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ABSTRACT 
 
In this paper, a coupling of 0-, 1- and 3-d tools is applied for the simulation of the suction line of a reciprocating 
compressor. The 3-d simulation is applied only for the gas inside the suction line while the rest of the domain is 
modeled in 0- and 1-d way. The 1-d simulation is applied for the gas inside the pipe or any component which can be 
modeled as pipe. The 0-d simulation is applied for solid components, gas inside the shell and the oil, which leads to 
the thermal network among them. It eliminates the required thermal boundary condition at the surface of solid 
components for 3-d simulation. All simulation tools are strongly coupled. In addition, a spring-damping-mass model 
is used for the modeling of the valves.  
 

1. INTRODUCTION 
 
Increasing the efficiency of a hermetic reciprocating compressor, used in household appliances, is a relevant step for 
reducing the global energy consumption. To achieve this ambitious target a deeper understanding of flow and 
thermal effects inside the compressor is required. Many parts of the compressor directly act with these physical 
effects and influence the compressor efficiency. The point of interest in this paper, which plays an important role 
concerning the gas flow inside the reciprocating compressor, is the suction muffler. In the suction muffler complex 
flow phenomena and thermal processes take place. This leads to two different main losses, the pressure loss and the 
heating of the suction gas in the suction muffler. To reduce these losses a comparison between different muffler 
designs is indispensable. 
 
A good study of actual muffler designs is prerequisite to understand the influences on the compressor performance. 
To make this comparison equitable it is necessary to compare the different mufflers on the same compressor. 
Different mufflers lead to different thermal conditions and different pressure losses inside the compressor. Pressure 
fluctuations influence the movement of the valve, which directly leads to a different mass flow rate.  
Reducing the number of mufflers which have to be tested and increasing the speed of development, the adoption of 
numerical tools which can predict the pressure loss and the heating of the gas get more and more important. The 
challenge for those numerical tools is to consider every feedback effect inside the compressor which is relevant.  
 
The most detailed method to predict the pressure loss and the thermal effects (including all feedback effects) in the 
suction muffler is a 3 dimensional model of the whole compressor. The disadvantage of this method is the extensive 
numerical effort. Another method is the 1 dimensional modelling of the compressor. A first approach to include 
most of the feedback effects in a 1 dimensional model is made by Abidin et al. (2006). 
 
Filling the gap between the full 3 dimensional approach and the 1 dimensional model is a big challenge for 
researchers. The idea of zooming into a compressor, by modelling the part of interest in a 3 dimensional way and 
preparing adequate boundary conditions from a 1 dimensional model, looks like a good method to combine the 
strengths of both simulation approaches. Several coupling methods have already been developed in the field of I.C. 
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Engine modelling (for example see Bella et al. (2003)). The next step is to transfer these modelling approaches into 
the field of household compressor design. 
 
In this paper a 0/1 dimensional model with a TNW (Thermal Network) has been combined with the 3 dimensional 
model of the suction line of a reciprocating compressor, in order to decrease the number of computational cells of a 
full 3 dimensional simulation. The accuracy of the 1 dimensional model must be high to get an accurate prediction 
of the suction muffler losses. 

 
2. THE MODEL 

 
The part of interest for this analysis is the suction muffler; therefore the zooming section concentrates on the suction 
line of the compressor. Figure 1 (a) shows the main parts of the model, figure 1 (b) displays the suction muffler 
which should be evaluated. The model consists of different subroutines which are implemented into the commercial 
software package Fluent in the form of a C-program. The subroutines can be classified into four main calculation 
units, the 0 dimensional calculations, a 1 dimensional part, a routine which contains the thermal connections (TNW) 
between the masses inside the compressor and a 3-d model of the suction muffler. This modular approach allows 
studying the different effects which influence the compressor performance.  

 

 
  
Figure 1 (a): Model of the compressor (the dotted border 
shows the 3-d Domain of the simulation) 

Figure 1 (b): Suction muffler from serial production 
 

 
2.1 0-dimensional Model 
The 0-d routine implements the calculation of the cylinder, the two valves (suction and discharge valve) and a model 
for the heat transfer. The pressure and the temperature inside the cylinder are calculated by the use of the 1st Law of 
Thermodynamics (see equation (1)). 

dUhdmdQdW iiat  (1) 
 
Relevant literature shows how to create a mathematical model for a valve which can be approximated as a mass-
spring system, for example Costagiola (1950), Aigner and Steinrück (2007), Habing and Peters (2006) etc. This 
former work can be seen as the BVT (basic valve theory) which is used to describe the movement of the valve.  

ntnt xex
FApxcxdxm

1

0  (2) 

 
The equations (2) describe the most important factors necessary to model the valve. The integration of the model has 
been done by the use of a 4th order Runge-Kutta method. There are few other parameters which influence the valve 
movement but which are not included in the model. For example a stiction force for the suction valve is not 
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implemented in the model, due to the lack of experimental data for this effect. The adjustment of the valve model 
has been done by experimental data. More detailed information about the BVT can be found in the references above. 
 
