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ABSTRACT 

 
This paper is the first of a three part report on the transient thermal analysis of screw compressors. Knowledge of 
rotor-to-housing and rotor-to-rotor clearances is a fundamental first step in defining part dimensions that lead to a 
design with high efficiency and reliability, characteristics which must be balanced as they impose opposite demands 
on internal clearances. As reliability and performance are functional characteristics of the compressor, it is important 
that clearances be understood in the context of loaded operation. A proper assessment of the design can only be 
made if this understanding extends over the entire operating envelope of the compressor for both steady-state and 
transient operation. 
 
A finite element analysis procedure has been developed to allow computation of rotor-to-rotor and rotor-to-housing 
clearances for a refrigerant screw compressor. In this first part of the report, we describe a model for calculating 
surface heat transfer coefficients and refrigerant bulk temperatures using a one-dimensional thermodynamic 
simulation. The result of this step is a set of heat transfer coefficients and gas temperatures defined on the rotor and 
housing surfaces. This information is then passed on to serve as boundary conditions in a finite element model. 
Development of the finite element modeling approach, analysis of rotor-to-housing clearances and analysis of the 
thermal effects on rotor-to-rotor clearances are discussed in Parts II and III of the report. 
 

1. INTRODUCTION 
 
One of the primary challenges in screw compressor design is achieving the low levels of clearance required for high 
efficiency while not allowing them to go so low as to result  in damage or failure of the compressor. There are two 
major factors that make this task particularly difficult: variation in dimensions of the parts due to manufacturing 
variability and changes in the part caused by the pressure and temperature loads imposed during operation. This 
paper addresses the second of these issues, specifically the development of a process to compute the effects of 
thermal loads on operating clearances between the screw rotors and between the rotors and stationary housing parts. 
 
Computations of temperatures of the rotor and housing parts and the resultant changes in size and shape of these 
parts are carried out using an ANSYS® finite element model. This requires that boundary conditions be defined on 
the surfaces of the model that are exposed to the fluid in and around the compressor. The approach chosen is to 
specify fluid temperature and heat transfer coefficients at the solid-fluid interfaces. Fluid properties are calculated 
using a proprietary thermodynamic simulation developed for use in the design and analysis of refrigeration screw 
compressors. This program computes the internal pressures and temperatures given details of the rotor geometry, 
clearances and flowpath. Using this model to supply boundary conditions for the finite element analyses requires the 
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addition of two new capabilities: estimation of local heat transfer coefficients and a process for associating the 
information in the thermodynamic simulation with nodes in the finite element model. These topics are discussed in 
this paper. Finite element modeling and analysis results are reported in parts II and III of the report, Weathers, et al 
(2006) and Powell, et al (2006), respectively. 
 

2. CALCULATION OF BOUNDARY CONDITIONS 
 
An existing thermodynamic simulation of the refrigerant screw compressor serves as the basis for the process of 
determining appropriate boundary conditions for the finite element model. This program computes the pressure, 
temperature and mass in the volume – the working chamber – defined by the meshing screw rotors and adjacent 
stationary housing parts. Properties change as the compression process proceeds from inlet to discharge, the fluid 
being transported and compressed due to the reduction in 
the working chamber volume caused by the meshing of the 
rotor pair. At any time during this process, the properties of 
the fluid are assumed to be constant throughout the 
working chamber. 
 
Figure 1 shows a pair of screw rotors, illustrating the 
working chamber at a point early in the intake process. The 
flutes in the rotors and the stationary housing parts (not 
shown) capture the fluid. As the rotors rotate, the volume of 
the chamber changes, at first increasing from the state 
shown in Figure 1 to a maximum value defining the 
physical displacement of the compressor. The volume then 
decreases  to compress then discharge the refrigerant on the high pressure side to the left and on the bottom of the 
rotor pair as shown in the figure. The simulation program provides much of the information needed to estimate 
surface heat transfer coefficients, but it did not have a model for carrying out the actual calculations. However, such 
a model was already developed by Kauder and Keller (1995). We decided to adopt the methods reported in the 
reference and develop modifications or adjustments as necessary as experience was gained in our oil-injected, 
refrigerant compressors. 
 
