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Abstract

Slot and van Emde Boas’ weak invariance thesis states that rea-
sonable machines can simulate each other within a polynomially
overhead in time. Is λ-calculus a reasonable machine? Is there a
way to measure the computational complexity of a λ-term? This
paper presents the first complete positive answer to this long-
standing problem. Moreover, our answer is completely machine-
independent and based over a standard notion in the theory of
λ-calculus: the length of a leftmost-outermost derivation to normal
form is an invariant cost model. Such a theorem cannot be proved
by directly relating λ-calculus with Turing machines or random
access machines, because of the size explosion problem: there are
terms that in a linear number of steps produce an exponentially
long output. The first step towards the solution is to shift to a no-
tion of evaluation for which the length and the size of the output
are linearly related. This is done by adopting the linear substitution
calculus (LSC), a calculus of explicit substitutions modelled after
linear logic proof nets and admitting a decomposition of leftmost-
outermost derivations with the desired property. Thus, the LSC is
invariant with respect to, say, random access machines. The second
step is to show that LSC is invariant with respect to the λ-calculus.
The size explosion problem seems to imply that this is not possible:
having the same notions of normal form, evaluation in the LSC is
exponentially longer than in the λ-calculus. We solve such an im-
passe by introducing a new form of shared normal form and shared
reduction, deemed useful. Useful evaluation avoids those steps that
only unshare the output without contributing to β-redexes, i.e. the
steps that cause the blow-up in size. The main technical contribu-
tion of the paper is indeed the definition of useful reductions and
the thorough analysis of their properties.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages — Opera-
tional Semantics.; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic — Lambda Calculus and Related
Systems.

General Terms Theory

Keywords λ-calculus, computational complexity, cost models,
explicit substitutions, sharing
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1. Introduction

Theoretical computer science is built around algorithms, compu-
tational models, and machines: an algorithm describes a solution
to a problem with respect to a fixed computational model, whose
role is to provide a handy abstraction of concrete machines. The
choice of the model reflects a tension between different needs.
For complexity analysis, one expects a neat relationship between
the primitives of the model and the way in which they are effec-
tively implemented. In this respect, random access machines are
often taken as the reference model, since their definition closely
reflects the von Neumann architecture. The specification of algo-
rithms unfortunately lies at the other end of the spectrum, as one
would like them to be as machine-independent as possible. In this
case programming languages are the typical model. Functional pro-
gramming languages, thanks to their higher-order nature, provide
very concise and abstract specifications. Their strength is also their
weakness: the abstraction from physical machines is pushed to a
level where it is no longer clear how to measure the complexity of
an algorithm. Is there a way in which such a tension can be solved?

The tools for stating the question formally are provided by
complexity theory and by Slot and van Emde Boas’ invariance
thesis [25]:

Reasonable computational models simulate each other
with polynomially bounded overhead in time,

and constant factor overhead in space.

The weak invariance thesis is the variant where the requirement
about space is dropped, and it is the one we will actually work
with in this paper. The idea behind the thesis is that for reasonable
models the definition of every polynomial or super-polynomial
class such as P or EXP does not rely on the chosen model. On the
other hand, it is well-known that sub-polynomial classes depend
very much on the model, and thus it does not really make sense to
pursue a linear rather than polynomial relationship.

A first refinement of our question then is: are functional lan-
guages invariant with respect to standard models like random ac-
cess machines or Turing machines? Such an invariance has to be
proved via an appropriate measure of time complexity for pro-
grams, i.e. a cost model.

