
in this paper, we focus on the computation of the minimum-
delay tour of a mobile robot that has to deploy static wireless
sensor nodes at positions that have been previously computed
to meet the application requirements in terms of coverage and
connectivity.

Fig. 1. A WSN deployment assisted
by a robot.

Fig. 2. Rotation angle between
cities A, B and C.

Figure 1 illustrates an example of deployment in an area
with irregular shape where a circle denotes the sensing range
of the sensor node located in its center. The red point repre-
sents the initial position of the robot. This robot must visit each
sensor node position to place each sensor node. The goal is to
minimize the time needed by the robot to perform its mission.
During the moves of the robot, the main energy consumption
is due to robot moves. Minimizing the duration of these moves
contributes to significantly reduce the energy consumed by the
robot. Notice however, that the time and energy needed by the
robot depend not only on the distance traveled by the robot
but also on the rotations of the robot to change its directions to
visit successively all sensor node positions (see Figure 2). Such



rotations cannot be neglected because they consume additional
time and energy. This problem is called the Robot Deploying
Sensors problem, in short RDS. It can be seen as a generalized
version of the traveling salesman problem, denoted TSP in the
following.

This paper is organized as follows. In Section II, we give
a brief state of the art related to wireless sensor network
deployment assisted by a robot and TSP. For TSP, we distin-
guish between algorithms providing either the exact solution
or approximated solutions. In Section III we formulate our
RDS problem as an Integer Linear Program. In Section IV we
present different approximated solutions (e.g., 2-Opt, Genetic
and Hybrid) that are evaluated and compared to the exact
solution provided by the CPLEX solver [2] for various config-
urations in Section V. We discuss further issues in Section VI
and conclude in Section VII.

II. RELATED WORK

Robots are now commercially available. However, the
robots vacuum and the robots lawn mowers that we can
buy have random trajectories and consequently need a large
amount of time to visit a whole area or only some points
of interest (e.g., a dirty place or a grassy area). In the
literature the problem of exploring a whole zone by a mobile
robot has received a lot of attention. Different solutions have
been proposed such as [3] and [4] that take into account
the obstacles that may exist in the area considered, [5] that
adapts itself to the area it discovers. The robot may move
in three directions: left, straight and right that are ordered
by decreasing priority order. The robot state depends on the
number of directions it may take at this time: at least two
directions for the normal state, one direction for narrow-lane
and zero direction for dead-end. The algorithm used depends
on this state. If the robot is initially located at the left-top
corner of the rectangular area, it leads to a spiral trajectory. The
spiral trajectory is usually preferred to the serpentine trajectory
because it is shorter in the absence of obstacles. However,
these solutions address the full exploration of a zone that may
be combined with a deployment of sensor nodes.

Our problem has many analogies with the well-known Trav-
eling Salesman Problem, called TSP, whose goal is to find the
smallest tour visiting all sensor nodes positions (representing
the cities) only once and going back to its initial position. This
problem has been proved NP-hard. For problems of limited
size, the optimal solution can be found with various branch
and bound algorithms, integer linear programming solvers
like for instance, the CPLEX solver [2]. For problems of
large size, heuristic and approximation algorithms that give
faster results close to optimal are used. These algorithms are
either constructive or proceed by iterative improvement. For
instance, the 2-Opt [6] algorithm improves the current solution
by replacing two edges with two new ones to reduce the
tour length. Other examples are given by Tabu [7], [8] and
Genetic [9], [10] algorithms. In this paper, we will compare the
solutions provided by the 2-Opt algorithm, a Genetic algorithm

and an Hybridation of these last two algorithms, with the
optimal one for various configurations.

However, our problem differs from the classical traveling
salesman problem because the objective is not to minimize
the distance traveled but the duration of the tour, taking into
account the angular speed of the robot. Consequently, the cost
associated with a tour is equal to the time needed by the
robot to perform its tour. It is significantly more complex to
evaluate that the simple distance between two cities B and
C visited successively as illustrated in Figure 2. It should
take into account the angle made by the direction the robot
had when arriving from A to B and the direction given by
BC. Let us consider an example of deployment assisted by
a mobile robot. Figure 3 shows the optimal tour of the robot
obtained when only the distance is taken into account: this is
the optimal tour of TSP. We observe many direction changes in
this tour. Figure 4 depicts the optimal tour when both distance
and angle are accounted for: this is the optimal tour for RDS.
This tour is smoother than the TSP optimal tour. This example
clearly points out the difference between the TSP optimal tour
and the RDS optimal one. The optimal tour has a duration of
271.55 seconds and a distance of 2035 meters in the RDS
problem, whereas it has a longer duration of 385.66 seconds
but a shorter distance of 1924 meters in the TSP problem.

