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Abstract. This paper critically discusses the different choices that have
to be made when defining a fault model for an object-oriented program-
ming language. We consider in particular the ABS language, and an-
alyze the interplay between the fault model and the main features of
ABS, namely the cooperative concurrency model, based on asynchronous
method invocations whose return results via futures, and its emphasis
on static analysis based on invariants.

1 Introduction

General-purpose modeling languages exploit abstraction to reduce complexi-
ty [20]: modeling is the act of describing a system succinctly by leaving out
some aspects of its behavior or structure. Software models primarily focus on
the functional behavior and the logical composition of the software. Modeling
formalisms can have varying levels of detail and can express structural prop-
erties (for example UML diagrams), interactions (π-calculus), or the effects of
functions or methods (pre- and post-conditions), etc.

Concurrent and distributed systems demand flexible communication forms
between distributed processes. While object-orientation is a natural paradigm
for distributed systems [15], the tight coupling between objects traditionally en-
forced by method calls may be criticized. Concurrent (or active) objects have
been proposed as an approach to concurrency that blends naturally with object-
oriented programming [1, 22, 32]. Several slightly differently flavored concurrent
object systems exist for, e.g., Java [3, 30], Eiffel [5, 26], and C++ [25]. Concur-
rent objects are reminiscent of Actors [1] and Erlang processes [2]: objects are
inherently concurrent, conceptually each object has a dedicated processor, and
there is at most one activity in an object at any time. Thus, concurrent objects
encapsulate not only their state and methods, but also a single (active) thread of
control. In the concurrent object model, asynchronous method calls may be used
to better combine object-orientation with distributed programming by reduc-
ing the temporal coupling between the caller and callee of a method, compared
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to the tightly synchronized (remote) method invocation model (of, e.g., Java
RMI [27]). Intuitively, asynchronous method calls spawn activities in objects
without blocking execution in the caller. Return values from asynchronous calls
are managed by futures [14,23,32]. Asynchronous method calls and futures have
been integrated with, e.g., Java [11,19] and Scala [13] and offer a large degree of
potential concurrency for deployment on multi-core or distributed architectures.

ABS is a modeling language targeting distributed systems [17]; the language
combines concurrent objects and asynchronous method calls with cooperative
scheduling of method invocations. In ABS the basic unit of computation is the
concurrent object group (cog): a cog provides to a group of objects a shared
processor. Method invocations on an object of a cog instantiate a new task that
requires the cog’s processor in order to execute. Cooperative scheduling allows
tasks to suspend in a controlled way at explicit points in the code, so that other
tasks of the object can execute. The suspend and await commands are used to
explicitly release the processor: the difference between the two commands is that
await has an associated boolean guard expressing under which condition the task
should be re-activated by the scheduler. Asynchronous method invocations are
used among objects belonging to different cogs; at each asynchronous method
invocation a future is instantiated to store the return value. Futures are first class
citizens in ABS and are accessed via a get command; get is blocking because
a task, executing get on a future of a method invocation which has not yet
completed, blocks and keeps the processor until the future is written. To avoid
keeping the processor, one can use an await f? to ensure that future f contains
a value.

ABS has a formal, executable semantics; ABS models can be run on a variety
of backends and can be verified using the KeY proof checker [4]. In particular,
asynchronous method calls and cooperative scheduling allow the verification of
distributed and concurrent programs by means of sequential reasoning [8]. In
ABS this is reflected in a proof system for local reasoning about objects where
the class invariant must hold at all scheduling points [9]. Although ABS tar-
gets distributed systems, a notable abstraction of the language design is that
faults are currently not considered part of the behavior to be modeled. On the
other hand, dealing with faults is an essential and notoriously difficult part of
developing a distributed system; this difficulty is exacerbated by the lack of clear
structuring concepts [7]. A well-designed model is essential to understand poten-
tial faults and reason about robustness, especially in distributed settings. Thus,
it is interesting to extend a modeling language such as ABS in order to model
faults and how these can be resolved during the system design.