Estimation of the heat transfer at the screw rotor and housing surfaces is based on application of well-known heat 
transfer models for flow in a pipe and for free or forced convection at simple plain surfaces or fins. Surface models 
adopted are: 
 
Cylindrical shell 
Upper side of a flat plate 
Lower side of a flat plate 
Vertical flat surface 
 
Examples of how these models are used for the screw compressor problem follow in the remainder of this section. 
Heat transfer coefficients for the surfaces of the screw rotor lobes are determined by employing the relationship for 
flow in a pipe as documented in Section 2.1. Section 2.2 contains an example of using the surface models for heat 
transfer at the compressor housing surfaces. The work reported is based on the approach taken in Kauder and Keller 
(1995). This work was presented to the project team in more detail in a seminar conducted by Kauder, Janicki and 
von Unwerth (2001). 
 
2.1 Heat Transfer Coefficients on Rotor Housing Surfaces 
Estimation of the heat transfer coefficient for the working chamber surfaces is based on the model for turbulent flow 
in a pipe. The definition of the non-dimensional heat transfer coefficient α as used in the modeling is: 
 

 
TA

q
∆⋅

=α
&

 (1) 

 

Working chamber 

Figure 1 Rotor pair and working chamber 
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This equation is used to solve for the heat flux for known values of α, which is computed using the definition of the 
Nusselt number, Nu: 
 

 
λ
⋅α

=
L

Nu   or  
L

Nu λ⋅
=α  (2) 

 
After the suggestion of Kauder and Keller (1995), the calculation of the Nusselt number for the flow in the working 
chamber is adapted from that for flow in a pipe: 
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Where the Reynolds number (Re) and Prandtl number (Pr) are defined as: 
 

 
η

ρ⋅⋅= LcRe  (4a) 

 
k

C
Pr p⋅η

=  (4b) 

 
The viscosity ratio at the right hand side of equation (3) is assumed to be 1.0 after the proposal in the reference. 
However, due to the application of the models to a real gas environment in the refrigeration compressor and because 
the computational effort is low, the Prandtl number is retained as a variable. 
 
Evaluation of equations 2, 3 and 4 for the working chamber requires selection of a characteristic length, L, hydraulic 
diameter, dh, and velocity, c. Following the referenced analysis approach, the velocity relative to the stationary 
housing surfaces forming the working chamber is the vector sum of an 
axial velocity and the rotor tangential velocity. The axial velocity is 
determined from the rate at which the end of the working chamber 
sealed by the meshing of the rotors moves axially as the rotors rotate, 
determined by the rotor rotational velocity and the lead or wrap angle 
of the helical rotors. The calculation of the re ference velocity is 
illustrated in Figure 2. The axial component cz of the working chamber 
velocity is: 

 n2
L

c
r

r
z ⋅π⋅

Φ
=   (5) 

 
The tangential velocity is computed using a reference radius rm. This 
radius bisects the chamber cross sectional area (the plane P in Figure 2) 
into two equal areas, one between the rotor root and rm and the other 
between rm and the outer diameter of the rotor lobe. The tangential velocity associated with this radius is: 
 
 ω⋅= mu rc  (6) 
 
This leads to the calculation for the fluid velocity in the chamber to be used for heat transfer coefficient calculations 
at the housing wall: 
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2
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Figure 2  Reference velocity 
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The hydraulic diameter, defined as 4 times the perimeter of a surface divided by its planar area, in equation 3 is 
computed for the cross sectional area, P in Figure 2. This hydraulic diameter is used as the reference length for the 
Reynolds number calculation (equation 4a). 
 
We decided to use the overall rotor length for the reference length (L) term in equation 3. With this, the Nusselt 
number varies with the fluid properties for a given geometry and rotational speed as the Reynolds and Prandtl 
numbers are the only variables in the equation. These vary only with fluid properties as a result of the assumptions 
and simplifications introduced. 
 