Fig. 3. Optimal tour with TSP. Fig. 4. Optimal tour with RDS.

Our contribution lies in the integer linear programming
formalisation of the RDS problem, the proposal of algorithms
providing exact or approximated solutions to the RDS problem
and the identification of their respective application domains
that can be deduced from our comparative evaluation results.

III. FORMALIZATION OF THE RDS PROBLEM

The Robot Deploying Sensor nodes problem can be formu-
lated as an Integer Linear Program (ILP).

The robot tour is modeled as a graph G = (V, E) where V is
the set of vertices representing the node positions to be visited
during the robot tour and E is the set of edges representing
the path between node positions. The cardinal of V is n.

Let di,j denote the distance between the node positions i ∈
V and j ∈ V . Let ai,j,k denote the angle between the edges
(i, j) ∈ E and (j, k) ∈ E . Let ls and as be the robot linear
speed and the robot angular speed, respectively.

We define xi,j , where i ∈ V and j ∈ V \ {i}, the utility
of a path p ∈ E , i.e. xi,j = 1 if and only if p belongs to
the robot tour and xi,j = 0 otherwise. Furthermore, let yi,j,k,
where i ∈ V , j ∈ V \ {i} and k ∈ V \ {i, j}, be the robot
rotation required at a node position. In other words yi,j,k = 1
if and only if the rotation at node j position is effective and
yi,j,k = 0 otherwise. Finally we denote zi,j , where i ∈ V and



j ∈ V \ {i}, the robot stock of sensor nodes available on the
edge (i, j).

The objective is to minimize the time used by the robot to
visit all sensor node positions. This time takes into account the
time due to both the distance and the rotation angle towards
the next sensor node position:

min

∑
i∈V

∑
j∈V\{i}

di,j/ls ∗ xi,j +

∑
i∈V

∑
j∈V\{i}

∑
k∈V\{i,j}

ai,j,k/as ∗ yi,j,k


This objective is subject to the following constraints:

∀i ∈ V,
∑

j∈V\{i}

xi,j = 1 (1)

Contraint 1 allows only one departure for the robot from a
node position.

∀j ∈ V,
∑

i∈V\{j}

xi,j = 1 (2)

Contraint 2 authorizes only one arrival for the robot in a
node position.∑

i∈V

∑
j∈V\{i}

∑
k∈V\{i,j}

yi,j,k = n− 1 (3)

Contraint 3 means that the robot tour includes n−1 rotation
costs to make a complete tour.

∀i ∈ V,∀j ∈ V \ {i},∀k ∈ V \ {i, j},
yi,j,k ≤ (xi,j + xj,k)/2

(4)

Contraint 4 ensures that any rotation cost corresponds to a
pair of consecutive edges followed by the robot.

∀i ∈ V \ {1},∀k ∈ V \ {i, 1}, yi,1,k = 0 (5)

Contraint 5 guarantees that the rotation cost of the robot in
its start position is not accounted for. In fact, when the robot
comes back to its start position, it does not need to rotate
toward any next node position, since the tour is complete.

∀i ∈ V,∀j ∈ V \ {i}, zi,j ≤ (n− 1) ∗ xi,j (6)

Contraint 6 denotes the maximum capacity of the robot in
terms of sensor nodes.

∀i ∈ V,∑
h∈V\{i}

zh,i+

{
n if i = 1
0 otherwise

}
=

∑
j∈V\{i}

zi,j + 1 (7)

Contraint 7 expresses that the robot carries a certain number
of sensor nodes. This number decreases with the number of
node positions already visited by the robot.

