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Abstract. Inspired by the great success of sparse coding for vector val-
ued data, our goal is to represent symmetric positive definite (SPD)
data matrices as sparse linear combinations of atoms from a dictionary,
where each atom itself is an SPD matrix. Since SPD matrices follow a
non-Euclidean (in fact a Riemannian) geometry, existing sparse coding
techniques for Euclidean data cannot be directly extended. Prior works
have approached this problem by defining a sparse coding loss function
using either extrinsic similarity measures (such as the log-Euclidean dis-
tance) or kernelized variants of statistical measures (such as the Stein
divergence, Jeffrey’s divergence, etc.). In contrast, we propose to use the
intrinsic Riemannian distance on the manifold of SPD matrices. Our
main contribution is a novel mathematical model for sparse coding of
SPD matrices; we also present a computationally simple algorithm for
optimizing our model. Experiments on several computer vision datasets
showcase superior classification and retrieval performance compared with
state-of-the-art approaches.

Keywords: Sparse coding, Riemannian distance, Region covariances

1 Introduction

Symmetric positive definite matrices—in the form of region covariances [1]—play
an important role as data descriptors in several computer vision applications.
Notable examples where they are used include object recognition [2], face recog-
nition [3], human detection and tracking [4, 5], visual surveillance [6], 3D object
recognition [7], among others. Compared with popular vectorial descriptors, such
as bag-of-words, Fischer vectors, etc., the second-order structure that covariance
matrices offer makes them particularly appealing. For instance, covariance de-
scriptors offer a convenient platform for fusing multiple features into a compact
form independent of the number of data points. By choosing appropriate fea-
tures, this fusion can be made invariant to image affine distortions [8], or robust
to static image noise and illumination variations, while generating these matrices
remains efficient using integral image transforms [4].

In this paper, we study SPD matrices in the context of sparse coding. The
latter is now an important, established tool in signal processing and computer
vision: it helps understand the inherent structure of the data [9, 10], leading
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to state-of-the-art results for a variety of vision applications [11–13]. Given an
input data point and an overcomplete dictionary of basis atoms, Euclidean sparse
coding seeks a representation of this point as sparse linear combination of atoms
so that a squared Euclidean loss is minimized. Formally, if B is the dictionary
and z the input data point, generic sparse coding may be formulated as

minθ L(z,B, θ) + λ Sp(θ), (1)

where the loss function L measures reconstruction accuracy obtained by using
the “code” θ, while λ regulates the impact of the sparsity penalty Sp(θ).

Sparse coding has found great success for vector valued data, so it is natural
to hope for similar benefits when applying it to the more complex setting of data
represented via SPD matrices. However, applying sparse coding to SPD matrices
is not straightforward, a difficulty that arises primarily because SPD matrices
form a curved Riemannian manifold of negative sectional curvature (so that dis-
tances along the manifold are lower than corresponding Euclidean distances). As
a result, this manifold cannot be isometrically embedded into Euclidean space
through operations such as mere vectorization, without introducing embedding
errors. Such errors can affect the application performance [14, 4]. On the other
hand, computing distances and solving optimization problems on the SPD man-
ifold is computationally demanding (see Section 3). Thus care must be taken to
select an appropriate loss function.

The main goal of this paper is to study sparse coding of SPD matrices in
their native Riemannian geometric context by using a dictionary comprised of
SPD matrices as atoms. Towards this end, we make the following contributions.

– Formulation: We propose a novel model that finds nonnegative sparse linear
combinations of SPD atoms from a given dictionary to well-approximate an
input SPD matrix. The approximation quality is measured by the squared
intrinsic Riemannian distance. As a theoretical refinement to our model,
we describe a surprising but intuitive geometric constraint under which the
nonconvex Riemannian sparse coding task actually becomes convex.

– Optimization: The main challenge in using our formulation is its higher com-
putational cost relative to Euclidean sparse coding. However, we describe a
simple and effective approach for optimizing our objective function.

– Experiments: We present results on a few computer vision tasks on several
state-of-the-art datasets to demonstrate superior performance obtained by
using our new sparse coding model.

