
HAL Id: hal-01091033
https://hal.inria.fr/hal-01091033

Submitted on 4 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DistillFlow: removing redundancy in scientific workflows
Jiuqiang Chen, Sarah Cohen-Boulakia, Christine Froidevaux, Carole Goble,

Paolo Missier, Alan Williams

To cite this version:
Jiuqiang Chen, Sarah Cohen-Boulakia, Christine Froidevaux, Carole Goble, Paolo Missier, et al..
DistillFlow: removing redundancy in scientific workflows. SSDBM ’14 Proceedings of the 26th Inter-
national Conference on Scientific and Statistical Database Management, Jun 2014, Aalborg, Denmark.
�10.1145/2618243.2618287�. �hal-01091033�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49575278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01091033
https://hal.archives-ouvertes.fr


DistillFlow: Removing redundancy in Scientific Workflows

[Demonstration proposal]

Jiuqiang Chen
School of Information Science

and Engineering
Lanzhou University, China

LRI CNRS UMR 8623
Université Paris Sud

AMIB group, INRIA Saclay
91405 Orsay, France

chenj@lri.fr

Sarah Cohen-Boulakia
LRI CNRS UMR 8623
Université Paris Sud

AMIB group, INRIA Saclay
91405 Orsay, France

cohen@lri.fr

Christine Froidevaux
LRI CNRS UMR 8623
Université Paris Sud

AMIB group, INRIA Saclay
91405 Orsay, France

christine.froidevaux@lri.fr

Carole Goble
University of Manchester

United Kingdom
carole.goble

@manchester.ac.uk

Paolo Missier
University of Newcastle

United Kingdom
paolo.missier
@ncl.ac.uk

Alan R Williams
University of Manchester

United Kingdom
alanrw@cs.man.ac.uk

ABSTRACT
Scientific workflows management systems are increasingly
used by scientists to specify complex data processing pipelines.
Workflows are represented using a graph structure, where
nodes represent tasks and links represent the dataflow. How-
ever, the complexity of workflow structures is increasing over
time, reducing the rate of scientific workflows reuse. Here,
we introduce DistillFlow, a tool based on effective methods
for workflow design, with a focus on the Taverna model. Dis-
tillFlow is able to detect ”anti-patterns” in the structure of
workflows (idiomatic forms that lead to over-complicated de-
sign) and replace them with different patterns to reduce the
workflow’s overall structural complexity. Rewriting work-
flows in this way is beneficial both in terms of user experi-
ence and workflow maintenance.
Availability: DistillFlow is available for use at
http://www.lri.fr/∼chenj/DistillFlow

General Terms
Scientific workflows structures; Refactoring; Anti-patterns

1. INTRODUCTION
Scientific workflows management systems [5, 3, 4] are in-
creasingly used to specify and manage in-silico experiments
to easily design complex data processing pipelines. However,
while the number of available scientific workflows is increas-
ing, workflows are not (re)used and shared as much as they
could be [6, 2]. Several causes for the limited workflow reuse

have been identified (e.g., [7]). In the present work we focus
on the complexity of workflow structure – that involves the
number of nodes and links but is also related to intricate
workflow structure features – as the important cause that
we want to consider.

In recent prior work [1], we have proposed a workflow refac-
toring approach that aims at automatically detecting parts
of the workflow structure which can be simplified by remov-
ing explicit redundancy (we call these idiomatic structures
”anti-patterns”). The workflow rewriting process which re-
duces the complexity is then performed without altering the
original workflow semantics (defined as the ability of both
workflows to provide the same outputs given the same in-
puts). Our main contention is that such a reduction in com-
plexity can be performed automatically, and that it will be
beneficial both in terms of user experience and operational
efficiency. Extensive comparison of our approach to related
work is provided in [1].

In this companion demo paper, we introduce the DistillFlow
system which implements a full refactoring approach of the
workflows from the Taverna workflowmanagement system [5],
which for the past ten years has been popular especially
within the bioinformatics community.

In the remainder of this paper we summarize the main prin-
ciples of the refactoring approach we propose (Section 2);
Section 3 introduces the architecture of DistillFlow while
Section 4 provides the main functionalities of the tool that
will be highlighted during the demonstration. We conclude
the paper in Section 5.