The ILP formulation of the RDS problem differs from this
of the TSP problem on the following points:
• The second term in the objective function has been added

to account for the time lost in rotations.
• Constraints 3, 4, 5 have been introduced to deal with the

robot rotation constraints.
This model of RDS adopts the following assumptions:

A1: The robot knows its location and is able to move au-
tonomously to any location specified in the area consid-
ered.

A2: The set of sensor nodes positions are given as well as the
initial location of the robot.

A3: The connectivity graph of sensor nodes positions is
assumed to be complete. In other words, it is always
possible for the robot to go from any sensor node position
to any other sensor node position. For each pair of sensor
node positions, the distance is given. For each triple of
sensor node positions, the rotation angle is given.

The next three assumptions are adopted for the sake of
simplicity. They will be relaxed in Section VI.
A4: There is no obstacle in the paths between any two sensor

node positions.
A5: The robot has enough capacity to carry all sensor nodes

it has to deploy.
A6: The robot has enough energy to visit all sensor nodes

locations in a single tour.

IV. PROPOSED ALGORITHMS

We now describe the algorithms solving the RDS problem
that we will compare in the next section. We consider an
algorithm providing the exact solution and three algorithms
providing approximated solutions.

A. The exact solution

The exact solution of the RDS problem is provided by the
solver CPLEX [2] using the problem formulation given in
Section III. This exact solution will be used as a reference
to evaluate the closeness to the optimal of approximated
solutions. Various approximated solutions are used. The first
one, called 2-Opt, is based on iterative improvement, the
second one uses genetics and the third one is an hybridation
between them.

B. 2-Opt algorithm

We adapt the well-known 2-Opt algorithm [6] to the RDS
problem. 2-Opt starts with an initial solution and tries to
iteratively improve it by replacing two edges with two new
ones that reduce the tour duration. This algorithm provides a
local optimum based on the initial solution.

C. Genetic algorithm

A genetic algorithm is inspired from the biological evolution
process. To define a genetic algorithm, we have to define the
selection of the initial population, the operators we use for the
selection of parents, the crossover and the mutation and finally
the constitution of the population used in the next iteration as



well as the fitness function. In the traveling salesman problem,
an individual is defined by an ordered sequence of the cities
visited by the robot. The initial population is given by K
individuals, K is a non-null natural integer, each individual
being a random permutation of the C cities to visit. The first
city is the initial location of the robot. Hence, it is given as
an input.

Let Pi denote the population at the beginning of any
iteration i > 0. The Genetic algorithm randomly selects bK/2c
pairs of parents among the current population Pi, apply the
crossover operator on each pair to generate two children. Each
gene (i.e. a city visited) of a child is subject to a mutation
with a gene mutation probability of Pmut. A new population
Pnew is then generated. All individuals of Pi ∪ Pnew are
evaluated by the fitness function. The fitness of an individual
is equal to one over the time needed by the robot to perform
this tour. The bK/2c best individuals (i.e., maximizing the
fitness function) among the Pi ∪ Pnew are selected, they
are completed by K − bK/2c individuals randomly selected
among the unselected ones to constitute Pi+1 the population
considered in the next iteration. This principle enables the
algorithm to always keep the bK/2c best individuals it has
found during the Imax iterations performed by the algorithm.

In [11], a genetic algorithm is built to solve TSP. The
mutation operator exchanges two genes, selected at two ran-
dom positions, of an individual. The three crossover operators
considered, PMX (for Partially Matched Crossover), CX (for
Cyclic Crossover) and OX (for Ordered Crossover), ensure that
the crossover of any two individuals is still an individual (i.e. a
permutation of the C cities to visit). Furthermore, it is shown
that PMX outperforms the two other crossover operators CX
and OX. Hence, we select PMX as our crossover operator,
using two cross points randomly selected.

D. Hybrid algorithm

The Hybrid algorithm combines the 2-Opt algorithm with
a genetic one. More precisely, instead of starting with an
initial random population, the Hybrid algorithm applies the
2-Opt algorithm to optimize each individual of the initial
population. In addition, at each iteration, the children obtained
with the crossover operator are mutated with the gene mutation
probability and then optimized by applying again the 2-Opt
algorithm.