To set the stage for presenting our contributions, we first survey some recent
methods suggested for sparse coding. After that we review key tools from Rie-
mannian geometry that we will use to develop our ideas. Throughout we work
with real matrices. The space of d×d SPD matrices is denoted as Sd

+, symmetric
matrices by Sd, and the space of (real) invertible matrices by GL(d). By Log(X),
for X ∈ S+, we mean the principal matrix logarithm.
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2 Related Work

Sparse coding of SPD matrices has recently received a significant attention in the
vision community due to the performance gains that it brings to the respective
applications. As alluded to earlier, the manifold geometry hinders a straight-
forward extension of classical sparse coding techniques to these objects. Prior
methods typically use one of the following proxies: (i) rather than Riemannian
geometry, use an information geometric perspective using an appropriate statis-
tical measure; (ii) map the matrices into a flat Riemannian symmetric space; or
(iii) use a kernelizable similarity measure to embed the matrices into an RKHS.
We briefly review each of these schemes below.

Statistical measures. In [15], a sparse coding framework is proposed based on
the log-determinant divergence (Burg loss) to model the loss function. Their
formulation requires sophisticated interior point methods for the optimization,
and as a result it is often slow even for moderately large covariances (more than
5× 5). In [16], a data matrix is approximated by a sparse linear combination of
rank-one matrices under a Frobenius norm based loss. Although this scheme is
computationally efficient, it discards the manifold geometry.

Differential geometric schemes. Among the several computationally efficient
variants of Riemannian distances, one of the most popular is the log-Euclidean
distance dle [17] defined for X,Y ∈ Sd

+ as dle(X,Y ) := ‖Log(X)− Log(Y )‖F.
The Log operator maps an SPD matrix isomorphically and diffeomorphically into
the flat space of symmetric matrices; the distances in this space are Euclidean.
Sparse coding with the squared log-Euclidean distance has been proposed in the
past [18] with promising results. A similar framework was suggested recently [19]
in which a local coordinate system is defined on the tangent space at the given
data matrix. While, their formulation uses additional constraints that make their
framework coordinate independent, their scheme restricts sparse coding to spe-
cific problem settings.

Kernelized Schemes. In [20], a kernelized sparse coding scheme is presented for
SPD matrices using the Stein divergence [21] for generating the underlying kernel
function. But this divergence does not induce a kernel for all bandwidths. To
circumvent this issue [22, 23] propose kernels based on the log-Euclidean distance.
It is well-known (and also shown in our experiments) that a kernelized sparse
coding scheme suffers significantly when the number of dictionary atoms is high.

In contrast to all these methods, our scheme directly uses the intrinsic Rie-
mannian distance to design our sparse reconstruction loss, which is the natural
distance for covariances. To circumvent the computational difficulty we propose
an efficient algorithm based on spectral projected gradient. Our experiments
demonstrate that our scheme is efficient and provides state of the art results on
several computer vision problems that use covariance matrices.
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3 Preliminaries

We provide below a brief overview of the Riemannian geometry of SPD matrices.
An SPD matrix has the property that all its eigenvalues are positive. For an n×n
SPD matrix, such a property restricts it to span only the convex half-cone of the
n2 dimensional Euclidean space of symmetric matrices. A manifold is a Hausdorff
space that is locally Euclidean and second-countable. The former property means
that there is a distinct neighborhood for every point belonging to this manifold.
Second countability suggests that there exists a countable collection of open sets
such that every open set is the union of these sets. These properties are often
useful for analyzing stationary points for optimization problems on the manifold.

For a point X on the manifold, its tangent space is a vector space consisting of
all the tangent vectors at that point. SPD matrices form a differentiable Rieman-
nian manifold, which implies that every point on it has a well-defined continuous
collection of scalar products defined on its tangent space and is endowed with
an associated Riemannian metric [24, Ch. 6]. This metric provides a measure on
the manifold for computing distances between points. As the manifold is curved,
this distance specifies the length of the shortest curve that connects the points,
i.e., geodesics. A manifold is Riemannian if it is locally Euclidean, that is its
geodesics are parallel to the tangent vectors.

