
Purdue University
Purdue e-Pubs

International Compressor Engineering Conference School of Mechanical Engineering

2008

Optimal Performance Development of High-
Pressure Type Ammonia Scroll Compressors for
Maximum Efficiency
Tatsuya Oku
Mayekawa Mfg. Co.

Noriaki Ishii
Osaka Electro-Communication Univ.

Keiko Anami
Ashikaga Institute of Technology

Charles W. Knisely
Bucknell University

Akira Matsui
Mayekawa Mfg. Co.

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/icec

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Oku, Tatsuya; Ishii, Noriaki; Anami, Keiko; Knisely, Charles W.; Matsui, Akira; Sato, Harumi; and Yoshirio, Naoya, "Optimal
Performance Development of High-Pressure Type Ammonia Scroll Compressors for Maximum Efficiency" (2008). International
Compressor Engineering Conference. Paper 1905.
https://docs.lib.purdue.edu/icec/1905

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4957606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ficec%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Ficec%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


Authors
Tatsuya Oku, Noriaki Ishii, Keiko Anami, Charles W. Knisely, Akira Matsui, Harumi Sato, and Naoya Yoshirio

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/icec/1905

https://docs.lib.purdue.edu/icec/1905?utm_source=docs.lib.purdue.edu%2Ficec%2F1905&utm_medium=PDF&utm_campaign=PDFCoverPages


 

1425, Page 1 
 

International Compressor Engineering Conference at Purdue, July 14-17, 2008 

 

Optimal Performance Development of High-Pressure Type  

Ammonia Scroll Compressors for Maximum Efficiency 

 

Tatsuya OKU1, Noriaki ISHII2, Keiko ANAMI3, Charles W. KNISELY4,  
Akira MATSUI1, Harumi SATO1, Naoya YOSHIHIRO1 

 

1 Research and Development Center, Mayekawa MFG. Co., Ltd.,  
Moriya-City, Ibaraki , Japan 

Tel: +81-297-48-1364, Fax: +81-297-5170, E-mail: tatsuya-oku@mayekawa.co.jp  
 

2 Division of Mechanical Engineering, Osaka Electro-Communication University, 
Neyagawa-City, Osaka, Japan  

Tel: +81-728-20-4561, E-mail: ishii@isc.osakac.ac.jp 
 

3 Division of Mechanical Engineering, Ashikaga Institute of Engineering, 
Ashikaga-City, Tochigi, Japan 

 
4 Mechanical Engineering Department, Bucknell University,  

Lewisburg PA 17837, USA 

 

 

ABSTRACT 
 

This study presents computer simulations of the volumetric, mechanical and compression efficiencies of a high-

pressure scroll compressor for ammonia, with a suction volume of 192.5 cm
3
. Computer calculations were made for 

a number of combinations of the involute base circle radius and the scroll height for a fixed cylinder diameter of 155 

mm. As a result, the design dimensions of the scroll configuration leading to the optimum efficiency are presented 

for this particular cylinder diameter. Based on the computer simulations presented here, a high efficiency scroll 

compressor for ammonia has been developed and is expected to enter the market in 2008. 

 

 

1. INTRODUCTION 
 

In recent years, increased environmental concerns, such as global warming and energy utilization, have motivated 

the use of naturally occurring refrigerants and the optimization of components in the air-conditioning industry.  In 

this context, the use of ammonia as a refrigerant with a zero potential contribution to global warming is attractive. In 
addition, ammonia has a significant technical advantage in that its heat capacity is 5.9 times larger than that of R22 

and 3.9 times larger than that of CO2, thereby making it especially advantageous when used in systems with large 

cooling capacities. Based on these environmental and technical issues, the refrigeration and air-conditioning markets 

have been demanding the development of scroll compressors (generally acknowledged to exhibit high performance 

and low vibration and low noise levels) for use with ammonia.  In order to develop a high efficiency ammonia scroll 

compressor, a computer simulation of its expected performance was needed to optimize the combination of 

geometrical dimensions that would yield with maximum performance. 

 
To satisfy this need for a computer simulation, the methodology used in earlier studies (Ishii et al.�1996a,b, 2002b)  

on optimizing scroll compressor performance for use with R22 and CO2 was adapted to predict the performance of 

an ammonia scroll compressor� with an approximate cooling capacity� of 30 kW.  Using this established 

methodology, the dependencies of the mechanical, compression and volumetric efficiencies on the dimensions of the 

involute base circle radius and the scroll height for a fixed cylinder diameter of 155 mm were determined.  As a 

result, a high pressure ammonia scroll compressor with maximum performance was developed and is currently 

being manufactured to supply the market demand. 
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2. PERFORMANCE SIMULATION 
 

Figure 1 shows a sectional view of an involute type scroll compressor.  The scroll wrap profile is determined by the 

combination of the involute base circle radius rb, the wrap thickness t and the wrap height B for a cylinder diameter 

D.  

