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ABSTRACT 

The Self Organizing Map (SOM) is used to classify the possible five very common faults of hermetic compressors 
that can occur either after the production line or during the R/D phase of new types. The main concern is 
discriminating the faulty compressors from the healthy one. In order to identify these faults, the SOM network has 
been trained with the feature vectors that are obtained from sound pressure data, vibration data, pressure pulsations 
that are gathered from numerous faulty and healthy compressors. After the training phase, the Learning Vector 
Quantization (LVQ) algorithm is used to scrutinize the classification borders. The results obtained after the 
classification denotes that SOM is very useful tool in order to discriminate the healthy compressors from the faulty 
ones Also it is worth to mention that, the classification of the different type of the faults has been achieved. 

1. INTRODUCTION 

Reciprocating compressors are the most important noise and vibration sources in household refrigeration systems. 
Not only the overall level but also the quality of this noise and vibration is important. Due to faults during 
production processes or resulting from the origin of the used material, sound and vibration characteristics of the 
products may vary. These unknown faults sometimes create noise problems that are observed in periodic sampling 
tests. On the other hand, because of the mechanical structure, the sources of these faults cannot be determined unless 
the compressor is disassembled. The goal of the present study is to identify the common faults by means of 
acoustical measurements without disassembling the compressors. 

Both for design phase and serial production process, the identification of the faults has vital importance. Since it is 
not possible to reuse the compressor that is disassembled due to some unknown fault in serial production, detecting 
the source of the problem may prevent loss of time to investigate the problem and loss of money by taking some 
precautions. Also for the prototypes of new designs, the neural network analysis may save plenty of time and can 
supply important information that can shape the design.  

The neural network tools are very convenient for fault analyses in different disciplines. (Germen, et. al. 2005) By 
neural network tools, it is aimed to recognize common faults by investigating the compressors in a controlled 
manner. In order to gather the data to be used in neural network analysis, some common serious faults have been 
implemented one by one on the compressors that are chosen such that they do not have any of these faults at the 
beginning. After performing a series of detailed acoustic and vibration tests on these base compressors, controlled 
faults related to muffler, shock loop tube, motor and springs are implemented on them one by one. At each time the 
fault is implemented, the series of tests are conducted and these tests are repeated at each step. 17 compressors were 
selected for the tests. All the experiments were done with these compressors. Six series of experiments (one with the 
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normal and one with each of the five faulty conditions) for each of the 17 compressors, those are 102 experiments in 
total, were designed and conducted. 

All of the measurements are carried out in a semi-anechoic chamber up to ISO 3745. The sound power level of each 
of these compressors is measured by 10 microphones as described in ISO 3745 standard after the compressors reach 
steady state conditions.1/3 octave sound spectra for all of these 10 microphones is measured. There exist two 
different approaches to analyze the data. First one uses a weighted average of all 10 microphones’ measurements. 
Second approach uses all data from each microphone separately, which means larger input files and higher 
computation time, when compared to the first approach but has the ability to investigate the fault regions in a more 
detailed way. In this study, since the faults could not reach high separation ratios using the first method, the second 
method is used. According to the results, each fault can satisfactorily be identified using the second approach when 
sufficient training is done.  

In section 2, a very brief introduction of SOM (Self Organizing Map) has been introduced which is used to find the 
possible clusters for different data sets. Also the proposed map dimensions and the characteristics of the feature 
vectors in order to train the map will be introduced in this section. In section 3 the results obtained will be discussed 
and the section 4 concludes the paper. 

2. SOM (SELF ORGANIZING MAP) AND LVQ (LEARNING VECTOR QUANTIZER) 

Kohonen’s SOM (Self Organizing Map) is an impressive tool to visualize the possible classes occurs in high 
dimensional data sets. The theory of SOM has inspired from the structural organization of neurons in cerebral cortex 
in human neural system. (Kohonen, 1995) It is observed that some specific areas of brain tissue are organized 
according to the types of the input signals in adaptive and automatic nature. Similarly, SOM shows same kind of 
organization in unsupervised manner. SOM in general provides a projection of high dimensional data set which has 
a character nℜ=Λ  into m many codebook vectors of size n to two dimensional domains. It is also worth to mention 
that, the organization of codebook vectors with connection in two-dimensional planar surfaces, keeps the relational 
information between the input data that provides us clustering information. 