There are predominantly two operations that one needs for computations on
the Riemannian manifold, namely (i) the exponential map expP : Sd → Sd

+ and

(ii) the logarithmic map logP = exp−1
P : Sd

+ → S
d, where P ∈ Sd

+. While the
former projects a symmetric point on the tangent space onto the manifold, the
latter does the reverse. Note that these maps depend on the manifold point P
at which the tangent spaces are computed. In our analysis, we will be measuring
distances assuming P to be the identity matrix1, I. A popular intrinsic (i.e.,
distances are computed along the curvature of the manifold) metric on the SPD
manifold is the affine invariant Riemannian distance [14]:

dR(X,Y ) =
∥

∥

∥
Log X−1/2Y X−1/2

∥

∥

∥

F
. (2)

4 Problem Formulation

We are now ready to introduce our new model for sparse coding of SPD matrices.
Figure 1 provides a schematic of our sparse coding model on the manifold.

Model. Let B be a dictionary with n atoms B1, B2, · · · , Bn, where each Bi ∈ S
d
+.

Let X ∈ Sd
+ be an input matrix that must be sparse coded. Our basic sparse

1 As the metric that we use in this paper is affine invariant, such a choice will not
distort the geometry of the manifold and is achieved by scaling the SPD matrices
by X−1/2 on the left and the right.
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Fig. 1. A schematic illustration of our sparse coding objective formulation. For the
SPD manifold M and given SPD basis matrices Bi on the manifold, our objective
seeks a non-negative sparse linear combination

∑

i αiBi of the Bi’s that is closest (in
a geodesic sense) to the given input SPD matrix X.

coding objective is to solve

min
α≥0

φ(α) :=
1

2
d2
R

(

∑n

i=1
αiBi,X

)

+ Sp(α)

=
1

2

∥

∥

∥
Log

∑n

i=1
αiX

− 1

2 BiX
− 1

2

∥

∥

∥

2

F
+ Sp(α),

(3)

where αi is the i-th component of α, and Sp is a sparsity inducing function.

Problem (3) measures reconstruction quality offered by a sparse non-negative
linear combination of the atoms to a given input point X. It will turn out (see
experiments in Section 6) that the reconstructions obtained via this model actu-
ally lead to significant improvements in performance over sparse coding models
that ignore the rich geometry of SPD matrices. However, this gain comes at a
price: model (3) is a difficult nonconvex problem, which remains nonconvex even
if we take into account the geodesic convexity of dR.

While in practice this nonconvexity does not seem to impede the use of our
model, we show below a surprising but highly intuitive constraint under which
Problem 3 actually becomes convex!

Theorem 1. The function φ(α) := d2
R(

∑

i αiBi,X) is convex on the set

A := {α |
∑

i
αiBi � X, and α ≥ 0}. (4)

Before we prove this theorem, let us intuitively describe what it is saying.
While sparsely encoding data we are trying to find sparse coefficients α1, . . . , αn,
such that in the ideal case we have

∑

i αiBi = X. But in general this equality
cannot be satisfied, and one only has

∑

i αiBi ≈ X, and the quality of this
approximation is measured using φ(α) or some other desirable loss-function.
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The loss φ(α) from (3) is nonconvex while convexity is a “unilateral” property—
it lives in the world of inequalities rather than equalities [25]. And it is known
that SPD matrices in addition to forming a manifold also enjoy a rich conic
geometry that is endowed with the Löwner partial order. Thus, instead of seeking
arbitrary approximations

∑

i αiBi ≈ X, if we limit our attention to those that
underestimate X as in (4), we might benefit from the conic partial order. It is
this intuition that Theorem 1 makes precise.

Lemma 1. Let Z ∈ GL(d) and let X ∈ Sd
+. Then, ZT XZ ∈ Sd

+.

Lemma 2. The Fréchet derivative [26, see e.g., Ch. 1] of the map X 7→ log X
at a point Z in the direction E is given by

D log(Z)(E) =
∫ 1

0
(βZ + (1− β)I)−1E(βZ + (1− β)I)−1dβ. (5)

Proof. This is a classical result, for a proof see e.g., [26, Ch. 11].