The thermodynamic simulation is set up as an initial value problem, solving a set of simultaneous differential 
equations to compute what happens to the flow as it traverses the compressor. At any point in time, the working 
chamber has a particular size (volume) and location depending on the 
rotational orientation of the two rotors. The assumption in the model is 
that the fluid properties are uniform throughout the volume. This means 
that the fluid temperature and the calculated heat transfer coefficients 
will be the same at all surfaces enclosing the chamber at the particular 
time and rotor rotation angle being analyzed. If we consider one point 
on the stationary housing forming the outer boundary of the chamber, 
we see that it will experience a variation in properties during the time it 
is within the boundaries of the chamber – a period of time equivalent to 
the passage of one rotor lobe. The problem, then, is one of associating 
the part of the compression process seen by each point on the housing, 
then averaging the temperature and heat transfer coefficient over that 
period to arrive at values for use as boundary conditions in the finite 
element modeling. 
 
Figure 3 illustrates the process of assigning average properties to a 
particular point on the housing. Consider a representative location on 
the housing of the male rotor, indicated by the larger white, square 
symbol designated “P” in Figure 3a. The illustrations show the rotor 
housing in an “unwrapped” view. The gray points in 3a are actually 
locations of nodes on the inner surface of the rotor housing from the 
finite element model used for the analysis. The housing surfaces are 
unwrapped around the high pressure cusp, the dark vertical line in the 
center (see Figure 4 for an illustration of the physical and unwrapped 
views compared). The inlet or low pressure end of the housing it at the 
bottom of the illustration; the high pressure end, with the discharge port as 
indicated, is at the top. The pairs of oblique lines are the unwrapped projections of the rotor lobe tips with the male 
rotor on the left, the female on the right. The working chamber we follow through the process exists between these 
lines. As the rotors rotate and the compression process proceeds from intake through to the discharge, the working 
chamber in Figure 3 moves from the bottom towards the top. 
 
The inlet port for the compressor analyzed includes a section of the housing above the rotors that is relieved – a very 
large radial clearance. This is the white area with no symbols in the plots in Figure 3.  Figure 3a shows a point in the 
process where the working chamber is filling as the rotors are fully in this area. After some rotor rotation, the 
working chamber has been carried to the position shown in Figure 3b. Here, the trailing lobes (lower lines) have 
passed the edge of the inlet port – the boundary between the open area and the area defined by the gray symbols. 
The chamber volume has reduced and the refrigerant is somewhat compressed. In the location shown in 3b, the 
leading lobe of the male rotor has arrived at the point P. We begin to track the fluid conditions seen at P at this point. 
As mentioned, the properties within the working chamber vary with time as the compression process progresses, but 
the properties are uniform throughout the chamber at any particular time during this process.  All of the nodes on the 
housing that are within the working chamber are re-plotted in the figure with the larger, black symbols. All fluid 
properties and the resultant heat transfer coefficient are the same at each of these points for this rotor orientation. 
Figure 3c shows the process farther along in the compression phase. Now, the trailing lobe has reached point P. The 
trailing lobe in this case is in the same location as the leading lobe in 3b; thus, point P has seen one entire cycle of 
property variation and is now beginning to repeat the cycle. 

Figure 3. Rotor housing 
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This process occurs at every point on the housing and each point sees  one-fifth of one complete rotation of the male 
rotor for this case of a 5-lobed male. The location of the working chamber at any point in the process is identified by 
the angular orientation of the leading lobe of the male rotor. The thermodynamic simulation produces a table of fluid 
properties with this rotation angle serving as the independent variable. The data is imported into an Excel® 
workbook where the computation of the heat transfer coefficients as described earlier in this section is carried out. 
Now, we have a table of rotor rotation angle and corresponding pressures, temperatures and heat transfer 
coefficients that need to be assigned to particular points on the housing. The process is that just discussed and 
illustrated in Figure 3. The workbook has a function that computes the male rotor rotation angle required to bring the 
leading lobe of the male rotor to the location of the point – point P in our illustration. This is the rotation of Figure 
3b. The properties for the fluid from this rotation angle through to the rotation 72° later (for this 5 lobe rotor) are 
then averaged. These are the properties assigned to point P to be used as boundary conditions for the finite element 
model.  
 