V. COMPARATIVE EVALUATION

We evaluate the different algorithms presented in Section IV
on different configurations ranging from 10 sensor nodes to
154 sensor nodes. These configurations may meet various
application requirements. For instance, small configurations
with less than 30 nodes are representative of temporary in-
dustrial worksites, where coverage of some interest points and
connectivity with a sink must be achieved. Medium to large
configurations, from 50 to 150 nodes, can represent industrial
warehouses where full coverage and connectivity with a sink
must be met. Small and medium configurations with less than

70 nodes can also be encountered to improve data gathering
about an industrial process to detect leakages for example.

For this performance evaluation, we take the following
parameters values: ls = 10 meters per second, as = 10
degrees per second for the robot linear and angular speeds,
respectively; Pmut = 0.15, Imax = 1000 iterations for
Genetic and Imax = 100 for Hybrid, K ≥ 2 ∗C individuals,
where C is the number of sensor nodes to deploy. Sensor nodes
are deployed in the area depicted in Figure 1. The dimensions
of the circumscribing rectangle are 530m x 300m, the sensing
range varies from 140m to 20m to match a number of sensor
nodes from 10 to 154.

First, we compute the solutions to the TSP and RDS
problems for a number of sensor node positions ranging from
10 to 154, using 2-Opt. Figure 5 clearly shows that if for
very small configurations (i.e., configurations with at most 10
sensor nodes), the tours found by TSP and RDS may be the
same. This is no longer the case when the number of sensor
nodes increases, the difference between the TSP solution and
the RDS one increases considerably.

Fig. 5. Solutions found by 2-Opt for the RDS and TSP problems.

Secondly, we compare the accuracy (i.e., closeness to the
optimal) of the solutions provided by each algorithm tested
in small configurations (≥ 31 sensor nodes). Figure 6 depicts
the solutions given by 2-Opt, Genetic and Hybrid versus the
optimal one in small configurations. When the number of
nodes is higher than 13 sensor nodes, Genetic fails to find
the optimal tour in 1000 iterations. This is due to the fact
that it generates many tours that are not interesting. On the
contrary, 2-Opt provides a solution that is close to the optimal
for the configurations tested. Hybrid provides the best results
as an approximation algorithm.

Fig. 6. Final solutions of Optimal, 2-Opt, Genetic and Hybrid for small
configurations.



For large configurations, Hybrid improves the solution
found by 2-Opt as shown in Figure 7. For instance, for 103
and 154 nodes, Hybrid decreases the tour duration from 629.1s
to 628.15s and from 752.95s to 749.41s, respectively. This
can be explained by the fact that 2-Opt can be blocked in a
local optimal, whereas Hybrid uses mutations and crossovers
to explore other tours. However, 2-Opt is better to exploit a
given solution. We observe also that Genetic is very sensitive
to the choice of the initial population: if it is far from the
optimal, the final solution remains far from the optimal. In
the configurations tested, 2-Opt improves the initial solution
by at least 50%.

Fig. 7. Final solutions of Optimal, 2-Opt, Genetic and Hybrid for large
configurations.

Another interesting result is given by the time needed by
each algorithm to compute its final solution. CPLEX is run on
a Quad-core Intel Xeon W3565 3.2GHz platform, whereas the
other algorithms are run on a 8-core Intel i7-2760QM 2.4GHz
platform. Tables I and II depict the computation time for each
algorithm tested.

TABLE I
COMPUTATION TIME FOR OPTIMAL, 2-OPT, GENETIC AND HYBRID FOR

SMALL CONFIGURATIONS.

Number of nodes 10 13 22 31
Optimal (s) 11.18 217.35 10866.24 87387.77∗

2-Opt (s) 0.005 0.003 0.014 0.029
Genetic (s) 0.396 0.505 0.845 1.161
Hybrid (s) 2.808 6.788 44.319 276.9

TABLE II
COMPUTATION TIME FOR OPTIMAL, 2-OPT, GENETIC AND HYBRID FOR

LARGE CONFIGURATIONS.