Corollary 1. Consider the map ℓ(α) := α ∈ Rn
+ 7→ Tr(log(SM(α)S)H), where

M is a map from Rn
+ → S

d
+ and H ∈ Sd, S ∈ Sd

+. Then, for 1 ≤ p ≤ n, we have

∂ℓ(α)
∂αp

=
∫ 1

0
Tr[KβS ∂M(α)

∂αp

SKβH]dβ,

where Kβ := (βSM(α)S + (1− β)I)−1.

Proof. Simply apply the chain-rule of calculus and use linearity of Tr(·).

Lemma 3. The Fréchet derivative of the map X 7→ X−1 at a point Z in direc-
tion E is given by

D(Z−1)(E) = −Z−1EZ−1. (6)

We are now ready to prove Theorem 1.

Proof (Thm. 1). We show that the Hessian ∇2φ(α) � 0 on A. To ease presen-
tation, we write S = X−1/2, M ≡ M(α) =

∑

i αiBi, and let Dq denote the
differential operator Dαq

. Applying this operator to the first-derivative given by
Lemma 4 (in Section 5), we obtain (using the product rule) the sum

Tr
(

[Dq log(SMS)](SMS)−1SBpS
)

+ Tr
(

log(SMS)Dq[(SMS)−1SBpS]
)

.

We now treat these two terms individually. To the first we apply Corr. 1. So

Tr
(

[Dq log(SMS)](SMS)−1SBpS
)

=
∫ 1

0
Tr(KβSBqSKβ(SMS)−1SBpS)dβ

=
∫ 1

0
Tr(SBqSKβ(SMS)−1SBpSKβ ·)dβ

=
∫ 1

0
〈Ψβ(p), Ψβ(q)〉M dβ,

where the inner-product 〈·, ·〉M is weighted by (SMS)−1 and the map Ψβ(p) :=
SBpSKβ . We find a similar inner-product representation for the second term
too. Starting with Lemma 3 and simplifying, we obtain

Tr
(

log(SMS)Dq[(SMS)−1SBpS]
)

= −Tr
(

log(SMS)(SMS)−1SBqM
−1BpS

)

= Tr
(

−S log(SMS)S−1M−1BqM
−1Bp

)

= Tr
(

M−1Bp[−S log(SMS)S−1]M−1Bq

)

.
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By assumption
∑

i αiBi = M � X, which implies SMS � I. Since log(·) is op-
erator monotone [24], it follows that log(SMS) � 0; an application of Lemma 1
then yields S log(SMS)S−1 � 0. Thus, we obtain the weighted inner-product

Tr
(

M−1Bp[−S log(SMS)S−1]M−1Bq

)

=
〈

M−1Bp, M−1Bq

〉

L
,

where L = [−S log(SMS)S−1] � 0, whereby 〈·, ·〉L is a valid inner-product.
Thus, the second partial derivatives of φ may be ultimately written as

∂2φ(α)

∂αp∂αq
= 〈Γ (Bq), Γ (Bp)〉 ,

for some map Γ and some corresponding inner-product (the map and the inner-
product are defined by our analysis above). Thus, we have established that the
Hessian is a Gram matrix, which shows it is semidefinite. Moreover, if the Bi

are different (1 ≤ i ≤ n), then the Hessian is strictly positive definite. ⊓⊔

5 Optimization

We briefly describe below our optimization approach for solving our main prob-
lem (3). In particular, we propose to use a first-order method, i.e., a method
based on the gradient ∇φ(α). The following lemma proves convenient towards
this gradient computation.

Lemma 4. Let B, C, and X be fixed SPD matrices. Consider the function
f(x) = d2

R(xB + C,X). The derivative f ′(x) is given by

f ′(x) = 2Tr(log(X−1/2(xB + C)X−1/2)X1/2(xB + C)−1BX−1/2). (7)

Proof. Introduce the shorthand S ≡ X−1/2 and M(x) ≡ xB + C. From defini-

tion (2) and using ‖Z‖
2
F = Tr(ZT Z) we have

f(x) = Tr(log(SM(x)S)T log(SM(x)S)).