In SOM, the learning period is described as :  

))1()()(,,().()1()( −−Λ+−= kMkkcikkMkM iii βα (1) 

where α(k) is the learning rate parameter which is changed during the adaptation phase and β(i,c,k) is the 
neighborhood function around c where c is the Best Matching Unit index which can be found during training as:   

)()(arg kMkminc ii −Λ= (2) 

The interpretation of above equation requires explanation of parametric learning rate and neighboring function. 
Learning rate has decreasing characteristic during the learning period that effects the changing positions of the 
neurons in lattice. For the most of the applications, the general approach is fast at the beginning and slow at the end 
of the learning phase. The neighborhood function describes the impact area around BMU that describes how the 
neighboring neurons will be drawn near to BMU. The BMU describes the winning neuron in the training phase 
where index c is determined by equation 2.  

In this work the feature vectors nℜ=Λ  where n = 250 are used to train the 10x10 SOM neurons which has 
connected in Hex-lattice manner. The 250 components of feature vectors are obtained from 10 different 
microphones. Each microphone is used to record the noise spectrum between 40 Hz- 10KHz. divided to 25 distinct 
regions. Here it has been observed that various frequency components in this range don’t have contributions in 
discrimination of clusters like the others. In order to inspect which frequency components do have effects on 
determination of the classification borders, plenty many experiments have been carried out. The effects of different 
frequency bands on discrimination of the classification borders will be the subject of another paper. 

After obtaining the possible codebook vectors using SOM training algorithm that is an unsupervised technique, the 
possible classification regions should have to be obtained in supervised manner. In literature Learning Vector 
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Quantization 3 (LVQ3) algorithm (Kohonen, 1990) is the one of the most suitable technique in order to delineate 
and adjust the crossing borders of the possible classification regions.  

The LVQ-3 algorithm can be explained as: 
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Where Mi and Mj are the two closest codebook vectors to Λ(k), whereby Λ(k) and Mj belongs to the same class, 
while Λ(k) and Mi belongs to different classes respectively; furthermore Λ(k) must fall zone of a window defined as; 
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where d1 and d2 are the distance between codebook vectors Mi - Λ(k) , and Mj - Λ(k). Also it is necessary to have: 
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where Mi and Mj are the two closest codebook vectors to Λ(k), whereby Λ(k) and Mj and Mi belong to same classes. 
The μ(k) and ε(k) parameters are learning rates in the algorithm. 

3. EXPERIMENTS AND THE RESULTS 

The primary concern of using a Neural Network Tool (especially SOM), is discriminating the healthy compressors 
from the defective ones without regarding the types of faults they have. However during the separation phase of the 
compressors it has been observed that SOM not only gives clues for differentiating the healthy ones from the others 
but also signifies the types of faults. As it is noted in the introduction, in the experiments the data have been 
collected from 10 different microphones. During the data collection phase the center frequencies in order to build up 
the feature vectors are given in the table 1. 