The natural answer is to consider the unitary cost model, i.e.
take the number of evaluation steps as the cost of the underlying
term. However, this is not well-defined. The evaluation of func-
tional programs, indeed, depends very much on the evaluation strat-
egy chosen to implement the language, as the λ-calculus—the ref-
erence model for functional languages—is so machine-independent
that it does not even come with a deterministic evaluation strategy.
And which strategy, if any, gives us the most natural, or canonical
cost model (whatever that means)? These questions have received
some attention in the last decades. The number of optimal parallel
β-steps (in the sense of Lévy [20]) to normal form has been shown
not to be a reasonable cost model: there exists a family of terms
that reduces in a polynomial number of parallel β-steps, but whose



complexity is non-elementary [7, 19]. If one considers the num-
ber of sequential β-steps (in a given strategy, for a given notion of
reduction), the literature offers some partial positive results, all re-
lying on the use of sharing (see below for more details). Some quite
general results [8, 14] have been obtained through graph rewriting,
itself a form of sharing, when only first order symbols are consid-
ered.

Sharing is indeed a key ingredient, for one of the issues here is
due to the representation of terms. The ordinary way of represent-
ing terms indeed suffers from the size explosion problem: even for
the most restrictive notions of reduction (e.g. Plotkin’s weak reduc-
tion), there is a family of terms {tn}n∈N such that |tn| is linear in
n, tn evaluates to its normal form in n steps, but at i-th step a term
of size 2i is copied, producing a normal form of size exponential in
n. Put differently, an evaluation sequence of linear length can possi-
bly produce an output of exponential size. At first sight, then, there
is no hope that evaluation lengths may provide an invariant cost
model. The idea is that such an impasse can be avoided by sharing
common sub-terms along the evaluation process, in order to keep
the representation of the output compact, i.e. polynomially related
to the number of evaluation steps. But is appropriately managed
sharing enough? The literature offers some positive, but partial, an-
swers to this question. The number of steps is indeed known to be
an invariant cost model for weak reduction [13, 14] and for head
reduction [3].

If the problem at hand consists in computing the normal form
of an arbitrary λ-term, however, no positive answer is known. We
believe that not knowing whether the λ-calculus in its full gener-
ality is a reasonable machine is embarrassing for the λ-calculus
community. In addition, this problem is relevant in practice: proof
assistants often need to check whether two terms are convertible,
itself a problem that can be reduced to the one under consideration.

In this paper, we give a positive answer to the question above, by
showing that leftmost-outermost (LO, for short) reduction to nor-
mal form indeed induces an invariant cost model. Such an evalua-
tion strategy is standard, in the sense of the standardisation theo-
rem, one of the central theorems in the theory of λ-calculus, first
proved by Curry and Feys [12]. The relevance of our cost model
is given by the fact that LO reduction is an abstract concept from
rewriting theory which at first sight is totally unrelated to complex-
ity analysis. In particular, our cost model is completely machine-
independent.

Another view on this problem comes in fact from rewriting the-
ory itself. It is common practice to specify the operational seman-
tics of a language via a rewriting system, whose rules always em-
ploy some form of substitution, or at least of copying, of subterms.
Unfortunately, this practice is very far away from the way lan-
guages are implemented. Indeed, actual interpreters perform copy-
ing in a very controlled way (see, e.g., [23, 27]). This discrepancy
induces serious doubts about the relevance of the computational
model. Is there any theoretical justification for copy-based models,
or more generally for rewriting theory as a modelling tool? In this
paper we give a very precise answer, formulated within rewriting
theory itself.

As in our previous work [3], we prove our result by means
of the linear substitution calculus (see also [1, 6]), a simple cal-
culus of explicit substitutions (ES, for short) arising from linear
logic and graphical syntaxes and similar to calculi studied by De
Bruijn [16], Nederpelt [22], and Milner [21]. A peculiar feature
of the linear substitution calculus (LSC) is the use of rewriting
rules at a distance, i.e. rules defined by means of contexts, that
are used to closely mimic reduction in linear logic proof nets. Such
a framework—whose use does not require any knowledge of these
areas—allows an easy management of sharing and, in contrast to
previous approaches to ES, admits a theory of standardisation and

a notion of LO evaluation [6]. The proof of our result indeed is a
tour de force based on a fine quantitative study of the relationship
between LO derivations for the λ-calculus and a variation over LO
derivations for the LSC. Roughly, the latter avoids the size explo-
sion problem while keeping a polynomial relationship with the for-
mer.