Differentiating this the chain-rule of calculus immediately yields

f ′(x) = 2Tr(log(SM(x)S)(SM(x)S)−1SM ′(x)S),

which is nothing but (7). ⊓⊔

Writing M(αp) = αpBp +
∑

i6=p αiBi and using Lemma 4 we obtain

∂φ(α)

∂αp
= Tr

(

log
(

SM(αp)S
)(

SM(αp)S
)−1

SBpS
)

+
∂ Sp(α)

∂α
. (8)

Computing (8) for all α is the dominant cost in a gradient-based method for
solving (3). We present pseudocode (Alg. 1) that efficiently implements the gra-
dient for the first part of (8). The total cost of Alg. 1 is O(nd2)+O(d3)—a näıve
implementation of (8) costs O(nd3), which is substantially more expensive.
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Input: B1, . . . , Bn, X ∈ Sd
+, α ≥ 0

S ← X−1/2; M ←
∑n

i=1
αiBi;

T ← log(SMS)(MS)−1;
for i = 1 to n do

gi ← Tr(TBp);
end

return g

Algorithm 1: Subroutine for efficiently computing gradients

For simplicity, in (8) that defines φ(α) we use the sparsity penalty Sp(α) =
λ‖α‖1, where λ > 0 is a regularization parameter. Since we are working with
α ≥ 0, we replace this penalty by λ

∑

i αi, which is differentiable. This allows us
to use Alg. 1 in conjunction with a gradient-projection scheme that essentially
runs the iteration

αk+1 ←P[αk − ηk∇φ(αk)], k = 0, 1, . . . , (9)

where P[·] denotes the projection operator defined as

P[α] ≡ α 7→ argminα′

1
2‖α

′ − α‖22, s.t. α′ ≥ 0, α′ ∈ A. (10)

Iteration (9) has three major computational costs: (i) computing the stepsize
ηk; (ii) obtaining the gradient ∇φ(αk); and (iii) computing the projection (10).
Alg. 1 shows how to efficiently obtain the gradient. The projection task (10) is
a special least-squares (dual) semidefinite program (SDP), which can be solved
using any SDP solver or by designing a specialized routine. However, for the sake
of speed, we could drop the constraint α′ ∈ A in practice, in which case P[α]
reduces to the truncation max(0, α), which is trivial. We stress at this point that
developing efficient subroutines for the full projection (10) is rather nontrivial,
and a task worthy of a separate research project, so we defer it to the future. It
only remains to specify how to obtain the stepsize ηk.

There are several choices available in the nonlinear programming litera-
ture [27] for choosing ηk, but most of them can be quite expensive. In our quest
for an efficient sparse coding algorithm, we choose to avoid expensive line-search
algorithms for selecting ηk and prefer to use the Barzilai-Borwein stepsizes [28],
which can be computed in closed form and lead to remarkable gains in per-
formance [28, 29]. In particular, we use the Spectral Projected Gradient (SPG)
method [30] by adapting a simplified implementation of [29].

SPG runs iteration (9) using Barzilai-Borwein stepsizes with an occasional
call to a nonmontone line-search strategy to ensure convergence of {αk}. Without
the constraint α′ ∈ A, we cannot guarantee anything more than a stationary
point of (3), while if we were to use the additional constraint then we can even
obtain global optimality for iterates generated by (9).
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6 Experiments and Results

In this section, we provide experimental results on simulated and real-world data
demonstrating the effectiveness of our algorithm compared to the state-of-the-
art methods on covariance valued data. For all the datasets, we will be using
the classification accuracy as the performance metric. Our implementations are
in MATLAB and the timing comparisons used a single core Intel 3.6GHz CPU.

6.1 Comparison Methods

We denote our Riemannian Sparse coding setup as Riem-SC. We will compare
against six other methods, namely (i) log-Euclidean sparse coding (LE-SC) [18]
that projects the data into the Log-Euclidean symmetric space, followed by
sparse coding the matrices as Euclidean objects, (ii) Frob-SC, in which the mani-
fold structure is discarded, (iii) Stein-Kernel-SC [20] using a kernel defined by the
symmetric Stein divergence [21], (iv) Log-Euclidean Kernel-SC which is similar
to (iii) but uses the log-Euclidean kernel [23], (v) tensor sparse coding (TSC) [15]
which uses the log-determinant divergence, and generalized dictionary learning
(GDL) [16].