It is common in the literature to distinguish errors due to the software design
(sometimes called faults) from random errors due to hardware (sometimes called
failures). For software deployed on a single machine, such hardware failures
entail a crash of the program. A characteristic of distributed systems is that
failures may be partial [31]; i.e., the failure may cause a node to crash or a
link to be broken while the rest of the system continues to operate. In our
setting, a strict separation between faults and failures may seem contrived, and
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we will refer to unintended behavior caused by both the software and hardware
as faults. A fault is masked if the fault is not detected by the client of the service
in which the fault occurs. In hierarchical fault models, faults can propagate
along the path of service requests; i.e., a fault at the server level can result in
a (possibly different) fault at the client level. In a synchronous communication
model, a client object can only send one method call at the time whereas in an
asynchronous communication model, the client may spawn several calls. Thus,
it need not be clear for a client object which of the spawned calls resulted in
a specific fault in the asynchronous case. However, asynchronous method calls
in ABS allow results to be shared before they are returned: futures are first-
class citizens of ABS and may be passed around. First-class futures give rise to
very flexible patterns of synchronization, but they further obfuscate the path of
service requests and thus of fault propagation.

This paper discusses an extension of the semantics of the ABS modeling
language to incorporate a robust fault model that is both amenable to formal
analysis and familiar to the working programmer. The paper considers how faults
can be introduced into ABS in a way which is faithful to its syntax, semantics,
and proof system, and discusses the appropriate introduction of faults along
three dimensions: fault representation (Section 2), fault behavior (Section 3),
and fault propagation (Section 4).

2 How Are Faults Represented?

Exceptions are the language entities corresponding to faults in an ABS program’s
execution. ABS includes two kinds of entities which in principle can be used to
represent faults: objects and datatypes (datatypes [16] are part of the functional
layer of ABS, and abstract simple, common structures like lists and sets).

Exceptions as Objects. Representing exceptions as objects allows for a very flex-
ible management of faults. Indeed, in this setting exceptions would have both a
mutable state and a behavior. Also, one could define new kinds of exceptions us-
ing the interface hierarchy. Finally, exceptions would have identities allowing to
distinguish different instances of the same fault. However, most of these features
are not needed for faults: faults are generated and consumed, but they are static
and with no behavior. Representing them as objects would allow a program-
ming style not matching the intuition and difficult to understand. Furthermore,
in ABS static verification is a main concern, and semantic clarity is more needed
than in other languages. For this reason we think that in the setting of ABS

exceptions should not be objects.

Exceptions as Datatypes. Datatypes fit more with the intuition of exceptions as
described before: they are simple values with no identity nor behavior. However,
in ABS datatypes are closed, meaning that once a datatype has been declared,
it is not possible to extend it with new constructors. This is a potential problem
in using them to represent exceptions. Indeed, we would like the datatype for
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exceptions to include system-defined exceptions such as Division by Zero or Ar-
ray out of Bound, and to be extended to accommodate user-defined exceptions.
Also, for modularity reasons, programmers of an ABS module should be able to
declare their own exceptions, thus exception declaration cannot be centralized.
User-defined exceptions are not only handy for the programmer, but may also
help the definition of invariants by tracking the occurrence of specific condi-
tions. We discuss below a few possible design choices related to the definition of
user-defined exceptions.

Allow open datatypes in ABS. In this setting exception would be an open dataty-
pe [24], and other ABS datatypes could be open as well. The declaration of
system-defined exceptions can be done as:

open data Exception = NullPointerException

| RemoteAccessException

where the keyword open specifies that the datatype is open (in principle open
and closed datatypes may coexist). Then one can add user-defined exceptions
as:

open data Exception = ... | MyUserDefinedException

However, this is a major modification of datatypes, a key component of ABS,
and introducing this additional complexity only to accommodate exceptions may
not be a good choice. In fact, handling open datatypes is in contrast with the
fact that ABS type system is nominal. One would need to resort to a structural
type system (similar to, e.g., OCaml’s variants [29]) to ensure that a pattern
matching is complete, which is far less natural.