Another important point for the simulation of the compressor is the modelling of the heat transfer. The heat transfer 
inside the cylinder is calculated using the approach described by Adair et al. (1972). Adair defines the Reynolds 
number as a function of the swirl velocity. Furthermore, the swirl velocity has been expressed as a function of the 
angular velocity of the compressor and the crank angle. A detailed description of the model can be found in Adair et 
al. (1972). 
 
2.2 1-dimensional Model 
The high resolution 1 dimensional scheme for the simulation of the flow and the pressure fluctuations inside the 
discharge line of the compressor can be classified as a 2nd order TVD – Scheme (Total Variation Diminishing) for 
compressible flows with variable cross sections, based on the solver from Coberán and Gascon (1994). The 
calculations have been done with characteristic transient boundary conditions for sonic and subsonic flows 
(Thompson (1990)). The method is based on the solution of the Euler-Equation written in conservative form (see 
equation (3)).  

0S
x
UF

t
U

 (3) 

 
U is the vector which includes the conservative variables (mass, momentum, and energy) in written form: , 

u , and E . Whereas F is called the Flux – Vector. The values of the conservative variables for the next time 
step can be calculated with: 

n
iii

n
i

n
i StFF

x
tUU 2121

1  (4) 

 
Index i denotes the cell number and index n denotes the time step. In equation (4) the vector iS  is the vector of the 

source terms of the system, and 21iF  represents the intercell numerical flux. 
 
2.3 Thermal Network 
The temperature connections between the masses inside the compressor are assessed with a thermal network, which 
is based on the lumped thermal conductance approach (Ooi (2003)). The main idea of the approach is that the 
compressor is divided into several masses; each of these masses is on a uniform temperature. The calculation of the 
mass temperature is done by an iterative process solving the 1st Law of Thermodynamics for every mass. Equation 
(5) shows the 1st Law of Thermodynamics for one exemplary mass.  

dt
umd

QQ ii
convicondi ..  (5) 

 
Because of investigating a steady state solution, the time derivative of the internal energy ii um  of mass i is zero. 
Due to this fact, and summarizing the convection and conduction parts to one heat flux, equation (5) can be written 
in the form seen in equation (6): 

0iQ  (6) 
 
With this equation it is possible to describe every heat flux as seen in equation (7), with iHTF  representing the heat 
transfer function. 

THTFQ i  (7) 
In this approach the radiation is neglected. Only the conduction and convection parts of the heat transfer are 
calculated by the use of correlations as worked out in Almbauer et al .(2006). 
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2.4 3-dimensional Model and Coupling  

 
Figure 2: Coupling of the flow variables between 3-d and 0-d 

 
As seen in figure 1 (b), the geometry of the suction muffler is very intricate, which consists of details which are not 
necessary for the flow or for the thermal behaviour of the muffler. To make modelling easier and to reduce the 
number of computational cells of the 3 dimensional parts, some details have been removed.  
The 3-d model further consists of a shell, which is modelled as a strongly simplified part and the suction pipe. For 
the pressure-velocity-coupling the PISO scheme has been chosen, recommended for transient flow calculations. At 
the suction pipe inlet a pressure inlet boundary condition has been adopted, representing the nominal values of a 
standardized cooling cycle. For the coupling between the 3-d and 0-d domain a velocity boundary condition has 
been chosen. The coupling procedure for the gas flow works as shown in figure 2.  
 
The first step for the coupling procedure (shown in figure 2) is to read the pressure at the inlet of the cylinder and the 
pressure inside the cylinder (p0 and p*). With this pressure difference it is possible to solve the equation of motion 
for the suction valve by the use of a 4th order Runge-Kutta method. Further 3 dimensional steady state simulations 
result in values for μ and . The parameter μ is called flow coefficient which is a quantity for the flow resistant 
(losses of friction and flow contraction included). The parameter  is called “Versperrungsziffer” which regards the 
change of the area variation; detailed definitions of these values can be seen in Pischinger et al. (2002). After these 
steps the stationary mass flow equation can be evaluated, resulting in the mass flow which runs into the cylinder.  
For the thermal coupling it has been decided to use a one way coupling for connecting the 3 dimensional model with 
the thermal network. This coupling was applied in order to reach a faster convergence and to keep the coupling 
effort in a controllable range. In the 1 dimensional thermal network the suction muffler is divided into 5 masses. For 
these masses the temperatures are calculated in the thermal network and the temperatures are sent back to the 3-d 
simulation as a boundary condition. The detailed 1-d layout for the thermal network can be seen in Abidin et al. 
(2006). 
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3. RESULTS 
 

For the quality of a suction muffler, two main parameters are relevant. These parameters are pressure loss and 
temperature gain, both values are measured at five different positions inside the suction muffler. The positions of the 
measuring points can be seen in figure 3. 

