
HAL Id: hal-01089774
https://hal.inria.fr/hal-01089774

Submitted on 2 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice-Based Views over SPARQL Query Results
Mehwish Alam, Amedeo Napoli

To cite this version:
Mehwish Alam, Amedeo Napoli. Lattice-Based Views over SPARQL Query Results. Proceedings of
the 1st Workshop on Linked Data for Knowledge Discovery co-located with European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD
2014), Sep 2014, Nancy, France. �hal-01089774�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49576267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01089774
https://hal.archives-ouvertes.fr


Lattice-Based Views over SPARQL Query

Results

Mehwish Alam and Amedeo Napoli

LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine)
BP 239, Vandoeuvre-lès-Nancy, F-54506, France

{mehwish.alam,amedeo.napoli@loria.fr}

Abstract. SPARQL queries over semantic web data usually produce
a huge list of tuples as answers that may be hard to understand and
interpret. Accordingly, this paper focuses on Lattice Based View Access
(LBVA), a framework based on Formal Concept Analysis, to provide a
view using View By clause based on a concept lattice. This lattice can
be navigated for retrieving or mining specific patterns in query results.

Keywords: Formal Concept Analysis, SPARQL Query Views, Lattice-Based Views.

1 Introduction

At present, the Web has become a potentially large repository of knowledge,
which is becoming main stream for querying and extracting useful information.
In particular, Linked Open Data (LOD) [1] provides a method for publishing
structured data in the form of RDF. These RDF resources are interlinked with
each other to form a cloud. SPARQL queries are used in order to make these re-
sources usable, i.e., queried. Queries in natural language against standard search
engines sometimes may require integration of data sources. The standard search
engines will not be able to easily answer these queries, e.g., Currencies of all

G8 countries. Such a query can be formalized as a SPARQL query over data
sources present in LOD cloud through SPARQL endpoints for retrieving an-
swers. Moreover, these queries may generate huge amount of results giving rise
to the problem of information overload [4]. A typical example is given by the
answers retrieved by search engines, which mix between several meanings of one
keyword. In case of huge results, user will have to go through a lot of results to
find the interesting ones, which can be overwhelming without any specific nav-
igation tool. Same is the case with the answers obtained by SPARQL queries,
which are huge in number and it may be harder for the user to extract the
most interesting patterns. This problem of information overload raises new chal-
lenges for data access, information retrieval and knowledge discovery w.r.t web
querying.

This paper proposes a new approach based on Formal Concept Analysis
(FCA [5]). It describes a lattice-based classification of the results obtained by
SPARQL queries by introducing a new clause “View By” in SPARQL query.



This framework, called Lattice Based View Access (LBVA), allows the classi-
fication of SPARQL query results into a concept lattice, referred to as a view,
for data analysis, navigation, knowledge discovery and information retrieval pur-
poses. The View By clause enhances the functionality of already existing Group

By clause in SPARQL query by adding sophisticated classification and Knowl-
edge Discovery aspects. Here after, we describe how a lattice-based view can be
designed from a SPARQL query. Afterwards, a view is accessed for analysis and
interpretation purposes which are totally supported by the concept lattice. In
case of large data only a part of the lattice [8] can be considered for the analysis.

The intuition of classifying results obtained by SPARQL queries is inspired
by web clustering engines [2] such as Carrot21. The general idea behind web
clustering engines is to group the results obtained by query posed by the user
based on the different meanings of the terms related to a query. Such systems
deal with unstructured textual data on web. By contrast, there are some stud-
ies conducted to deal with structured RDF data. In [4], the authors introduce
a clause Categorize By to target the problem of managing large amounts of
results obtained by conjunctive queries with the help of subsumption hierarchy
present in the knowledge base. By contrast, the View By clause generates lattice-
based views which provide a mathematically well-founded classification based on
formal concepts and an associated concept lattice. Moreover, it also paves way
for navigation or information retrieval by traversing the concept lattice and for
data analysis by allowing the extraction of association rules from the lattice.
Such data analysis operations allow discovery of new knowledge. Additionally,
unlike Categorize By, View By can deal with data that has no schema (which
is often the case with linked data). Moreover, View By has been evaluated over
very large set of answers (roughly 100,000 results) obtained over real datasets.
In case of larger number of answers, Categorize By does not provide any prun-
ing mechanism while this paper describes how the views can be pruned using
icerberg lattices.