 
Refrigerant leakage through the wrap clearances depends on the combination of these dimensions, as well on the 

friction loss at the sliding pairs and the gas pressure in the compression chambers. The leakage, in turn, significantly 

affects the volumetric, mechanical, compression and overall efficiencies. 

 

2.1 Volumetric Efficiency ηv 

The volumetric efficiency ηv can be calculated as the ratio of the actual discharge mass flow rate to the theoretical 
mass flow rate into compressor: 

th

th

th

e

v

Q

QQ

Q

Q −

==η      (1) 

where Qe is the actual discharge mass flow rate from compressor, which can be calculated by subtracting the leakage 

mass flow rate, Q, from the theoretical mass flow rate into compressor suction port, Qth. This leakage flow rate 

through the small clearances caused by the pressure difference between compression chambers in the scroll 

compressor can be determined using the simple theory by Ishii et al. (1996a) and Oku et al., (2005, 2006).  The 

overall leakage mass flow rate for one revolution of the scroll’s orbiting movement can be calculated by integrating 
the local differential leakage mass flow rate over the length of the scroll wrap. 

 

Once the scroll wrap profile is determined from the given parameters, such as compressor size, motor power and 

refrigeration capacity, the volume and the pressure in the compression chambers formed between the orbiting and 

fixed scrolls can be calculated geometrically.  Subsequently, the leakage flow can be calculated.   

 

To calculate the leakage flow through the small clearances in scroll compressors, the Darcy-Weisbach equation for 

incompressible, viscous fluid flow was applied, using an friction factor λ,  shown in Figure 2 for CO2. It is of 

significance to note that the corresponding empirically determined friction factor for R22 has been found to be 

almost indistinguishable from that for CO2 (Oku et al., 2005).  On this basis, it is assumed that the friction factor can 
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Figure 1  Sectional view of scroll compressor.        Figure 2  Friction factors of axial and radial leakage flows of 

CO2, plotted on Moody diagram. 
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be considered to be independent of the refrigerant itself. With this assumption, the friction factor λ for ammonia can 
be given as: 

46.0
38.3

−

= Re
a

λ     and     
46.0

70.3
−

= Re
r

λ    (2) 

where λa is the friction factor for the axial clearance and λr is that for the radial clearance.  The surface roughness 

was assumed to be 0.2μm and the axial and radial clearances to be 10 μm. 
 

2.2 Mechanical Efficiency ηm 
The mechanical friction (between the crankshaft and the crank journal, the crank pin and the orbiting scroll, the 
orbiting scroll and the Oldham ring, and the orbiting scroll and the thrust bearing) is the major source of power loss 

in scroll compressors.  These mechanical friction loads can be obtained from a dynamic analysis for each pair of 

machine elements, and then summed to determine the overall friction force. 

 

Dynamic equilibrium analysis yields the equation of motion governing the behavior of the crankshaft rotation given 

in the following expression (Ishii, et al., 1992): 
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where, the terms on left side represent the inertia torques and those on the right side represent the motor drive torque 

N and the torque loads due to the gas compression, the mechanical friction torques at the crankshaft, the crankpin, 

the Oldham ring and the thrust slide-bearing.  The mechanical friction forces are obtained as the product of the 

resultant force at each pair of compressor elements and the corresponding friction coefficient.  The equation of 
motion (Eq. 3) can be solved numerically for the given torque characteristic of the electric motor and the pressure in 

the compression chambers to obtain a periodic solution. 

 

Integrating the equation of motion of the crankshaft over the duration of one revolution of the crankshaft, an energy 

balance can be obtained.   The shaft input energy Ws, the gas compression energy Wi  and the frictional losses Wf are 

given by the following expressions, respectively: 
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The mechanical efficiency ηm can then be calculated as:  

s
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2.3 Compression Efficiency ηc 
Due to the continual re-compression of the leakage flows and the dissipation of energy through the frictional losses 

associated with the leakage flow, a scroll compressor with leakage requires greater compression power than one 

with no leakage.  Therefore, the compression efficiency ηc can be defined by the ratio of the theoretical compression 
power with no leakage, Eth, to that for the compressor with leakage, denoted by ηc takes on a value that is then less 
than 1.0: 

E

E
th

c
=η      (6) 

2.4 Resultant Efficiency η 
The overall efficiency η can be obtained as the product of the component efficiencies ηv, ηm and ηc: 

                                                                                   
cmv

ηηηη ××=       (7) 
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which represents the ratio of the accumulated energy in the discharged refrigerant to the shaft input power. 