  
Figure 3 Position of different measuring points 

 
3.1 Pressure Loss 
To evaluate the pressure curve of a compressor cycle and to find a comparable unit (regarding different compressors 
and different suction mufflers) for the pressure loss, a standard method for the evaluation of the pressure loss is 
defined, first seen in Hanlon (2001) and modified by Lang (2007). This method of evaluation is strongly influenced 
by the methods used to analyse I.C. Engines, described in equation (8) and equation (9). suctionW  can be seen as 

increased work for volume change due to lowered suction pressure, while DV  stands for the displacement of the 
compressor.  

D

suction
suction V

W
p  (8) 

VC

VO
suction VdppW )( 0  (9) 

VC  ….. Valve closed 
VO  …..  Valve opened 
p0 ….. Suction pressure of the ideal cycle 
 
For the suction muffler the important pressure loss is the one which occurs during the opening phase of the suction 
valve, so the work due to volume change is only evaluated from the moment where the suction valve opens till it 
closes again. Using above described method applied to the data obtained from measurements and simulations, they 
can be summarized as seen in figure 4. 
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Pressure loss at different positions inside the suction muffler
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Figure 4: Pressure loss at different positions inside the suction muffler 

 
As shown in figure 4 the integral values of the measured and simulated values fit quite well together. Figure 5 shows 
the transient pressure curve during the suction valve opening in one specific measuring point. It can be seen that the 
simulation of the transient pressure in the time domain also matches with the experiment during the valve opening 
phase. This can be seen as indicator that the valve movement in the model is in a good agreement with the real 
movement of the valve.  

 

Figure 5: Pressure loss at different positions inside the suction muffler 
 
3.2 Temperature 
Measuring a transient gas temperature inside a reciprocating compressor is a difficult task. Due to the inertia of the 
sensor the fast temperature changes generated by the movement of the gas are not detected. Another effect which 
influences the quality of the temperature measurement is the connection of the sensor in the compressor. The surface 
of the wires is exposed to the hot gas inside the compressor shell, resulting in a heat flux through the isolation into 

Transient pressure curve on a point inside the muffler 
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the sensor material and influencing the measurement. Because of this, a bigger difference between experiments and 
simulation is expected. 

Temperature at different positions inside the suction muffler
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Figure 6: Temperature at different positions inside the suction muffler 

 
Figure 6 shows the temperature distribution inside the suction muffler. With exception of MP 3, experiment and 
simulation data fit quite well. The bigger difference in measuring point 3 is a hint that the temperature in this 
position has not converged yet. The time to achieve a converged simulation in measuring point 3 is much longer 
than the time in the other measuring points, because there is hardly any mass exchange inside this volume. So it 
takes a plenty of cycles to converge the temperature inside this volume.  
 

4. CONCLUSION 
 
A coupling procedure between a 0-d/1-d model and the 3 dimensional model of a suction muffler of a reciprocating 
compressor has been successfully developed. The models are strongly coupled; hence the number of unknown 
boundary conditions has been reduced. The model shows good correlations with the measurements, and thus it can 
be used to make forecasts of pressure loss, temperature gain, COP (Coefficient of Performance) and cooling 
capacities of compressors with new muffler designs. 
 

NOMENCLATURE 
 
A  valve cross sectional area  (m²) 

0F  preload force (N) 

aQ  heat (J) 

iQ  heat flux in point i (W) 

U  internal energy (J) 

tW  work due to volume change (J) 
c  spring rate of the valve (kg/s²) 
d  damping constant  (kg/s) 
e  restitution coefficient (-) 

ih  specific enthalpy (J/kg) 
m  effective valve mass (kg) 

im  mass of cell i (kg) 
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0p  upstream stagnation pressure (Pa) 

*p  downstream static pressure  (Pa) 
p  valve flow pressure difference (Pa) 
t  time step size (s)

u  gas velocity (m/s) 
u  averaged gas velocity (m/s) 

iu  internal energy  (J/kg) 
x  valve movement (m) 
x  valve velocity (m/s) 
x  valve acceleration (m/s²)

x  cell size (m) 
 gas density (kg/m³) 
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