The paper is structured as follows: Section 2 describes the motivation. Sec-
tion 3 gives a brief introduction of the state of the art while Section 4 defines
LBVA and gives the overall architecture of the framework. Section 5 discusses
some experiments conducted using LBVA. Finally, Section 6 concludes the pa-
per.

2 Motivation

In this section we introduce a motivating example focusing on why LOD should
be queried and why the SPARQL query results need classification. Let us con-
sider a query searching for museums where the exhibition of some artists is taking
place along with their locations. A standard query engine is not adequate for
answering such kind of questions as it will produce a separate list of museums
with the artists whose work is displayed there and a separate list of museums

1 http://project.carrot2.org/index.html



with their locations. However, a direct query over LOD will perform resource in-
tegration to provide answers to the query. This query generates a huge amount
of results, which further needs manual work to group the interesting links.

Linked Open Data represents data as RDF (Resource Description Frame-
work) graphs. An RDF graph is a set of RDF triples, i.e., 〈subject, predicate,
object〉, which is represented as node-and-arc-labeled directed graphs. SPARQL2

is the standard query language for querying RDF graphs, which is based on
matching graph patterns against RDF graphs. According to the scenario de-
scribed above, the SPARQL query is shown in Listing 1.1.

Listing 1.1: SPARQL Query Museum

1 SELECT ?museum ? country ? a r t i s t WHERE {
2 ?museum rd f : type dbpedia−owl :Museum .
3 ?museum dbpedia−owl : l o c a t i o n ? c i t y .
4 ? c i t y dbpedia−owl : country ? country .
5 ? pa in t ing dbpedia−owl :museum ?museum .
6 ? pa in t ing dbpprop : a r t i s t ? a r t i s t }
7 GROUP BY ? country ? a r t i s t

This query retrieves the list of museums along with the artists whose work is
exhibited in a museum along with the location of a museum. Lines 5 and 6

of this query retrieve information about the artists whose work is displayed in
some museum. More precisely, the page containing the information on a museum
(?museum) is connected to the page of the artists (?artist) through a page on
the work of artist (?painting) displayed in the museum. An excerpt of the an-
swers obtained by Group by clause is shown below:

Pablo Picasso Musee d’Art Moderne France

Leonardo Da Vinci Musee du Louvre France

Raphael Museo del Prado Spain

The problem encountered while browsing such an answer is that there are
thousands of results to navigate through. Even after using the Group By clause
the answers are arranged into several small groups because first there is more
than one grouping criteria and second, there are many values of the variables
in the Group By clause. By contrast, the clause View By activates the LBVA
framework, where a classification of the statements is obtained as a concept
lattice (see Figure 1a). The concept lattice shown in Figure 1a is labeled in
a reduced format (reduced labeling), meaning that if a parent class contains
an attribute then this attribute is also inherited by its children concepts. Let
us consider the parent concept has the attribute France then its two children
concepts also have the attribute France. Now if the museums in UK displaying
the work of Goya are to be retrieved, first the concept containing all the museums
displaying the work of Goya is obtained and then the specific concept Goya and

UK is retrieved by drilling down. Finally, the answer is National Gallery.

2
http://www.w3.org/TR/rdf-sparql-query/



(a) Classes of Museums w.r.t Artists and Coun-
tries, e.g., the concept on the top left corner
with the attribute France contains all the French
Museums. (VIEW BY ?museum)

(b) Classes of Artists w.r.t Museums and Coun-
tries. (VIEW BY ?artist)

Fig. 1: Lattice Based Views w.r.t Museum’s and Artist’s Perspective .