 

 

3. CALCULATED RESULTS OF EFFICIENCIES 
 

The major specifications for computer calculations are shown in Table 1, where the operation conditions and the 

major dimensions of compressor are specified.  The condensation temperature is 55°C and the evaporation 

temperature is 0°C.  The suction volume V, cylinder diameter D and wrap thickness t are conventionally fixed at 

192.5 cm
3
, 155 mm and 4.7 mm, respectively.  As a result, the scroll wrap height B is determined for a given value 

of the involute base circle radius rb.  The orbiting radius r0 changes from 5.98 mm to 12.26 mm with increasing 

involute base circle radius rb from 3.4 mm to 5.4 mm.  Both the axial clearance δa and radial clearance δr are fixed at 

10 μm. The friction coefficients, as is usual, are taken to be 0.055 for the thrust slide bearing, 0.011 for the crank pin 
and crank journal and 0.0013 for the ball bearing at the end of the crank shaft, all which were measured by friction 

tests on small cooling capacity compressors. 

Table 1  Operation conditions and major dimensions for performance calculations.

Condensation temperature T c [
o
C] 55

Condensation pressure P c [MPa] 2.31

Evaporation  temperature T s [
o
C] 0

Evaporation  pressure P S  [MPa] 0.43

Involute base circle radius r b  [mm] 3.4 ~ 5.4

Scroll thickness t [mm] 4.7

Scroll height B  [mm] 28.8 ~ 45.7

Orbiting radius r 0  [mm] 5.98 ~ 12.26

Suction volume V [cm
3
] 192.5

Cylinder disameter D  [mm] 155

Axial clearance δ a [μm] 10

Radial clearance δ r [μm] 10

Fric. coef. at thrust bearing μ s  [-] 0.055

Fric. coef. at crankpin μ cp  [-] 0.011

Fric. coef. at crank journal μ cj  [-] 0.011

Fric. coef. at ball bearing μ cb  [-] 0.0013
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Figure 3  Calculated results: (a)refrigerant gas leakage; (b) pressure curve; (c) volumetric efficiency ηv. 
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First, the leakage flow velocity and leakage mass flow rate were calculated for both the axial and radial clearances.  

The leakage mass flow rate ΔG for one cycle of orbiting motion is shown in Figure 3(a), in which the abscissa is the 
orbiting radius rb. As rb increases, the pressure difference between the suction chamber and the inner compressed 

chamber increases, as shown in Figure 3(b), thus resulting in an increase in the refrigerant gas leakages through the 

radial and axial clearances, ΔGr and ΔGa.  The resultant total refrigerant gas leakage ΔG increases from 3.1×10
-5 

kg 
to 6.6×10

-5 
kg as rb increases from 3.4 mm to 5.4 mm, and results in a corresponding decrease in volumetric 

efficiency from its maximum value of 93.5% at rb =3.4 mm to 86% at rb =5.4 mm, as shown in Figure 3(c). 

 

Figure 4(a) shows the calculated friction power losses.  As the orbiting radius rb increases, the friction loss Wc-p at 

the crankpin and Wc-s at the crankshaft decrease gradually, since the wrap height decreases and, hence, the gas loads 

on the crankpin and crankshaft decrease.  To the contrary, as rb is increased, the friction loss Wt-b at the thrust slide-
bearing increases, because the chamber bottom area increases and, hence, the gas thrust force on the thrust slide-

bearing increases.  The resultant friction loss Wf exhibits a convex trend, initially decreasing, then increasing. Figure 

4(b) shows the gas compression power, Wi, and the shaft input power, Ws.  From these results, the mechanical 

efficiency ηm can be obtained as shown in Figure 4(c), in which the mechanical efficiency ηm exhibits its maximum 
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Figure 5  P-V diagram of compression chamber: (a) rb=3.8 mm; (b) rb =4.6 mm; (c) rb =5.4 mm. 
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Figure 4  Calculated results: (a) friction loss power; (b) gas compression power and axial input power; 

 (c) mechanical efficiency ηm. 
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value of 92% at rb=4.0mm. 
 

The P-V diagrams for rb=3.8, 4.6, 5.4 mm are shown in Figures 5(a), (b) and (c), respectively, in which the 

theoretical gas pressure PT is plotted by the dashed line and the actual gas pressure PR by the solid line.  The sudden 

increase in pressure, that occurs as the inner chamber conncects to discharge chamber was calculated by Dalton’s 

Law. From these P-V diagrams, the compression efficiency ηc can be calculated, as shown in Figure 6, in which ηc 
increases with increasing rb and approaches 100% at rb=5.4 mm. The value of the compression efficiency is 

governed predominantly by the in-flow leakage from the higher pressure compression chamber, which has a far 

larger effect that due to leakage out-flow to the suction chamber for the small rb range. 