Allow any datatype to be an exception. In this setting any value of any datatype
may be used as an exception (the fact of declaring which datatypes are actually
used as exceptions does not change too much the setting). User-defined datatypes
can be added by simply defining new datatypes. When the programmer wants to
catch an exception, he has to specify which types of exceptions he can catch, and
do a pattern matching both on the type and on its constructor to understand
which particular fault happened. This produces a syntax like:

try { ... }

catch(List e) {

case(e) {

| Empty => ...

| Cons(v,e2) => ...

} }

catch(NullPointerException e) { ... }

catch(_ e) { ... /∗ capture all exceptions ∗/ }

where a special syntax _ is needed to catch exceptions of any type, since there is
no hierarchy for datatypes in ABS. Note that in case the exception has type List
a case is done to analyze its structure. A difficulty in applying this approach to
ABS is due to the fact that in ABS values do not carry their type at runtime,
but adding such an information seems not to have relevant drawbacks.
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Exceptions as a new kind of value. In this setting exceptions are a separate kind
of value, at the same level of objects and datatypes. The type Exception is open.
New exceptions (both system- and user-defined) can be declared as follows:

exception NullPointerException

exception RemoteAccessException

...

exception MyUserDefinedException(Int, String)

Pattern matching can be used to distinguish different exceptions:

try { ... }

catch(e) {

NullPointerException => ...

MyUserDefinedException(n,s) => ...

e2 => ...

...

}

Structural typing can be used if one wants to check that all exceptions possibly
raised are caught, as, e.g., in Java.

Discussion. The simplest approach is to model exceptions as a closed datatype.
However, if open exceptions are desired to increase the expressive power, the
last solution is the one with minimal impact on the existing ABS language.
Allowing any datatype as an exception also seems a viable option, but with a
more substantial impact on the existing structure of ABS.

3 Which is the Behavior of Faults?

Faults interrupt the normal control flow of the program. A first issue concerning
faults is how they are generated. Concerning fault management, it is a common
agreement that faults are manipulated with a try/catch structure, and we do
not see any reason to change this approach in our design for ABS. However, after
this choice has been taken, the design space is still vast and many questions still
need to be investigated.

Fault Generation. In programming languages, faults can be generated either
by an explicit command such as throw f where f is the raised fault, or by a
normal command. For instance, when evaluating the expression x/y a Division
by Zero exception may be raised if y is 0. In this second case, which exception is
raised is not explicit, but defined by the semantics of the command. After having
been raised, the two kinds of exceptions are indistinguishable. A third kind of
exception may be considered in ABS. Indeed, ABS is currently evolving towards
having an explicit distribution, and in this setting localities or links may break.
The only remote interaction in ABS is via asynchronous method invocation,
and the corresponding await/get on the created future. In principle, network
problems could be notified either during invocation, or during the await/get.
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However, invocation is asynchronous, and will not check for instance whether the
callee will receive and/or process the invocation message. For the same reason,
it is not reasonable that it checks for network problems. Clearly, the get should
raise the fault, since no return value is available.

The behavior of await depends on its intended semantics. If executing the
statement await f? means that the process whose result will be stored in f

has successfully finished, then the await needs to synchronize with the remote
computation and should raise a pre-defined fault upon timeout and network
errors. In this setting thus network faults are raised by both await and get. On
the other hand, if executing await f? gives only the guarantee that a subsequent
f.get will not block, then all faults, including network- and timeout-related
faults, can be raised by get exclusively.