3 Background

Formal Concept Analysis (FCA): FCA [5] is a mathematical framework
used for a number of purposes, among which classification and data analysis,
information retrieval and knowledge discovery [3]. Let G be a set of objects
and M a set of attributes, and I ⊆ G × M a relation where gIm is true iff
an object g ∈ G has an attribute m ∈ M . The triple K = (G,M, I) is called
a “formal context”. Given A ⊆ G and B ⊆ M , two derivation operators, both
denoted by ′, formalize the sharing of attributes for objects, and, in a dual way,
the sharing of objects for attributes: A′ = {m ∈ M | gIm for all g ∈ A},
B′ = {g ∈ G | gIm for all m ∈ B}. The two derivation operators ′ form
a Galois connection between the powersets ℘(G) and ℘(M). Maximal sets of
objects related to maximal set of attributes correspond to closed sets of the
composition of both operators ′ (denoted by ′′). Then a pair (A,B) is a formal
concept iff A′ = B and B′ = A. The set A is the “extent” and the set B is
the “intent” of the formal concept (A,B). The set CK of all concepts from K is
partially ordered by extent inclusion (or dually intent inclusion), denoted by ≤K

as (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2(⇔ B2 ⊆ B1). Consequently, LK = 〈CK,≤K〉
forms the concept lattice of K. There exist several algorithms [9] to build a
concept lattice which also focus on efficiency of building the lattices for large
number of objects.

In order to restrict the number of concepts in some cases iceberg concept
lattices can be used [8], which contain only the top most part of the lattice.
Formally, let B ⊆ M and let minimum support, denoted by minsupp, be an
integer representing a support threshold value. For a given concept (A,B), the
support of B is the cardinality of A denoted by |A|. Relative support is given by
|A|/|G| and belongs to the interval [0, 1]. An intent B in concept (A,B) is said
to be frequent as soon as supp(B) = |A|/|G| ≥ minsupp. Likewise, a concept is
called a frequent concept if its intent is frequent. The set of all frequent concepts
of K, for a given threshold, is called an iceberg concept lattice of K. Along
with iceberg lattices a stability index is also used for filtering the concepts. The
stability index shows how much the concept intent depends on particular objects
of the extent.



In some cases, a many-valued context is obtained instead of a formal context.
A many-valued context is denoted by (G,M,W, I), where G is the set of objects,
M is the set of attributes, W is the set of attribute values for each attribute and
I represents a ternary relation between G,M,W , denoted as I ⊆ G ×M ×W .
However, in order to obtain a one-valued binary context from the many valued
context, scaling procedure is adopted. A scale Sm of an attribute m of a many-
valued context is a one-valued context (Gm,Mm, Im) with m(G) = Sm for m ∈
M and then the new set of attributes is Ms =

⋃
m∈M

Sm. During plain scaling
the object set G remains unchanged, every many-valued attribute m is replaced
by the scale attributes of scale Sm.

FCA also allows knowledge discovery using association rules. Duquenne-
Guigues (DG) basis for implications [6] is the minimal set of implications equiv-
alent to the set of all valid implications for a formal context K = (G,M, I).
An implication over the attribute set M in a formal context is of the form
B1 → B2, where B1, B2 ⊆ M . The implication holds iff every object in the con-
text with an attribute in B1 also has all the attributes in B2. For example, when
(A1, B1) ≤ (A2, B2) in the lattice, we have that B1 → B2. DG-basis represents
all information lying in the concept lattice.

4 Lattice Based View Access

In this paper, we propose an approach called Lattice Based View Access for
classification of SPARQL query results in the form of a concept lattice referred
to as view. In the scenario of LOD, the RDF data and query processing procedure
can not be controlled. Here we define views over RDF data by processing the
set of tuples returned by the SPARQL query as answers.

SPARQL Queries with Classification Capabilities: The idea of introduc-
ing a View By clause is to provide classification of the results and add a knowl-
edge discovery aspect to the results w.r.t the variables appearing in View By

clause. Initially, the user poses SPARQL query of the form SELECT ?v1 ?v2 . . .
?vn WHERE { condition/pattern } VIEW BY ?vl. More formally, “view by(vl) :
q(−→v )” where −→v is a vector of variables containing free variables called answer
variables and vl is a variable in the SELECT clause of SPARQL query providing
the viewing criteria. The evaluation of query q over RDF triple store generates
answers in the form of tuples. A tuple is a vector of terms (set of constants)
mapped to the answer variables in query q. The processing of a SPARQL query
q(−→v ) = q(v1, v2, . . . , vn) yields a set of tuples R = {(Xi

1, X
i
2, . . . , X

i
n
)}, where

i = {1, . . . , k} where each tuple provides an elementary answer to the query
q(−→v ).