Let us point out that invariance results usually have two direc-
tions, while we here study only one of them (namely that the λ-
calculus can be efficiently simulated by, say, Turing machines). The
missing half is a much simpler problem already solved in [3]: there
is an encoding of Turing machines into λ-terms s.t. their execution
is simulated by weak head β-reduction with only a linear overhead.

On Invariance and Complexity Analysis. Before proceeding, let
us stress some crucial points:
1. ES Are Only a Tool. Although ES are an essential tool for the

proof of our result, the result itself is about the usual, pure, λ-
calculus. In particular, the invariance result can be used without
any need to care about ES: we are allowed to measure the
complexity of problems by simply bounding the number of LO
β-steps taken by any λ-term solving the problem.

2. Complexity Classes in the λ-Calculus. The main consequence
of our invariance result is that every polynomial or super-
polynomial class, like P of EXP, can be defined using λ-
calculus (and LO β-reduction) instead of Turing machines.

3. Our Cost Model is Unitary. An important point is that our
cost model is unitary, and thus attributes a constant cost to
any LO step. One could argue that it is always possible to
reduce λ-terms on abstract or concrete machines and take that
number of steps as the cost model. First, such a measure of
complexity would be very machine-dependent, against the very
essence of λ-calculus. Second, these cost models invariably
attribute a more-than-constant cost to any β-step, making the
measure much harder to use and analyse. It is not evident that a
computational model enjoys a unitary invariant cost model. As
an example, if multiplication is a primitive operation, random
access machines need to be endowed with a logarithmic cost
model in order to obtain invariance.

The next section explains why the problem at hand is hard, and in
particular why iterating our previous results on head reduction [3]
does not provide a solution. An extended version of this paper with
more details is available [2].

2. Why is The Problem Hard?

In principle, one may wonder why sharing is needed at all, or
whether a relatively simple form of sharing suffices. In this section,
we will show that sharing is unavoidable and that a new subtle
notion of sharing is necessary.

If we stick to explicit representations of terms, in which sharing
is not allowed, counterexamples to invariance can be designed in
a fairly easy way. Let u be the lambda term yxx and consider
the sequence {tn}n∈N of λ-terms defined as t0 = u and tn+1 =
(λx.tn)u for every n ∈ N. The term tn has size linear in n, and tn
rewrites to its normal form rn in exactly n steps, following the LO
reduction order; as an example:

t0 = u = r0;

t1 → yuu = yr0r0 = r1;

t2 → (λx.t0)(yuu) = (λx.u)r1 → yr1r1 = r2.

For every n, however, rn+1 contains two copies of rn, hence the
size of rn is exponential in n. As a consequence, the unitary cost
model is not invariant: in a linear number of β-steps we reach an
object which cannot even be written down in polynomial time.

The solution the authors proposed in [3] is based on ES, and
allows to tame the size explosion problem in a satisfactory way



when head reduction suffices. In particular, the head steps above
become the following linear head steps (where ES are denoted with
t[x�u]):

t0 = u = p0;

t1 → (yxx)[x�u] = u[x�u] = p1;

t2 → ((λx.t0)u)[x�u] = ((λx.u)u)[x�u]

→ u[x�u][x�u] = p2.

As one can easily verify, the size of pn is linear in n. More gener-
ally, linear head reduction (LHR) has the subterm property, i.e. it
only duplicates subterms of the initial term. This fact implies that
the size of the result and the length of the derivation are linearly re-
lated. In other words, the size explosion problem has been solved.
Of course one needs to show that 1) the compact results unfold to
the expected result (that may be exponentially bigger), and 2) that
compact representations can be managed efficiently (typically they
can be tested for equality in time polynomial in the size of the com-
pact representation), see [3] or below for more details.