Fault Management. As discussed in the beginning of the section, we use the
common try/catch structure to manage faults. This structure sometimes also
features an additional block finally. The finally block specifies some code that
must be executed both if no exception is raised and if it is. A common use of the
finally block is to release resources which need to be freed whatever the result
of the computation is.

try { ... }

catch(MyFirstException e) { ... }

catch(MySecondeException e) {... }

finally { P }

For instance, P may close a file used inside the try block. The finally block is
very convenient for programming, but may not be needed in the core language.
Indeed, in many cases it can be encoded. The encoding instantiated on the
example above is as follows:

try {

try { ... }

catch(MyFirstException e) { ... }

catch(MySecondeException e) { ... }

} catch(_ e) {

P

throw e;

}

P

Essentially, one has to catch all the exceptions, do P and rethrow the same excep-
tion. P also needs to be replicated at the end, so to be executed if no exception is
raised. Note that this encoding relies on always having exactly one return state-
ment per method, at its end (this is the recommended style of programming in
ABS), and on the ability to catch all exceptions and to be able to rethrow them
identically. Actually, in principle, one can also consider some uncatchable faults,
but this seems not particularly relevant in practice.

For resource management, an alternative to the finally block is the autorelease
mechanism of Java 7 [28], which automatically releases its resource at the end of
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the block. Encoding such a mechanism in ABS could be done using an approach
similar to the one above for the finally block.

Fault Effects. We have discussed how to catch faults. However, it may happen
that a fault is not caught inside the method raising it. Then, as already said, the
fault should interrupt the normal flow of computation, i.e. killing the running
process. However, one may decide to kill a larger entity. Suitable candidates in
ABS are the object where the fault has been raised, or its cog. Now, remember
that in ABS there is a strong emphasis on correctness proofs based on invariants,
and that whenever a process releases the lock of an object the class invariant must
hold. An uncaught fault releases the lock by killing the running process. This
means that whenever an uncaught fault may be raised, the invariant must hold.
Since faults may be raised by many constructs, including expressions and get,
ensuring this may be particularly difficult, and may require in practice to manage
all the faults inside the method raising them. However, this is undesirable since
a method may not have enough information to correctly manage a given fault.
One can try to define a weaker invariant, but this may be difficult. A solution is
to decide that a fault may not only kill the process, but also the object whose
invariant may be no more valid. An even more drastic solution is to kill the
whole cog. This may be meaningful if invariants involving different objects (of
the same cog) are considered. However, this kind of invariant is currently not
considered in ABS, thus the introduction of mechanisms for killing a whole cog
seems premature.

Effect Declaration. In classic programming languages, the only effect of an un-
caught fault is to kill the running process. However, we just discussed that also
killing the whole object (or cog) is a possible effect. One may want to have
different effects for different faults. More in general, different faults may have
different properties. Another possible property may describe whether a fault can
be caught or not. Whatever the set of possible properties is, an important issue
is where those properties are associated with the raised fault. One can have a
keyword deadly specifying that a given exception will kill the whole object if
uncaught, while the behavior of just killing the process can be considered the
default behavior. We can see three possibilities here. Properties may be specified:

when an exception is declared: for instance, one may write

deadly exception NullPointerException

A main drawback of this approach is that the same exception will behave
the same everywhere. Intuitively, an exception may be deadly for an ob-
ject where the invariant cannot be restored, and not for another one where
the fault has no impact on the invariant. Note also that if any datatype
can be an exception, then one has to specify properties for each datatype,
e.g. deadly Int. Actually, this second drawback is mitigated by choosing
suitable default values for properties.

when an exception is raised: for instance, one may write
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throw deadly NullPointerException

or also shorten it into die NullPointerException. Clearly, this ap-
proach is only reasonable for exceptions raised by an explicit throw (unless
one wants to write something like x=y/0 deadly). The approach is also
less compositional, thus less suitable for static analysis. In fact, to under-
stand the behavior of an exception it is not enough to look at declarations.
For instance, the same exception may be either deadly or not for the same
method, depending on how it has been raised. Note also that this approach
would break the encoding of finally above, since there is no way to rethrow
an exception with the exact same properties.

in the signature of the method raising the exception: for instance, one
may write

Int calc(Int x) deadly: NullPointerException {...}

Clearly, this approach is viable only for properties relevant when the ex-
ception exits the method, such as deadly. It would not work for instance
to specify whether an exception can be caught or not. Notice that this ap-
proach integrates well with the declaration of which faults a method may
raise, useful to statically verify that all exceptions are caught. In fact, one
could write

Int calc(Int x) throws: DivisionByZero,

deadly NullPointerException {...}

More in general, this approach is suitable for static analysis, since a method
declaration also provides the information on the behavior of exceptions raised
by the method itself. The same information is useful also for the programmer,
in particular when using methods he did not write himself.