6.2 Simulated Experiments

Simulation Setup: In this subsection, we evaluate in a controlled setting, some
of the properties of our scheme. For all our simulations, we used covariances
generated from data vectors sampled from a zero-mean unit covariance normal
distribution. For each covariance sample, the number of data vectors is chosen to
be ten times its dimensionality. For fairness of the comparisons, we adjusted the
regularization parameters of the sparse coding algorithms so that the codes gen-
erated are approximately 10% sparse. The plots to follow show the performance
averaged over 50 trials. Further, all the algorithms in this experiment used the
SPG method to solve their respective formulations so that their performances are
comparable. The intention of these timing comparisons is to empirically point
out the relative computational complexity of our Riemannian scheme against the
baselines rather than to show exact computational times. For example, for the
comparisons against the method Frob-SC, one can vectorize the matrices and
then use a vectorial sparse coding scheme. In that case, Frob-SC will be substan-
tially faster, and incomparable to our scheme as it solves a different problem.

Increasing Dictionary Size: In this experiment, we fixed the matrix dimension-
ality to 10, while increased the number of dictionary atoms from 20 to 1000.
Figure 2(a) shows the result. As is expected, the sparse coding performance of
all the kernelized schemes drops significantly for larger dictionary sizes, while
our scheme performs fairly.
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Increasing Matrix Dimensionality: In this experiment, we fixed the number of
dictionary atoms to be 200, while increased the matrix dimensionality from 3
to 100. Figure 2(b) shows the result of this experiment. The plot shows that
the extra computations required by Riem-SC is not substantial compared to
Frob-SC.
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Fig. 2. Sparse coding time against (a) increasing number of dictionary atoms and (b)
increasing matrix dimensionality. We used a maximum of 100 iterations for all the
algorithms.

6.3 Experiments with Public Datasets

Now let us evaluate the performance of our framework on real-world computer
vision datasets. We experimented on four datasets, namely (i) texture recogni-
tion, (ii) person re-identification, (iii) view-invariant object recognition, and (iv)
3D object recognition. We describe these datasets below.

Brodatz Texture: Covariances have shown promising results for texture recog-
nition [1, 31] problems. Following the work of [15], we use the Brodatz texture
dataset2 for this experiment, which consists of 110 gray scale texture images.
Each image is of dimension 512× 512. We sampled approximately 300 patches,
each of dimension 25 × 25, from random locations of each image, from which
we removed patches without any useful textures (low entropy). This resulted in
approximately 10K patches. We used a five dimensional feature descriptor to
compute the covariances, with features given by: Ftextures = [x, y, I, |Ix| , |Iy|]

T
.

The first two dimensions are the coordinates of a pixel from the top-left corner
of a patch, the last three dimensions capture the image intensity, and gradients
in the x and y directions respectively. Covariances of size 5 × 5 are generated
from all features in a patch.

2 http://www.ux.uis.no/~tranden/brodatz.html
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Fig. 3. Montage of sample images from the four datasets used in our experiments. Top-
left are samples from the ETH80 object dataset, bottom-left are the Brodatz textures,
top-right are the samples from ETHZ people dataset, and images from the RGB-D
object recognition dataset are shown on bottom right.

ETH80 Object Recognition: Region covariances are studied for object recog-
nition applications in [2] demonstrating significant performance gains. In this ex-
periment, we loosely follow their experimental setup and evaluate our scheme on
the object recognition problem using the ETH80 dataset. This dataset consists
of eight ground truth object categories, each consisting of ten different instances
(see Figure 3) from 41 different views, for a total of 3280 images. These objects
undergo severe view point change, posing significant challenges to recognition
due to the high intra-class diversity.