It may seem that one is then forced to use ES to measure
complexity. In [3] we also showed that LHR is at most quadratically
longer than head reduction, so that the polynomial invariance of
LHR lifts to head reduction. This is how we exploit sharing to
circumvent the size explosion problem: we are allowed to take the
length of the head derivation as a cost model, even if it suffers
of the size explosion problem, because the actual implementation
is meant to be done via LHR and be only polynomially (actually
quadratically) longer.

There is a natural candidate for extending the approach to re-
duction to normal form: just iterate the (linear) head strategy on
the arguments, obtaining the (linear) LO strategy, that does com-
pute normal forms [6]. As we will show, for linear LO derivations
the subterm property holds. The size of the output is still under
control, being linearly related to the length of the LO derivation.
Unfortunately, when computing normal forms this is not enough.

One of the key points in our previous work was that there is a
notion of linear head normal form that is a compact representation
for head normal forms. The generalisation of such an approach
to normal forms has to face a fundamental problem: what is a
linear normal form? Indeed, terms with and without ES share the
same notion of normal form. Consider again the family of terms
{tn}n∈N: if we go on and unfold all substitutions in pn, we end up
in rn. Thus, by the subterm property, the linear LO strategy takes
an exponential number of steps, and so it cannot be polynomially
related to the LO strategy.

Summing up, we need a strategy that 1) implements the LO
strategy, 2) has the subterm property and 3) never performs useless
substitution steps, i.e. those steps whose role is simply to explicit
the normal form, without contributing in any way to β-redexes. The
main contribution of this work is the definition of such a linear
useful strategy, and the proof that it is indeed polynomially related
to both the LO strategy and a concrete implementation model.

This is not a trivial task, actually. One may think that it is enough
to evaluate a term t in a LO way, stopping as soon as the unfolding
u

→

of the current term u — the term obtained by expanding the ES
of u — is a β-normal form. Unfortunately, this simple approach
does not work, because the exponential blow-up may be caused by
ES lying between two β-redexes, so that proceeding in a LO way
would unfold the problematic substitutions anyway.

Our notion of useful step will elaborate on this idea, by com-
puting partial unfoldings, to check if a substitution step contributes
or will contribute to some future β-redex. Of course, we will have
to show that such tests can be themselves performed in polynomial
time, and that the notion of LO useful reduction retains all the good
properties of LO reduction.

3. The Calculus

We assume familiarity with the λ-calculus (see [10]). The language
of the linear substitution calculus (LSC for short) is given by the
following grammar for terms:

t, u, r, p ::= x | λx.t | tu | t[x�u].

The constructor t[x�u] is called an explicit substitution (of u for
x in t, the usual (implicit) substitution is instead noted t{x�u}).
Both λx.t and t[x�u] bind x in t, and we silently work modulo
α-equivalence of these bound variables, e.g. (xy)[y�t]{x�y} =
(yz)[z�t]. We use fv(t) for the set of free variables of t.

Contexts. The operational semantics of the LSC is parametric in
a notion of (one-hole) context. General contexts are defined by:

C ::= 〈·〉 | λx.C | Ct | tC | C[x�t] | t[x�C],

and the plugging of a term t into a context C is defined as 〈·〉〈t〉 :=
t, (λx.C)〈t〉 := λx.(C〈t〉), and so on. As usual, plugging in a
context can capture variables, e.g. ((〈·〉y)[y�t])〈y〉 = (yy)[y�t].
The plugging C〈D〉 of a context D into a context C is defined
analogously.

Along most of the paper, however, we will not need such a
general notion of context. In fact, our study takes a simpler form
if the operational semantics is defined with respect to shallow
contexts, defined as (note the absence of the production t[x�S]):

S, P, T, V ::= 〈·〉 | λx.S | St | tS | S[x�t].

In the following, whenever we refer to a context without further
specification it is implicitly assumed that it is a shallow context. A
special class of contexts is that of substitution contexts:

L ::= 〈·〉 | L[x�t].