Discussion. We think that in the context of ABS, a fault may have two different
effects: either killing the process or the whole object, depending on whether the
object invariant holds or not. Whether a fault should kill the whole object or not
should be declared at the level of method signature to enhance compositionality.
Note that in the most used object-oriented languages, objects are never killed
as a result of an exception: indeed such a feature is relevant in ABS because of
its emphasis on analysis based on invariants, and no widespread object-oriented
language has been developed according to this philosophy. A possible alternative
to kill the object would be to roll back state changes. A transparent rollback [10]
in our setting could lead to the last release point, where one is sure the invari-
ant holds. However such an approach, discussed in [12], is not always satisfying.
Indeed, rolling back only locally may easily lead to inconsistencies between dif-
ferent local states (what corresponds to break invariants concerning multiple
objects). On the other hand, global rollback as in [21] results in an overly com-
plex semantics. Furthermore, if local rollback is needed in particular cases, it can
usually be encoded. Similarly, the finally construct is not strictly needed, since
with the choices we advocate it can be encoded.
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4 How Do Faults Propagate?

We have discussed in the previous section the effect of a fault on the process or
object where it is raised. However, in case of fault, in particular of uncaught fault,
it is reasonable to propagate the exception also to other processes/objects related
to it. In particular, possible targets for propagation are processes interested in
the result of the computation, processes that have been invoked by the failed
one, processes in the same object/cog of the failed one, processes trying to access
an object after it died.

Propagation through the Return Future. In a language with synchronous method
invocation the only process that can directly access the result of the computation
is the caller. However, in languages with asynchronous method invocation any
process receiving the future can directly access the result of the computation. The
caller may be or may not be one of them, and indeed may even terminate before
the result of the computation becomes ready. Thus we discuss here notification of
faults to the processes synchronizing with the future. We have two possibilities:
processes may synchronize with the future either with a get or with an await

statement. The case of get is clear: those processes are interested in the result of
the computation, in case of fault no correct result is available and those processes
need to be notified so that they can decide how to proceed. The natural way
of being notified is that the same exception is raised by get. A process doing
an await is just interested in waiting for the computation to terminate, but not
in knowing its result. Thus we claim that if the computation terminated, either
with a normal value or with an exception, the await should not block and the
exception, if any, should not be raised. The exception would be raised only if
later on a get on the future is performed. This approach requires to put the
fault notification inside the future, and has been explored in the context of ABS
in [18]. Indeed, this is also the approach of Java future library (asynchronous
computation with futures has been standardized in a Java library since Java SE
5 [11]). In contrast to ABS, Java’s API does not distinguish between waiting for
a future to become available, and retrieving the results. In fact, no primitive like
await is available in Java. In addition, Java’s futures do not faithfully propagate
exceptions: the get method on a faulty future always raises the same exception
ExecutionException.

An additional problem is related to concurrency. Indeed, in ABS, one may
have multiple concurrent get and/or await statements on the same future con-
taining an exception. Let us consider the case of multiple get statements. In
this case, one has to decide whether they all raise the fault contained in the
future or just one of them does. This second solution is more troublesome since
to this end, the first process accessing the future would receive the exception
and remove the fault from the future. The only possibility is to replace it with
some default value, and this requires locking the future. However, this in turn
changes the behavior of futures in a relevant way: Futures are understood as
logical variables that change at most once, and this would no longer be true.
Additionally, this creates a weak synchronization point between two processes
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accessing the same future. Indeed, if a process knows that a future originally
contains an exception, by accessing it he will know if another process accessed
it before. These weak synchronization points between processes that would be
independent otherwise make the concurrency model and thus the analysis more
difficult. Note that concurrent await statements are not a problem, since they
do not locally raise the fault, but just check whether the future is empty or not.