2. REFACTORING
The aim of our approach is to provide a refactoring proce-
dure to reduce the complexity of workflows. More precisely,
our goal is to replace several occurrences of the same pro-
cessor with one single occurrence whenever possible, while



Figure 1: Rewritting rules for anti-patterns of kind A and B.

Figure 2: Example of workflow where anti-patterns of kind A and B have been highlighted

following several assumptions: (i) the processors we con-
sider are deterministic (the same output is produced given
the same input); (ii) only processors implemented using the
exact same code can be merged (in our setting, two pro-
cessors are equivalent if they represent identical web service
calls, or they contain the same script, or they are bound
to the same executable Java program). In practice, condi-
tion (ii) is often realized, because processors are duplicated
during workflow design by means of a graphical “copy and
paste” operation. Figure 1 introduces the two generic pat-
terns and the transformation rules we have so far considered
; these rules allow the rewritting of anti-patterns into pat-
terns without redundancy. Figure 2 provides an example of

workflow where equivalent processors have been highlighted.

More precisely, anti-pattern A deals with simple redundancy
where the same processor P appears with r occurrences (de-

noted P
(1)...P (r) in the figure) and each occurrence takes the

exact same input (and can be thus replaced by one single
occurrence). Anti-pattern B depicts a more complex case
where the various occurrences of the same processor have
only part of their inputs in common. In the rewritten pat-
tern, input data that differ from one occurrence to another
(Ll

t+1 to L
l

k) have been merged using the merge processors
provided by Taverna (the circle icon) to construct lists of
data from the original data items to exploit the implicit it-



erative process of Taverna. As a consequence, the rewritten
pattern contains a list split processor called SPLITr to de-
compose the list obtained as output into r pieces to ensure
that the downstream fragment of the workflow remains un-
changed.

The DistillFlow algorithm removes as many anti-patterns
as possible, following a recursive process. This paper omits
the details about the way we carefully apply rewriting rules
and how we consider the various strategies followed by the
processors when dealing with lists of input data (cross and
dot strategies, see [1] for more information on this point).

3. DISTILLFLOW ARCHITECTURE
The architecture of DistillFlow, implemented in Java, is in-
troduced in Figure 3. The process of transforming a Tav-
erna workflow is described as follows. The user provides
the specification of the workflow to be considered. The
TavernaLoader module is then responsible for loading the
workflow into the DistillFlow internal graph structure. The
Anti-pattern Checker module determines whether or not the
workflow taken in contains anti-patterns and provides a re-
port with graph features, including the identification of anti-
patterns (if any) and a list of anti-patterns that the system
recommends to remove. The user can interact (using the
UserCollaboration module) with each item of such a list to
visualize the corresponding information on the specification
graph. If the workflow contains anti-patterns, then the list of
anti-patterns selected by the user (possibly all anti-patterns)
is sent to the Anti-pattern Remover module which removes
them. The user can visualize the workflow obtained and de-
cide to stop considering additional anti-patterns. When the
user is fine with the workflow obtained, the TavernaLoader

module produces the rewritten workflow into the Taverna
XML format.

Figure 3: Architecture of DistillFlow

Our implementation is flexible and includes both a library
of anti-patterns and a library of rewriting rules (algorithms)
making it possible and easy to consider more anti-patterns
and rewriting rules in the future.

4. DEMONSTRATION SKETCH
Users communicate with DistillFlow by loading and interact-
ing with original and rewritten workflows. The demonstra-
tion will present the following functionalities of the system,
based on the workflow of Figure 2.

Loading Data. Users start using DistillFlow by loading a
workflow specification into the system (see Figure 4). The
original picture of the workflow from myExperiment is dis-
played by DistillFlow if available (panel (4)), together with
a report on graph features (metadata on the workflow, panel
(2)). The anti-patterns are determined and the list of anti-
patterns displayed in panel (3) while using colors to help
users easily distinguish different anti-patterns on the work-
flow graph (”brown” is related to anti-pattern A while ”pur-
ple” is related to anti-pattern B). The same color is system-
atically used on the workflow (to display the nodes involved
in an anti-pattern) and on the text listing the anti-patterns
(panel (3)).