To generate covariances, we use a combination of texture and color features.
First, we segment out the objects from the images using the given ground truth
masks. Next, we generate texture features from these segmented objects using a
bank of Laws texture filters [32] defined as: let H1 = [1 2 1]T , H2 = [−1 0 1]T ,
and H3 = [−1 2 − 1]T denote the filter templates, then the filter bank is:

Lbank =
[

H1H
T
1 H1H

T
2 H1H

T
3 H2H

T
1 H2H

T
2 H2H

T
3 H3H

T
1 H3H

T
2 H3H

T
3

]T
.

(11)
Let FLaws be a 9D feature vector obtained from every pixel after applying

Lbank. Appending other texture and color features as provided by the pixel color,
and gradients, our complete feature vector for every pixel on the object is:

FETH80 =
[

FLaws x y Ir Ig Ib |Ix| |Iy| |ILoG|
√

I2
x + I2

y

]T

, (12)

where ILoG stands for the Laplacian of Gaussian filter, useful for edge detection.
With this feature set, we generate covariances of size 19× 19 for each image.

ETHZ Person Re-identification Dataset: Recognition and tracking of peo-
ple are essential components of a visual surveillance system. Typically, the visual
data from such systems are more challenging compared to other sub-areas of com-
puter vision. These challenges arise mainly because the images used are generally
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shot in low-resolution or low-lighting conditions and the appearances of the same
person differ significantly from one camera to the next due to changes in poses,
occlusions, etc. Covariances have shown to be robust to these challenges, making
it an attractive option for person re-identification tasks [20, 5].

In this experiment, we evaluate people appearances recognition on the bench-
mark ETHZ dataset [33]. This dataset consists of low-resolution surveillance im-
ages with sizes varying between 78×30 to 400×200 pixels. The images are from
146 different individuals and the number of images for a single person varies be-
tween 5 and 356. Sample images from this dataset are shown in Figure 3. There
are a total of 8580 images in this dataset.

In literature, there exist several proposals for features on this task; examples
include Gabor wavelet [5], color gradients [20], etc. Rather than demonstrating
the performances of various feature combinations, we detail below the combina-
tion that worked best in our experiments (on a small validation set). Our feature
vector for this task is obtained by combining nine features:

FETHZ = [x Ir Ig Ib Yi |Ix| |Iy| |sin(θ) + cos(θ)| |Hy|]
T

, (13)

where x is the x-coordinate of a pixel location, Ir, Ig, Ib are the RGB color of
a pixel, Yi is the pixel intensity in the YCbCr color space, Ix, Iy are the gray
scale pixel gradients, and Hy is the y-gradient of pixel hue. Further, we also
use the gradient angle θ = tan−1(Iy/Ix). We resized each image to a fixed size
of 300 × 100, dividing it into upper and lower parts. We compute a different
covariance matrix for each part, which are then merged as two block diagonal
matrices to form a single 18× 18 covariance for each image.

3D Object Recognition Dataset: The goal of this experiment is to recog-
nize objects in 3D point clouds. To this end, we used the public RGB-D Object
dataset [34], which consists of about 300 objects belonging to 51 categories and
spread in about 250K frames. We used approximately 15K frames for our evalua-
tion with approximately 250-350 frames devoted to every object seen from three
different view points (30, 45, and 60 degrees above the horizon). Following the
procedure suggested in [35][Chap. 5], for every frame, the object was segmented
out and 18 dimensional feature vectors generated for every 3D point in the cloud
(and thus 18× 18 covariance descriptors); the features we used are as follows:

FRGBD = [x, y, z, Ir, Ig, Ib, Ix, Iy, Ixx, Iyy, Ixy, Im, δx, δy, δm, νx, νy, νz] , (14)

where the first three dimensions are the spatial coordinates, Im is the magnitude
of the intensity gradient, δ’s represent gradients over the depth-maps, and ν
represents the surface normal at the given 3D point. Sample images from this
dataset are given in Figure 3.