Propagation through Method Invocations. It may be the case that the failed
computation has invoked methods in other objects, whose execution is no more
necessary after the failure. Indeed, it may even be undesired. For instance, if you
are planning a trip and the booking of the airplane fails, you do not want to
complete the booking of the hotel. Thus a mechanism to cancel a computation
originated by a past method call may be useful. Actually, cancel may have differ-
ent meanings according to the state of the invocation. If the invocation has not
started yet, one can simply remove the invocation message itself. If the invoked
process is running, one may raise the exception. If the execution already com-
pleted, one may do nothing or execute some code to compensate the terminated
execution. This second option has been explored in [18]. The most interesting
case is the one where the invoked process is running. Indeed, in this case the
fault may be raised in any point of the execution, thus dealing with it using a
try-catch would require to have the whole method code, including the return
command, inside the try block. A better approach is to define specific points in
the code where the running process checks for exceptions from its invoker, and
specifying there the code to be executed in this case. A more modular way is
to separate the two issues. One may have a statement check to specify when
to check for faults, and a statement setHandler H establishing that H is the
handler to be used to deal with faults from the invoker from now on. H can be
a simple piece of code, or a function associating pieces of code to exceptions.
Pieces of code may have a return statement, to communicate the result of the
fault management to the invoker. If the execution of the handler terminates suc-
cessfully, the execution of the method code restarts. One may also decide that
the last handler has to be used to compensate the execution if the cancellation
occurs after the termination of the invoked process.

We have described the effect of propagation to invoked processes. However,
one has to understand which invoked processes to consider. The simplest possi-
bility is to let the programmer decide. We call this approach programmed prop-
agation. This can be done through a statement f1 = f.cancel(e) where f is
the future corresponding to the invocation to be canceled, e the exception to be
raised and f1 the future storing the result of exception management. Note that
the future f is the right entity to individuate the invocation, since each invoca-
tion corresponds to a different future. Note also that with programmed cancel
one may cancel twice the same invocation, and that cancel can be executed by
any process on any future he knows of. Future f1 may contain different values
according to the outcome of the cancel. If the exception sent by the cancel is
correctly managed, the handler returns a specific value to fill that future (po-
tentially different from the value returned as a result of the method, which is in
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future f). In all the other cases a system-defined exception is put inside future
f1 (one cannot put there a normal value, since this should depend on the type
of the future):

– an exception notStarted if the cancel arrives before the invocation started
(while the future f contains an exception canceled);

– an exception terminated if the cancel arrives after method termination,
and compensations are not used (future f keeps its value);

– an exception noCompensation if the cancel arrives after method termi-
nation, compensations are allowed, but no compensation is specified for the
target method (future f keeps its value);

– an exception CancelNotManaged if the exception arrives when the method
is running, but it is not managed since there is no handler for it (while the
future f stores the exception e).

In case of multiple cancellations, cancellations behave as above according to the
state of the method when they are processed. Note also that the future f is not
changed if it already contains the result of the method invocation.

An alternative approach is to have an automatic propagation of exceptions to
invoked processes. First, one should decide whether to propagate only uncaught
faults, or also managed faults. This last solution is not desirable in general, since
most managed faults should not affect other processes, and can be dealt with
by programmed propagation in case of need. Propagation of uncaught faults,
if desired, should be necessarily done automatically. Now, the problem is to
understand to which method invocations the fault needs to propagate. An upper
bound is given by the futures known by the dying process. One may also consider
that futures on which a get has already been performed are no more relevant.
However, there is no fast and easy answer to this question. We think that a
reasonable solution is to choose the futures which have been created by the
current method execution and on which no get has been performed yet by the
same method. One may also want to check whether the reference to the future
has been passed to another method, and whether this method has performed
a get on the future, but this would make the implementation and the analysis
much more tricky. Similarly, one may want to consider also futures received as
parameters, but again this needs to propagate the information on whether a
future has been accessed or not from one method to the other. Note that in
case of automatic propagation, no information on the result of the cancellation
is needed, since the caller already terminated.