Following the example in section 2, let us consider the user gives “ VIEW

BY ?artist” instead of Group By clause for the query in Listing 1.1. Then,
v1 = artist is the object variable, v2 = museum and v3 = country are the
attribute variables and Figure 1a shows the generated view. In Figure 1b, we
have; v1 = artist is the object variable, v2 = museum and v3 = country are
attribute variables.



Designing a Formal Context (G,M,W, I): The results obtained by the query
are in the form of set of tuples, which are then organized as a many-valued
context. Among the variables one variable appears in the View By clause and
is considered as the object variable. All the other variables are considered as
attribute variables. Let vl be the object variable in

−→v = (v1, v2, . . . , vn),X
i

l
be the

answers obtained for vl, then attribute variables will be v1, . . . , vl−1, vl+1, . . . , vn.
The answers associated to attribute variables can be given as {Xi

1, X
i
2, . . . , X

i

l−1,
Xi

l+1, . . . , X
i
n
}. Then, G = {Xi

l
, i = 1, . . . , k} and M is the set of many valued

attributes, given as M = {v1, v2, . . . , vl−1, vl+1, . . . , vn} and W represents the
attribute values, i.e., W = {Xi

1, X
i
2, . . . , X

i

l−1, X
i

l+1, . . . , X
i
n
}. The occurrence of

an object and an attribute together in R = {(Xi
1, X

i
2, . . . , X

i
n
)} gives the ternary

relation I.
Let us continue the example discussed in section 2. The answers are organized

into many-valued context as follows. The distinct values of the variable ?museum

are kept as a set of objects, so G = {MuseeduLouvre, MuseodelPrado}. The
attribute variables artist,country provide the set of attributes M = {artist,
country} and the tuples related to the variables provide attribute values, w1 =
{Raphael, LeonardoDaV inci} and w2 = {France, Spain UK}. The obtained
many-valued context is shown in Table 1. The corresponding nominally scaled
one-valued context is shown in Table 2.

Museum Artist Country

Musee du Louvre {Raphael, Leonardo Da Vinci, Caravaggio} {France}

Musee d’Art Moderne {Pablo Picasso} {France}

Museo del Prado {Raphael, Caravaggio, Francisco Goya} {Spain}

National Gallery {Leonardo Da Vinci, Caravaggio, Francisco Goya} {UK}

Table 1: Many-Valued Context (Museum).

Artist Country

Museum Raphael Da Vinci Picasso Caravaggio Goya France Spain UK

Musee du Louvre × × × ×

Musee d’Art Moderne × ×

Museo del Prado × × × ×

National Gallery × × × ×

Table 2: One-Valued Context KMuseum.

Building a Concept Lattice: Once the context is designed, a concept lattice
(view) can be built using an FCA algorithm. This step is straight forward as
soon as the context is provided. In the current study, we used AddIntent, which
is an efficient implementation for building a concept lattice [9]. At the end of this
step the concept lattice is built and the interpretation step can be considered.
However, one limitation of the systems based on FCA is that they may encounter
exponential time and space complexity in the worst case scenario for generating
a concept lattice [7]. A view on SPARQL query in section 2, i.e, a concept lattice
corresponding to Table 2 is shown in Figure 1a.

Interpretation Operations over a Lattice-Based Views: A formal context
effectively takes into account the relations by keeping the inherent structure of



the relationships present in LOD as object-attribute relation. When a concept
lattice is built, each concept keeps a group of terms sharing some attribute. This
concept lattice can be navigated for searching and accessing particular LOD el-
ements through the corresponding concepts within the lattice. This lattice can
be drilled down from general to specific concepts or rolled up to find the general
ones. For example, for retrieving the museums where there is an exhibition of
Caravaggio’s paintings, it can be seen in the concept lattice shown in Figure 1a
that the paintings of Caravaggio are displayed in Musee du Louvre, Museo

del Prado and National Gallery. Now, in order to filter it by country, i.e.,
obtain French museums displaying Caravaggio. Musee du Louvre can be re-
trieved by navigating the same lattice. To retrieve museums located in France

and Spain, a general concept containing all the French Museums with Caravag-
gio’s painting is retrieved and then a specific concept containing the museums
in France or Spain displaying Caravaggio can be accessed by navigation. The
answer obtained will be Musee du Louvre and Museo del Prado.