Figure 4 shows results from the thermodynamic simulation displayed on physical (4a) and unwrapped (4b) rotor 
bore surfaces. The low pressure cusp – the line of intersection of the housing bores – lies along CD. The housing 
surface is cut here and unwrapped as 
shown by the arrows shown in 4a. 
The unwrapped, flattened surface 
that results is shown in Figure 4b. 
The three openings shown on the 
male rotor side of the housing are 
unloader ports. Unloading for this 
compressor is described in Sauls 
(1998). 
 
Contours of fluid temperature at the 
rotor bore surfaces computed, 
averaged and applied as discussed 
earlier in this section, are shown in the 
figure (scale in °F). Contours of 
pressure and heat transfer coefficient would look very much the same. As expected from the averaging process, 
areas of constant properties align with the helical orientation of the projection of the rotor tips bounding the working 
chamber at the housing surface. 
 
The example illustrated in Figure 3 showed the housing points identified by coordinates of nodes from a finite 
element model. In its current state, the workbook used for computing heat transfer coefficients and assigning them to 
housing locations uses a selected set of nodes from the housing surface in the finite element model.  The resulting 
table of coordinates and properties is written to a text file. A macro was developed within ANSYS to read this table 
and interpolate at actual node locations selected for the finite element model, meaning that the boundary condition 
assignment process does not have to be repeated outside of the ANSYS environment if the finite element model is 
modified. 
 
2.2 Heat Transfer Coefficients on Rotor Surfaces 
The process of computing temperatures and heat transfer coefficients for 
the rotor surfaces is the same as for the rotor bore surfaces. It was 
suggested by Kauder and Keller (1995) that the fluid velocity for use in 
calculations be the projection of the axial velocity cz (equation 5) in the 
direction of the rotor helix. This adjustment can be made to arrive at a 
velocity c on which to base the Reynolds number. The representative 
length and diameter factors are the same as used in Section 2.1. 
 
The pattern of boundary conditions computed for the rotor surfaces is 
illustrated in Figure 5. Here, a single male rotor passage is shown without 
the actual rotor helix – a zero wrap-angle representation. Plotted on the 
surface are contours of temp erature (scale in °F). Again, the conditions are 

 (a) (b) 
 Physical Surface Unwrapped Surface 

 Figure 4   Fluid temperatures at housing surface. 
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averaged over a period of one revolution. The shape of the pattern on the surface is dictated in part by the rotor mesh 
pattern. A point on the rotor inside of the working chamber will remain exposed to the conditions in that chamber 
until it reaches the point of meshing with a corresponding point on the opposite rotor. At this point, it is one of a 
locus of points that define the sealing line between the active working chamb er and another chamber on the low 
pressure side of the process. Further rotation moves the point into this other chamber. Points on the rotor profile near 
the inlet end of the rotors (lower left in Figure 5) are almost always exposed to inlet conditions, hence the large area 
at the nearly uniform low temperature. At the discharge end, however, a point will be exposed to conditions of the 
higher pressure end of the compression process and to the conditions during the discharge process. They are exposed 
to higher temperatures for a longer period of time , but do cycle back to exposure to inlet conditions for at least a 
short  period of a rotor revolution. The highest temperature assigned to a rotor profile point is always less than the 
discharge gas temperature due to this averaging. 
 
One interesting feature of the pattern on the male rotor is the fairly large difference in average temperature along the 
profile near the discharge end (upper right end in Figure 5). This is due to the nature of the rotor meshing resulting 
from the conjugate generation of the two profiles relative to each other. For this particular profile, the meshing 
results in the “round side”, the left side in Figure 5, being exposed to the high pressure discharge gas for a fairly 
long period of time. The “straight side,” on the right side in the figure, however, forms the high pressure end of a 
working chamber on the low pressure side for a correspondingly long period of time. Hence, even at the discharge 
end of the rotors, average rotor surface temperatures on the straight side are quite low. 

 
3. TRANSIENT ANALYSES 

 
An important application of the procedure is in studying what happens to clearances during transient operation. This 
could be the transition from the idle state to running operation, from an unloaded to a loaded state or from one 
operating condition to another as the air-conditioning unit adjusts to a changing environment. Two approaches are 
taken to supply and use boundary conditions for the finite element modeling. First, the simulation is simply run at 
the operating conditions of the end state. The initial conditions for the parts can be defined as being at a uniform 
temperature as if the compressor had been idle for a sufficient period of time for temperatures to have equalized at 
the level of the local ambient temperature. Or, the temperature of the parts can be as defined from a previous 
solution. 
 