Table 1. Center frequencies obtained in experiments 

40 
Hz. 

50 
Hz. 

63 
Hz. 

80 
Hz. 

100 
Hz. 

125 
Hz. 

160 
Hz. 

200 
Hz. 

250 
Hz. 

315 
Hz. 

400 
Hz. 

500 
Hz. 

600 
Hz. 

630 
Hz. 

800 
Hz. 

1.0 
KHz. 

1.6 
KHz. 

2.0 
KHz. 

2.5 
KHz. 

3.15 
KHz. 

4.0 
KHz. 

5.0 
KHz. 

6.3 
KHz. 

8.0 
KHz. 

10.0 
KHz. 

  
For 17 different compressors with 4 major fault types and a healthy data, the 10x15 hexagonally connected lattice 
SOM Map has been trained with the data obtained from 10 different microphones with the 25 different center 
frequencies values. After the training phase of SOM, the resultant maps are investigated with the faulty compressors 
data and the healthy ones. At the end of the experiments, although the results were quite reasonable from the point 
of view of discrimination of types of faults, however they were not so impressive. In this data range it has been 
observed that some center frequency data has no importance to differentiate the clusters as stated in Section 2. So for 
each center frequency range data, the same kind of SOM Map has been trained and the qualities of formation of 
clusters have been measured by Leave one out (LOO) method. In this technique, 102 different SOM training 
experiments have been done leaving one of the experimental data out for each center frequency with 10 microphone 
set. After training the map with 101 experimental data, Learning Vector Quantization (LVQ3) technique is used to 
denote the classification borders. After formation of the border, the data, which is taken out of the experiment, has 
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been tested to locate its class. After those experiments, the results of the LOO tabulated and the most prominent data 
which belong 10 center frequencies which have more impacts on formation of classification border as desired have 
been chosen to form the resultant data vector. In table 2, the chosen center frequencies have been given.  

Table 2. Center frequencies used in training the SOM in experiments

125 
Hz. 

250 
Hz. 

315 
Hz. 

630 
Hz. 

1.25 
KHz. 

1.6 
KHz. 

2.0 
KHz. 

5.0 
KHz. 

6.3 
KHz. 

8.0 
KHz. 

The trained SOM with the cluster structure of each type of faults and the healthy compressor has been shown in 
Figure 1. By investigating the formation of the clusters for both healthy compressor and the faulty ones, it is easy to 
deduce that the muffler and the motor faults are the most distinctive types of faults compared to the others. They 
have localized in very specific regions in the SOM lattice with not interfering with the other clusters. However 
Shock Loop Tube and Spring types of faults have dispersed characteristics in the resultant map. The scattered 
formation of the Spring and Shock Loop types of faults denote that those types of faults produce different types of 
noise characteristics in experiments, and the shape of the spectral formation of noise is more close to the healthy 
compressor than the other types of faults. However it is worth to mention that SOM is very powerful tool to 
discriminate each type of fault from the normal compressor. Although the visual inspection gives idea about the 
quality of the classification of results, a quantitative analysis is also required. 

Healthy Compressor Cluster Muffler Cluster

Shock Loop Tube Cluster Spring Cluster
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Motor Cluster

Figure 1. SOM Maps for classification of healthy and faulty compressors 

In table 3, the results of LOO method after formation of classification borders using LVQ, has been given. This 
makes sense from the point of quantative analyses of the method that is proposed.  

Table 3. LOO Results 

 Classified as 
Healthy 

Classified as 
Muffler fault 

Classified as 
Shock Loop fault 

Classified as 
Spring fault 

Classified as 
Motor fault 

Healthy Data 16 0 0 1 0 
Muffler Data 0 17 0 0 0 
Shock Loop Data 0 0 15 2 0 
Spring data 0 0 1 16 0 
Motor data 0 0 0 0 17 
  

4. RESULTS & CONCLUSIONS 

The results of both qualitative and quantative analyses after training the noise data for different types of faulty 
compressors and the healthy one are quite notable in order to use the proposed method in fault classification for 
compressors. Here the muffler and motor fault types of errors have been discriminated with 100% success rate. It is 
not difficult to deduce that the Shock loop fault and Spring faults produce some kind of noise spectrum. One of the 
reasons for this could be the difficulty of producing uniform kinds of faults for each compressor during the 
experiments.  Here the Shock Loop faults have been classified at a rate of 88% and the success rate of clustering the 
Spring fault is 94%. Similarly the main concern was the discrimination of healthy compressors from the faulty ones, 
and by scrutinizing the whole experiments with 85 different data, the classification success rate is 98.8% which is 
quite impressive.  
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