Refactoring the workflow. Anti-patterns can be removed
either all-at-once or in a step-by-step process (selected by
the user).
Refactoring all-at-once: DistillFlow allows to automatically
remove all the anti-patterns by clicking on the ”Remove All
anti-patterns” main button (top of Figure 4).
Selecting anti-patterns in collaboration with the user: Dis-
tillFlow allows the selection of which anti-patterns users
want to be removed. By clicking on the anti-patterns infor-
mation (panel (3)), DistillFlow highlights the correspond-
ing processors on the graph (panel (1)). Then an operation
menu (panel (3)) allows the user to perform the remove op-
erations on the anti-patterns.
Once all the selected anti-patterns have been removed, the
user can click on the Result Overview button (top of Fig-
ure 4). The window entitled ”Result Overview” depicted in
Figure 5 appears. The original (panel (a1)) and distilled
workflows (panel (b1)) are displayed.

Interacting with the initial and distilled workflows. To
understand which changes have been done between the ini-
tial and distilled workflows, users can interact with the two
workflows depicted on Figure 5. By clicking on a node of
one graph (initial or transformed graph), DistillFlow high-
lights the ”corresponding” processors in the other graph (it
shows the correspondence between a set of occurrences of
a given processor P in the original graph and a set of oc-
currences of the processor P in the (possibly partly) dis-
tilled workflow). A detailed report of all the anti-patterns
is also displayed (panel (d)). By clicking on the items of
the anti-pattern information panel, the corresponding pro-
cessors will be highlighted on the initial workflow and on
the rewritten workflow. As an example in Figure 5, the
user has clicked on anti-pattern ”7-8-9” in the anti-pattern
information panel (d) which has automatically highlighted
the corresponding anti-pattern both in the initial workflow
(panel (a1), in which three nodes are involved) and in the
distilled workflow (panel (b1), in which the anti-pattern has
been removed by the system, merging nodes ”7”, ”8”and ”9”,
resulting in only one vertex, numbered ”7”).

Running the distilled workflow : Any workflow distilled
by DistillFlow can be opened and run with Taverna. In our
demonstration, we will show that the original and trans-
formed workflows have the same semantics: given the same
input, they provide the same output using the Taverna en-
gine.

5. CONCLUSION



Figure 4: Loading a workflow in DistillFlow and visualizing the set of anti-patterns detected.

Figure 5: Visualizing both initial workflow and distilled workflow.

The paper introduces a demonstration proposal for DistillFlow,
a tool able to aid workflow designers in the minimization of
explicit redundancy in scientific workflows. Our tool is avail-
able to the community and it is effective in that it is able to
take in workflows from the Taverna system and produces to
its turn runnable workflows in the Taverna system.

Recent keynote talks, tutorials and research papers from the
scientific database community show that scientific workflows
play a crucial role in data integration and graph-structured

data are increasingly complex to deal with. Techniques to
reduce the complexity of graph structures and improve the
readability and maintenance of scientific workflows are thus
of increasing interest. This demonstration is at the inter-
section of these topic areas, and provides a refactoring tool
that is interesting to the scientific database community.

6. REFERENCES
[1] S. Cohen-Boulakia, J. Chen, P. Missier, C. Goble, A. R.

Williams, and C. Froidevaux. Distilling structure in
taverna scientific workflows: a refactoring approach.
BMC Bioinformatics, 15(Suppl 1):S12, 2014.

[2] S. Cohen-Boulakia and U. Leser. Search, adapt, and

reuse: the future of scientific workflows. SIGMOD

Record, 40(2):6–16, 2011.

[3] J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a
comprehensive approach for supporting accessible,
reproducible, and transparent computational research
in the life sciences. Genome Biol, 11(8):438–462, 2011.

[4] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. B. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the kepler system.
Concurr Comput, 18(10):1039–1065, 2006.

[5] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan,
A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and
C. Goble. Taverna, reloaded. In Proc. of SSDBM,
volume 6187 of LNCS, pages 471–481, 2010.

[6] J. Starlinger, S. Cohen-Boulakia, and U. Leser. (re)use
in public scientific workflow repositories. In Proc. of

SSDBM, volume 7338 of LNCS, pages 361–378, 2012.

[7] J. Zhao, J. M. Gómez-Pérez, K. Belhajjame, G. Klyne,
E. Garćıa-Cuesta, A. Garrido, K. M. Hettne, M. Roos,
D. D. Roure, and C. A. Goble. Why workflows break -
understanding and combating decay in taverna
workflows. In Proc of e-Science, pages 1–9. IEEE
Comp. Society, 2012.