Experimental Setup: We used 80% of the Brodatz texture and the ETH80 ob-
jects datasets to form the training set and the remaining as the test set. Further,
20% of the training set was used as a validation set. For both these datasets, we
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used a linear SVM for training and classification. For the ETHZ dataset and the
RGB-D objects dataset, since there might not be enough images from a single
class to train a classifier, we resort to a nearest neighbor classification scheme
using our sparse coding framework. For this setup, we used 20% for learning the
dictionary, while the remaining data points were used as the query database.
The splitting was such that there is at least one data matrix from each class
in the training and the test set respectively. We used a dictionary of fixed size,
which is 10 times the matrix dimensionality, for all the experiments. This dictio-
nary was learned from the training set using Log-Euclidean K-Means followed by
projecting the cluster centroids onto the SPD manifold (exponential map). The
regularizations in the sparse coding objective was adjusted for all the datasets
(and all the experiments) to generate 10% sparse vectors. The slack parameter
for the SVM was selected via cross-validation.

Results: In Tables 1, 2, 3, 4, we report results of our Riem-SC scheme against
several state-of-the-art methods. For the texture and the object classification
problems, we report the average SVM classification accuracy after 5-fold cross-
validation. For the ETHZ people re-identification and RGB-D object recognition,
our experiments were as follows: every data point in the test set was selected
as a query point, and its nearest neighbor, in the Euclidean sense, is found
(recall that the database points and this query point are sparse coded), and is
deemed correct if their ground truth labels matched. The table shows that Riem-
SC shows consistent and state-of-the-art performance against other schemes.
Other methods, especially TSC and GDL are seen to perform poorly, while the
kernelized schemes perform favorably. Along with the accuracies, we also report
the respective standard deviations over the trials.

Discussion: Overall, our real-world and simulated experiments reveal that our
sparse coding scheme demonstrates excellent application performance, while re-
maining computationally tractable. The kernelized schemes show a close match
in accuracy to our scheme which is not unsurprising as they project the data
points onto a linear feature space. However, these methods suffer when working
with larger dictionary sizes, as our results in Figure 2 show. Other sparse coding
schemes such as TSC are difficult to optimize while their performances are poor.
In summary, our algorithm offers a practical trade off between accuracy and
performance.

7 Conclusion and Future Work

In this paper, we proposed a novel scheme for representing symmetric positive
definite matrices as sparse linear combinations of atoms from a given dictionary;
these atoms themselves being SPD matrices. In contrast to other approaches that
use proxy distances on the manifold to define the sparse reconstruction loss, we
propose to use the most natural Riemannian metric on the manifold, namely the
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Method Accuracy (%)

LE-SC 47.4 (11.1)
Frob-SC 32.3 (4.4)

K-Stein-SC 39.2 (0.79)
K-LE-SC 47.9 (0.46)

TSC 35.6 (7.1)
GDL 43.7 (6.3)

Riem-SC(ours) 53.9 (3.4)
Table 1. Brodatz texture dataset

Method Accuracy (%)

LE-SC 68.9 (3.3)
Frob-SC 67.3 (1.4)

K-Stein-SC 81.6 (2.1)
K-LE-SC 76.6 (0.4)

TSC 37.1 (3.9)
GDL 65.8 (3.1)

Riem-SC(ours) 77.9 (1.9)
Table 2. ETH80 object recognition

Method Accuracy (%)

LE-SC 78.5 (2.5)
Frob-SC 83.7 (0.2)

K-Stein-SC 88.3 (0.4)
K-LE-SC 87.8 (0.8)

TSC 67.7 (1.2)
GDL 30.5 (1.7)

Riem-SC(ours) 90.1 (0.9)
Table 3. ETHZ Person Re-identification

Method Accuracy (%)

LE-SC 86.1 (1.0)
Frob-SC 80.3 (1.1)

K-Stein-SC 75.6 (1.1)
K-LE-SC 83.5 (0.2)

TSC 72.8 (2.1)
GDL 61.9 (0.4)

Riem-SC(ours) 84.0 (0.6)
Table 4. RGB-D Object Recognition

Affine Invariant Riemannian distance. Further, we proposed a simple scheme to
optimize the resultant sparse coding objective. Our experiments demonstrate
that our scheme is computationally efficient and produces superior results com-
pared to other schemes on several computer vision datasets. Going forward, an
important future direction is the problem of efficient dictionary learning under
these formulations.
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