After obtaining the view, i.e., the concept lattice, it can be accessed to
obtain the DG-basis of implications. For example, the rule Goya, Raphael,

Caravaggio → Spain suggests that in Spain there exists a museum displaying
the work of Goya, Raphael, Caravaggio (this implication is obtained from the
view in Figure 1a). In order to get more specific answer, the user can browse
through lattice and obtain Museo Del Prado.

5 Experimentation

5.1 DBpedia

DBpedia is currently comprised of a huge amount of RDF triples in many dif-
ferent languages which reflects the state of Wikipedia. Due to information ex-
traction from crowd-sourced web site, triples present on DBpedia may contain
incorrect information. Even if Wikipedia contains correct information, a parser
may pick up wrong information [10]. Due to the above described reasons some
of the properties may not be used uniformly. In the current experiment, we ex-
tracted the information about movies with their genre and location.

SELECT ?movie ?genre ?country WHERE {

?movie rdf:type dbpedia-owl:Film .

?movie dbpprop:genre ?genre .

?movie dbpprop:country ?country .}

VIEW BY ?movie

The obtained concept lattice contained 1395 concepts. Out of which 201
concepts on the first level were evaluated manually for correctness of the infor-
mation about the movie genre. 141 concepts kept the genre information about
the movie. 45% of these concepts contained wrong genre information as its in-
tent (see first three concepts in Table 3). In such a case, the generated lattice-
based view helps in separating music genre from the movie genre and fur-
ther guide in introducing a new relation such as soundtrackGenre and adding



new triples to the knowledge base, for example, dbpedia:The Scorpion King,

dbpedia-owl:soundtrackGenre, dbpedia:Hard Rock.

ID Supp. Intent

C#1 17 Hard Rock

C#2 15 Contemporary R&B

C#3 18 Jazz

C#4 750 United States

C#5 1225 India

C#6 6 France

Table 3: Some Concepts from LDBpedia (Concept Lattice for DBpedia)

Moreover, If we observe the obtained view, it can be seen that there are too
few movies from countries other than United States and India. For example,
C#4 and C#5 are the classes for movies from United States and India, where
there are 1225 movies from India in DBpedia and 750 movies from United States.
Finally, it can be concluded that the information present on DBpedia still needs
to be corrected and completed.

The concept lattice can help in obtaining classes of movies w.r.t countries
also. As this approach provides an added value to the already existing Group

By clause, it is possible to find movies which are made in collaboration with
several countries. For example, The Scorpion King was made in collaboration
with United States, Germany and Belgium.

5.2 YAGO

The construction of YAGO ontology is based on the extraction of instances
and hierarchical information from Wikipedia and Wordnet. In the current ex-
periment, we posed a similar query to YAGO with the View By clause. While
querying YAGO it was observed that the genre and location information was
also given in the subsumption hierarchy of ontology. The first level of the ob-
tained view kept the groups of movies with respect to their languages. e.g., the
movies with genre Spanish Language Films. However, as we further drill down
in the concept lattice we get more specific categories which include the values
from the location variable such as Spain, Argentina and Mexico. Finally, it can
be concluded that YAGO provides a clean categorization of movies by making
use of the partially ordered relation between the concepts present in the con-
cept lattice. YAGO also learns instances from Wikipedia and it contains many
movies from all over the world. This observation gives the idea about the strong
information extraction algorithm as it contains more complete information.

DG-Basis of Implications for YAGO and DBpedia were computed. The im-
plications were naively pruned with respect to support threshold. For DBpedia,
the number of rules obtained were 64 for a support threshold of 0.11%. In case
of YAGO, around 1000 rules were extracted on support threshold of 0.2%. Ta-
ble 4 contains some of the implications obtained for both the datasets. It can be
clearly observed that the support for the implications is much larger in YAGO



Impl. ID Supp. Implication

YAGO

1. 96 wikicategory RKO Pictures films → United States

2. 46 wikicategory Oriya language films → India

DBpedia

3. 3 Historical fiction → United Kingdom@en

4. 3 Adventure fiction, Action fiction → Science fiction

Table 4: Some implications from DG-Basis of Implication (YAGO, DBpedia)