Number of nodes 44 68 105 154
Optimal (s) 174828.61∗ 103910.62∗ - -
2-Opt (s) 0.114 0.339 2.051 3.689
Genetic (s) 2.857 7.065 18.969 39.8
Hybrid (s) 870.45 3743.66 27111.4 41267.3

As expected, Optimal needs the largest computation time in
all configurations tested except for 10 nodes. For example,
it takes about 3 hours to solve the RDS problem with 22
sensor nodes. Hybrid needs the second largest time. This is
due to the calls to the 2-Opt algorithm applied first on each
individual of the initial population and then on each child
generated by the crossover operator. For example, it takes 636
seconds (about 6,5mn) to generate the final solution of the

RDS problem with 22 sensor nodes. The fastest algorithms
are 2-Opt and Genetic to a lesser extent. In all configurations
tested, 2-Opt is at least 10 times faster than Genetic, this ratio
reaches 100 times in small configurations. Since Genetic may
provide a solution far from the optimal one, 2-Opt is preferred.
For larger configurations, (more than 31 nodes), we did not
succeed to obtain the optimal solution with CPLEX after 24
hours computation. Since in configurations with more than 30
nodes, CPLEX needs a time higher than 24 hours, we take
as final solution, the best solution found by CPLEX in 24
hours. This solution may be a non-optimal one, as depicted in
Figure 7 by a star symbol. In all these configurations, Hybrid
provides the best results. We recommend the Hybrid algorithm
for large configurations because it provides the best trade-off
between the optimal closeness and an acceptable computation
time.

VI. DISCUSSION

In this section, we show how to relax the assumptions A4
(no obstacle), A5 (enough capacity) and A6 (enough energy).

A. Obstacles

Up to now we have considered a sensor deployment in an
area without obstacles. However in the real life, obstacles
may be present. In this section, we show how to relax the
assumption A4 and extend the solutions given previously to
cope with obstacles. In a previous paper [12], we proposed a
deployment algorithm that copes with transparent and opaque
obstacles and ensures full coverage; This algorithm computes
the sensor node positions that are given as input to the RDS
algorithm. It is hard to compute an optimized robot trajectory
taking into account obstacles.

Fig. 8. Intermediate points between sensor node positions A and B

If there exists an obstacle between the sensor node positions
A and B, the direct path from A to B is made impossible. Thus
the connectivity graph of the cities is no longer a complete
graph. We propose to define intermediate positions Ii that
allow the robot to reach B avoiding the obstacles. We replace
the impossible direct path between A and B by a possible one
that can be seen as a juxtaposition of segments IiIi+1 with
I1 = A and In = B. The cost of this path is computed as the
sum of the cost of any segment composing the path. Figure 8
shows the two intermediate points that are introduced in the
path taken by the robot to reach B from A. The path AI1I2B
replaces the direct path AB.

B. Capacity constraint

Up to now we have assumed that the robot has the capacity
to carry all sensor nodes at the same time. If this is not the



case, assumption A5 is no longer true. In such a case, the
robot has to perform subtours starting at its initial position.
How can we solve this new problem?

In order to handle the new carrying capacity constraint, we
enhance the integer linear program of Section III as follows:

Let cap be the robot carrying capacity in terms of number
of sensor nodes. The objective is the same as before and only
three constraints are modified. Constraints 1 and 2 specifying
that there is only one arrival and departure in each city are
relaxed to enable multiple arrivals and departures in the initial
robot position. In fact, the robot must come back to its initial
position to refill its sensor node stock.

∀i ∈ V \ {1},
∑

j∈V\{i}

xi,j = 1 (8)

∀j ∈ V \ {1},
∑

i∈V\{j}

xi,j = 1 (9)

Furthermore, the capacity constraint 6 must be updated
according to the capacity parameter cap.

∀i ∈ V,∀j ∈ V \ {i}, zi,j ≤ cap ∗ xi,j (10)

Figure 9 depicts an optimal RDS tour when the robot has to
deploy 13 sensor nodes and its capacity is limited to 6 sensor
nodes. This optimal tour comprises 3 subtours depicted in blue,
each of them starting at the initial position of the robot.

Fig. 9. Optimal RDS tour with a limited capacity of 6.

Table III gives the number of subtours done by the mobile
robot when its capacity is 6, 5, or 4 sensor nodes respectively.
When the robot capacity decreases, the number of subtour
increases as expected, leading to a longer tour duration.