One may want to ensure that children can manage all the faults from their
parent. To this end, each child should declare the exceptions that he can manage
(at any point, since it may be the case that some exceptions can be managed only
at some check due to handler modifications). Then, one can check that these
include all the exceptions the parent may send to him. For automatic propaga-
tion, these coincide with the exceptions the parent may raise. For programmed
propagation, these are the arguments of the various cancel of the corresponding
future in the parent or in methods to which the future is passed.
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Propagation to Other Processes in the same Object/Cog. We already discussed
the fact that it is important for processes to restore the invariant of the object
or cog before releasing the lock, and in particular before terminating because of
an uncaught exception. In case the invariant cannot be restored, we proposed as
a solution the possibility of killing the whole object/cog. An alternative solution
is to terminate only the process P that first raised the fault, and notifying the
other processes about the uncaught fault, since they may be able to manage it.
Note that when process P is terminated, there is no other running process in
the same cog. Thus the other processes will get the fault notification when they
will be scheduled again. This means that they may get a fault, either when they
start, or when they resume execution at an await or suspend statement. The
fault may then be managed, or propagated as discussed above. In particular, if
not managed, will be propagated to the next process to be scheduled. In this
setting objects never die, but method calls may receive an exception as soon as
they start. If we raise the same exception that was raised by P , then it may be
difficult to track which exceptions may be raised inside any method. A simpler
solution is to have a dedicated exception, e.g., InvariantNotRestored. What said
above for objects holds similarly for cogs, concerning cog invariants. However,
as already said, they are not a main concern in ABS at the moment.

Propagation through Dead Objects/Cogs. Some of the approaches we discussed
involve the killing of an object or cog. We have not yet discussed what hap-
pens when a dead object is accessed (through method invocation). An exception
should be raised. We can follow either the approach discussed above for network
errors, or the one for normal faults. In practice the only difference is whether also
the await will raise such a fault or not. We do not see any particular advantages
or disadvantages for the two approaches: which is the best solution depends on
which one better fits the programmer intuition, which may be different from one
programmer to the other. In both the cases, using a standard exception such as
DeadObject, instead of propagating the exception that caused the death of the
object, simplifies the management. Also, it allows the caller to know whether
the object is dead because of its invocation or it was already dead before.

Discussion. Among the propagation strategies above, propagation through the
return future is nowadays standard, since it is used, e.g., in Java and C#. The
possibility of canceling a running process via a future is also available in Java
and C#, but the possibility of doing it automatically and/or of defining handlers
and compensations for managing cancel requests while the process is running are
not considered. Indeed, these strategies are quite complex, and it is not yet clear
how useful they are in real programming. Also propagation of the fault to other
processes in the same object is not considered in mainstream languages as far
as we know, but we think this is a viable strategy in ABS. In fact, when a
process is not able to restore the object invariant, there are two possibilities:
either destroying the whole object or leave to another method call the task of
restoring it. This second strategy seems also less extreme.
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5 Conclusion

We have discussed the design space for fault models to be included in the ABS

modeling language. As future work, we will extend the formal semantics of ABS
with appropriate datatypes for the representation of faults, primitives to raise
and catch faults, and mechanisms to distribute faults to other objects and cogs.

We complete the paper with a review of related fault models (the comparison
with Java has been already discussed throughout the paper).

Functional programming languages, like OCaml or Haskell, also include prim-
itives for faults modeled as exceptions. Both languages allow user-defined excep-
tions, but they implement them in different manners. OCaml uses a special type
(called exn) to type exceptions, and new exceptions can be declared using the
syntax exception e of data. In [24], the introduction of open datatypes in Haskell
to encode exceptions is discussed. However, the current implementation of GHC
uses typeclass [6], which allow one to register new datatypes as being exceptions.