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Number of Tuples in %

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
on

ds
)

20 40 60 80 100
0

20
40

60
80

10
0

12
0

Number of Tuples in %

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
on

ds
)

(a) Runtime for DBpedia (b) Runtime for YAGO

Fig. 2: Experimental Results.

than DBpedia, which points towards the completion of YAGO. This fact is ac-
tually useful in finding regularities in the SPARQL query answers which can not
be discovered from the raw tuples obtained. For example, rule#1 states that
RKO picture films is an American film production and distribution company
as all the movies produced and distributed by them are from United States.
Moreover, rule#2 says that all the movies in Oriya language are from India.
Which actually points to the fact that Oriya is one of many languages that is
spoken in India. On the other hand, some of the rules obtained from DBpedia are
incorrect. For example, rule#3 states the strange fact that all the historical

fiction movies are from United Kingdom. Same is the case with rule#4 which
states that all the movies which are Adventure fiction and Action fiction

are also Science Fiction, which may not actually be the case. Through the
comparison of the DG-Basis for both the datasets it can be observed that the
YAGO may be more appropriate for further use by the application development
tools and knowledge discovery purposes.

For each of the above queries we tested how our method scales with growing
number of results. The number of answers obtained by DBpedia were around
4000 and the answers obtained by YAGO were 100,000. The experimental results
of the runtime for the building the concept lattice are shown in Figure 2. Vi-
sualization of these experiments along with the implementation can be accessed
online3.

3 http://webloria.loria.fr/~alammehw/lbva/



6 Conclusion and Discussion

In LBVA, we introduce a classification framework based on FCA for the set of
tuples obtained as a result of SPARQL queries over LOD. In this way, a view
is organized as a concept lattice built through the use of View By clause that
can be navigated where information retrieval and knowledge discovery can be
performed. Several experiments show that LBVA is rather tractable and can be
applied to large data. For future work, we intend to use pattern structures with
a graph description for each considered object, where the graph is the set of all
triples accessible w.r.t reference object.

References

1. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

2. Claudio Carpineto, Stanislaw Osiński, Giovanni Romano, and Dawid Weiss. A
survey of web clustering engines. ACM Comput. Surv., 41(3):17:1–17:38, July
2009.

3. Claudio Carpineto and Giovanni Romano. Concept data analysis - theory and
applications. Wiley, 2005.

4. Claudia d’Amato, Nicola Fanizzi, and Agnieszka Lawrynowicz. Categorize by:
Deductive aggregation of semantic web query results. In Lora Aroyo, Grigoris An-
toniou, Eero Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral,
and Tania Tudorache, editors, ESWC (1), volume 6088 of Lecture Notes in Com-
puter Science, pages 91–105. Springer, 2010.

5. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer, Berlin/Heidelberg, 1999.

6. J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines,
95:5–18, 1986.

7. Sergei O. Kuznetsov and Sergei A. Obiedkov. Comparing performance of algo-
rithms for generating concept lattices. J. Exp. Theor. Artif. Intell., 14(2-3):189–
216, 2002.

8. Gerd Stumme, Rafik Taouil, Yves Bastide, and Lotfi Lakhal. Conceptual cluster-
ing with iceberg concept lattices. In R. Klinkenberg, S. Rüping, A. Fick, N. Henze,
C. Herzog, R. Molitor, and O. Schröder, editors, Proc. GI-Fachgruppentreffen
Maschinelles Lernen (FGML’01), Universität Dortmund 763, October 2001.

9. Dean van der Merwe, Sergei A. Obiedkov, and Derrick G. Kourie. Addintent: A
new incremental algorithm for constructing concept lattices. In Peter W. Eklund,
editor, ICFCA, volume 2961 of Lecture Notes in Computer Science, pages 372–385.
Springer, 2004.

10. Dominik Wienand and Heiko Paulheim. Detecting incorrect numerical data in db-
pedia. In Valentina Presutti, Claudia d’Amato, Fabien Gandon, Mathieu d’Aquin,
Steffen Staab, and Anna Tordai, editors, ESWC, volume 8465 of Lecture Notes in
Computer Science, pages 504–518. Springer, 2014.