The second approach is really assembling a set of solutions that proceed from one condition to the next along a 
defined path of operating conditions…successive implementation of the simple first approach just described. This is 
done when there is a long transient which contains discreet events that change the “direction” of the unit operation. 
For example, we might go from an idle state to the compressor running in an unloaded state at a relatively low 
operating pressure ratio. Demand can result in a call to load the compressor, resulting in operation at a new and 
generally higher pressure ratio. Changes in the number of fans running in an air-cooled water chiller can also perturb 
the operating conditions. 
 
To follow a path such as this, the thermodynamic simulation is run at conditions representing the key transition 
points. The finite element solution starts with an assumed initial state for all metal temperatures. The boundary 
conditions – fluid properties – associated with the end point of the first step are input and the solution is run for a 
specified period of time as defined by the unit's transient characteristic. At the end of this time step, the solution 
contains the computed transient variation in temperatures and resulting part deformations for this step. The solution 
at this point is then used as the initial state for a solution step defined by putting the boundary conditions fro m the 
next step in operating conditions onto the model. The process is repeated as often as necessary to simulate the 
transient path. 
 
The process is described in more detail in Weathers (2006). Mechanics of modeling and an example of rotor to 
housing clearances computed during transient operation are provided in that report. Typical results of such an 
analysis are shown here in Figure 6. The clearance between a fixed point on the compressor housing and the rotating 
rotor is followed during the course of the operating transient. This example illustrates a key finding arising from the 
analyses : the critical issue in clearance control and hence operating reliability, is found in transient operation. 
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Differences in thermal inertia of the rotors and housings lead to different expansion rates, the result being changes in 
clearances. As the imposed operating conditions stabilize and the compressor parts approach their steady state  
temperatures, the clearance rises from the minimum, returning to almost the same level as  at the start of the 
transient, even though the operating conditions are significantly different. 

 
Figure 6. Example of Transient Analysis Results  

Plot of clearance at point Q on male rotor bore 
 
 

4. CONCLUSIONS 
 
A model for the effects of thermal loading on screw compressor clearances during transient and steady state 
operation has been developed, following the work of Kauder and Keller (1995). Adaptation of their methods for 
computing finite element model boundary conditions to refrigeration screw compressor analyses is  reviewed in this 
report. 
 
The process uses a proprietary thermodynamic simulation for the compression process. Geometric and fluid 
properties used in the model are available for the computation of the heat transfer coefficients. The information is 
made available  in tabular form to the finite element modeling step, Weathers, et al (2006).  Execution of this detailed 
simulation and more discussion of results are found in this reference and the third part of this report in Powell, et al 
(2006). 
 
The significant benefit of this work documented here along with the documentation in the other two parts of this 
report is the insight into the clearances during transient operation. Parts at steady state, regardless of operating 
temperature levels, tend towards the same clearances, often clearances that are not much different than they are in 
the cold assembled state. However, large excursions from this clearance condition are predicted during transients as 
the differing thermal inertias of rotors and housings result in different rates of thermal expansion leading to the 
clearance variations illustrated in the sample case in Section 3. 

Steady state 
clearance 

Q 
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NOMENCLATURE 
 
A Area m2  α Heat transfer coefficient J/ sec-m2-°K 

c Velocity m/sec ß helix angle  rad 

Cp Const. pressure specific heat J/kg-°K η Dynamic viscosity kg/m-sec 

dh Hydraulic diameter m λ Thermal conductivity J/sec-m-°K 

k Thermal conductivity J/m-°K ρ Density kg/m3 

L Characteristic length m ?  wrap angle  rad 

n Rotational speed sec-1 ω Angular velocity sec-1 

Nu Nusselt number -  

Pr Prandtl number - Subscripts  

q&  Heat flow J/sec Fl Fluid 

r Radius m r rotor   

Re Reynolds number - u tangential 

T Temperature  °K W Wall 

x, y, z Coordinate system directions m z axial 
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