Message-Passing Interface (MPI) is a cross-language standard, used, e.g., for
C and Fortran, to program distributed applications. MPI expresses communi-
cation via so-called MPI functions, the basic ones being SEND and a blocking
RECV. The SEND can work with three modalities: (buffered send) buffering
the data to be sent, thus returning immediately as we assumed in this paper;
(synchronous send) waiting for a corresponding RECV to be posted by the des-
tination before terminating; or (ready send) failing in the case a corresponding
RECV has not yet been posted by the destination. Dealing with the network,
MPI functions represent communication at a lower level than we do: in MPI also
the process of data delivering is taken into account. SEND (in all its modali-
ties) and RECV have asynchronous variants, called ISEND and IRECV (where
the “I” stands for “initiation”), which indicate a buffer where to fetch/put data
and return immediately. For each such asynchronous send/receive, functional-
ities similar to some of the ones considered in this paper can be used: WAIT
makes it possible to wait for the completion of data sending/receiving (in addi-
tion in MPI there is also a function TEST which returns immediately the status
of the data sending/receiving without waiting); failures (e.g., in the communica-
tion while sending/receiving data) are detected by calling WAIT or TEST; and
it is possible to cancel a send/receive by a call to CANCEL. The semantics of
the latter, however, is the removal of the send/receive, supposing that it has not
completed yet, as if it never occurred (a matching receive/send would perceive,
as well, the canceled send/receive as if it never occurred). By combining the
mechanisms above it is possible to obtain the waiting and canceling mechanisms
considered in this paper. For example an asynchronous method invocation can
be modeled by executing both ISEND and IRECV, and cancellation by execut-
ing CANCEL both on the send and the receive in the case the data is still under
transmission or just on the receive in the case the send has completed. In the
latter case, if the invoked method performs a ready send at the end of method
execution, it will be notified of the matching IRECV having been canceled.

In web applications the HTTP protocol is used to realize service invocations
by means of request/response pairs over a TCP/IP connection, as happens in
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the popular approaches of Java and Javascript, i.e. Asynchronous Javascript and
XML (AJAX) invocations. In Java a method is used to initiate the HTTP re-
quest/response, which differently from the approach considered in this paper,
may yield an error in the case the connection with the HTTP server cannot be
established (timeout based). Then the client goes through a two phase process,
where he first sends data over an output-stream and then, similarly, receives
data. At the server side a symmetric process is followed. Java methods for read-
ing pieces of response data are blocking as for the waiting function used in MPI
and considered in this paper. Similarly, failures are notified via exceptions when
reading response data (or while sending request data). Finally concerning can-
cellation, the HTTP request/response can be aborted as a whole by the client
and this causes the server to detect the failure (an exception is raised) when it is
in the phase of inserting data in the response, i.e. when returning data (or while
reading request data). In Javascript (AJAX) request data are preliminarily put
into memory (as in MPI) and then the request/response is initiated (again this
can fail if connection cannot be established). Such an initiation function also
installs a user-defined function which is expected to manage the data received
once the response is completed (including also managing the case of failure).
This mechanism is an alternative to the waiting function used in MPI and con-
sidered in this paper. Concerning cancellation, it is possible, as in Java, to abort
the HTTP request/response (with the same effect at server side).
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4. B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-oriented Software:
The KeY Approach. Springer, 2007.

5. D. Caromel. Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
ented Programming, pages 12–22, 1989.

6. K. Chen, P. Hudak, and M. Odersky. Parametric type classes. In Proc. of LFP’92,
pages 170–181. ACM, 1992.

7. F. Cristian. Understanding fault-tolerant distributed systems. Communications of
the ACM, 34(2):56–78, 1991.

8. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
ESOP, volume 4421 of LNCS, pages 316–330. Springer, 2007.

9. C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. Journal of Logic
and Algebraic Programming, 81(3):227–256, 2012.

10. E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375–408, 2002.

14



11. B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.
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