TABLE III
OPTIMAL TOUR WITH DIFFERENT ROBOT CAPACITIES.

Robot capacity 13 8 6 4
Subtours (number) 1 2 3 4
Length (m) 1712 2169 2562 3048
Time cost (s) 237.64 262.98 319.11 385.70

C. Energy constraint

What happens if the maximum energy level of the robot
does not allow it to visit all sensor nodes locations in a single
tour. Assumption A6 is no longer true. Here again, the robot
proceeds by subtours, refilling its battery at its initial position
that is also the starting point of each subtour. An idea could be

to group sensor nodes into clusters, such that the robot deploys
all the sensor nodes of the same cluster in a single subtour.
Notice that the number of cluster members may differ from
one cluster to another, since the robot consumes more energy
to visit a far cluster than a close one.

VII. CONCLUSION

In this paper we have shown how to optimize the delay
needed by a mobile robot to deploy sensor nodes, taking into
account the rotations performed by the robot to change its
direction. The delay-optimized tour of a mobile robot may
result in a reduction of at least 50% in the time needed to
deploy wireless sensor nodes. This smaller deployment time
may be crucial not only in emergency applications but also in
industrial process control because the latency before the first
data gathering is reduced. This benefit is obtained by using
the optimal solution that can be provided by an integer linear
program solver like CPLEX for instance in small and medium
configurations. For larger configurations, the time needed to
obtain the optimal solution can become prohibitive. That is
why we use the Hybrid algorithm that successfully combines
the exploration of the Genetic algorithm with the exploitation
of 2-Opt algorithm.

REFERENCES

[1] I. Khoufi, P. Minet, A. Laouiti, S. Mahfoudh, Survey of deployment
algorithms in wireless sensor networks: coverage and connectivity is-
sues and challenges, International Journal of Autonomous and Adaptive
Communications Systems (IJAACS), to appear in 2014.

[2] IBM, IBM ILOG CPLEX Optimization Studio - CPLEX Users Manual,
Version 12.5, 2011.

[3] M. Shyam, K. Anurag, Obstacle constrained total area coverage in wire-
less sensor networks, arxiv-web3.library.cornell.edu/pdf/1001.4753v1,
January 2010.

[4] C.Y. Chang, C.T. Chang, Y.C. Chen, Obstacle-resistant deployment
algorithms for wireless sensor networks, IEEE Trans. on Vehicular
Technology, Vol.58, N6, July 2009.

[5] C.Y. Chang, C.T. Chang, C.Y. Hsieh, C.C. Chen, Y.C. Chen, A dead-end
free deployment algorithm for wireless sensor networks with obstacles,
IWCMC 2010, Caen, France, June 2010.

[6] G. A. Croes, A method for solving traveling salesman problems, Opera-
tions Research, Vol. 6, Issue 6, 1958, pp. 791-812.

[7] F. Semchedine, L. Bouallouche-Medjkoune, L. Bennacer, N. Aber and
D. Assani, Routing protocol based on Tabu search for wireless sensor
networks, Wireless Personal Communications , Volume 67, Issue 2 , pp
105-112, 2012.

[8] A. El Rhazi, S. Pierre, A Tabu search algorithm for cluster building
in wireless sensor networks, Mobile Computing, IEEE Transactions on
Mobile Computing, Vol.8 , Issue4, April 2009.

[9] A. Norouzi, A. H. Zaim, Genetic algorithm application in optimization
of wireless sensor networks, The Scientific World Journal, 2014.

[10] N. Zhu, I. OConnor, iMASKO: A Genetic algorithm based optimization
framework for wireless sensor networks, Journal of Sensor and Actuator
Networks, 2013.

[11] N. Kumar, Karambir, R. Kumar, A comparative analysis of PMX, CX
and OX crossover operators for solving traveling salesman problem,
International journal of Latest Research in science and technology, V1,
Issue2, pp98-101, July-August 2012.

[12] I. Khoufi, P. Minet, A. Laouiti, E. Livolant, A Simple Method for the
Deployment of Wireless Sensors to Ensure Full Coverage of an Irregular
Area with Obstacles, ACM MSWiM 2014, Montreal, Canada, September
2014.