 

Finally, the overall efficiency η can be calculated by Eq. (7), as shown in Figure 7, in which η exhibits its maximum   
value of 79.9% at rb=4.6 mm.  The scroll wrap profile providing the maximum overall efficiency is shown in Figure 

8, where the scroll height was 32.4 mm and the aspect ratio was 0.21. 

 

 

4. DEVELOPED AMMONIA SCROLL COMPRESSOR 

 

The high pressure ammonia scroll compressor, developed based on the identified optimal scroll wrap dimensions, is 

shown in Figure 9.  The refrigerant oil is contained in the lower shell region and is pumped up with a trochoidal 

pump installed on the end of the crankshaft through a hole in the crankshaft to lubricate the compression mechanism.  
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Figure 6  Compression efficiency ηc.                            Figure 7  Overall efficiency η.  

 

 
Figure 8  Optimal profile of scroll wrap. 
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The compression mechanism is driven by a high performance 15 kW IPM (Interior Permanent Magnet) motor with 
an aluminum coil.  This IPM motor provides high power with small space requirements.  All materials in the scroll 

compressor were carefully chosen to resist the corrosive effects of the ammonia.  The design pressure is up to 2.6 

MPa corresponding to a condensation temperature of 55ºC. The suction pipe is directory connected to the suction 

chamber to avoid heating the suction gas. The compressed gas is cooled by liquid injection and discharged into the 

compressor shell to separate the refrigerant oil and to cool the motor, and then discharged through discharge port 

positioned at the side of shell. 

 
As a result, an ammonia scroll compressor with a high COP was successfully developed and entered the markets in 

2008.  

 

5. CONCLUSION 
 

Efficiency calculations of an ammonia scroll compressor were undertaken to determine the optimal design values for 

involute base circle radius and scroll height for a fixed cylinder diameter of 155 mm.  The condensation temperature, 

evaporation temperature and suction volume were fixed at 55°C, 0°C and 192.5 cm
3
, respectively.  The ammonia 

leakage flow through axial and radial clearances between the fixed and orbiting scrolls was calculated with 

application of the friction factor for CO2 gas leakage to obtain the volumetric and compression efficiencies, whereas 
the friction losses were calculated to determine the mechanical efficiency. As a result, the overall efficiency of 

79.9% was found for the involute base circle radius of 4.6 mm.  The scroll wrap height and aspect ratio were 32.4 

mm and 0.21, respectively.  Finally, a high pressure ammonia scroll compressor has been manufactured based on the 

obtained scroll wrap dimensions and possesses a higher COP than the conventional compressor. 

 

In the present efficiency simulations, it is assumed that ammonia leakage is can be calculated using friction factors 

for dry CO2 gas leakage.  In the near future, leakage tests for ammonia will be performed to determine precisely the 

appropriate friction factor for ammonia and then incorporated into the analysis to ensure the validity of the present 
simulation of efficiency.  

Suction pipe

Fixed scroll

Orbiting scroll

Discharge port

Main frame

Shell

 
Figure 9  Manufactured high pressure ammonia scroll compressor. 
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NOMENCURATURE 
 
B Wrap height (mm) 

D  Cylinder diameter (mm) 

E, Eth  Gas compression energy (W) 

fx1, fx2 Friction force at fixed slot of Oldham ring (N) 

fy1, fy2 Friction force at Oldham ring (N) 

ft1, ft2 Friction force at thrust bearing (N) 

G    Refrigerant mass (kg) 

I0 Moment of inertia of crankshaft (kg·m
2
) 

LQ Friction torque at crankshaft bearing  
  (N·m) 

Ls Friction torque at crankpin (N·m) 

mo Oldham ring mass (kg) 

ms Orbiting scroll mass (kg) 

N Motor drive torque (N·m) 

 

Q, Qe , Qth Leakage mass flow rate (kg/s) 

rb   Involute base circle radius (mm) 

t    Wrap thickness (mm) 

V Suction volume (cm
3
) 

Wf Frictional loss energy (W) 

Wi Gas compression energy (W) 

Ws  Shaft input energy (W) 

δa , δr  Axial and radial clearance (μm) 

η  Overall efficiency (-) 

ηc  Compression efficiency (-) 

ηm  Mechanical efficiency (-) 

ηv  Volumetric efficiency (-) 

λa, λr  Friction factor (-) 
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