Operational Semantics. The (shallow) rewriting rules →dB (dB
= β at a distance) and →ls (linear substitution) are given by the
closure by (shallow) contexts of the following rules:

L〈λx.t〉u 7→dB L〈t[x�u]〉;

S〈x〉[x�u] 7→ls S〈u〉[x�u].

The union of →dB and →ls is simply noted →. The rewriting
rules are assumed to use on-the-fly α-equivalence to avoid variable
capture. For instance,

(λx.t)[y�u]y →dB t{y�z}[x�y][z�u] for z /∈ fv(t);

(λy.(xy))[x�y] →ls (λz.(yz))[x�y].

Moreover, in rule ls the context S is assumed to not capture x, so
that (λx.x)[x�y] 6→ls (λx.y)[x�y].

The just defined shallow fragment simply ignores garbage col-
lection (that in the LSC can always be postponed [1]) and lacks
some of the nice properties of the LSC (obtained simply by replac-
ing shallow contexts by general contexts). Its relevance is the fact
that it is the smallest fragment implementing linear LO reduction.
The following are examples of shallow steps:

(λx.x)y →dB x[x�y];

(xx)[x�t] →ls (xt)[x�t];

while the following steps are not

t[z�(λx.x)y] →dB t[z�x[x�y]];

x[x�y][y�t] →ls x[x�t][y�t].

Taking the external context into account, a substitution step has
the following explicit form: P 〈S〈x〉[x�u]〉 →ls P 〈S〈u〉[x�u]〉.
We shall often use a compact form, writing T 〈x〉 →ls T 〈u〉 where
it is implicitly assumed that T = P 〈S[x�u]〉. We use R and Q



as metavariables for redexes. A derivation ρ : t →k u is a finite
sequence of reduction steps, sometimes given as R1; . . . ;Rk, i.e.
as the sequence of reduced redexes. We write |t| for the size of t,
|t|[·] for the number of substitutions in t, |ρ| for the length of ρ, and
|ρ|dB (resp. |ρ|ls) for the number of dB-steps (resp. ls-steps) in ρ.

(Relative) Unfoldings. The unfolding t

→

of a term t is the λ-term
obtained from t by turning its explicit substitutions into implicit
ones:

x

→

:= x; (tu)

→

:= t

→

u

→

;

(λx.t)

→

:= λx.t

→

; (t[x�u])

→

:= t

→

{x�u

→

}.

We will also need a more general notion, the unfolding t

→

S
of t in

a context S:

t

→

〈·〉
:= t

→

; t

→

uS
:= t

→

S
; t

→

S[x�u]
:= t

→

S
{x�u

→

};

t

→

λx.S
:= t

→

S
; t

→

Su
:= t

→

S
.

For instance,

(x(yz))[y�x][x�z]

→

= z(zz);

(xy)

→

(〈·〉[y�x]t)[x�λz.(zz)]
= (λz.(zz))λz.(zz).

We extend implicit substitutions and unfoldings to contexts by
setting 〈·〉{x�t} := 〈·〉 and 〈·〉

→

:= 〈·〉 (all other cases are defined
as expected, e.g. S[x�t]

→

:= S

→

{x�t

→

}). We also write S ≺p t
if there is a term u s.t. S〈u〉 = t, call it the prefix relation. We
have the following properties, that only hold because our contexts
are shallow (implying that the hole cannot be duplicated during the
unfolding).

Lemma 3.1. Let S be a shallow context. Then:
1. S

→

is a shallow context;

2. S〈t〉{x�u} = S{x�u}〈t{x�u}〉;
3. S〈t〉

→

= S

→

〈t

→

S
〉, in particular if S ≺p t then S

→

≺p t

→

.

Given a derivation ρ : t →∗ u in the LSC, we often consider the
β-derivation ρ

→

: t

→

→∗
β u

→

obtained by projecting ρ via unfolding.
Reduction Combinatorics. Given any calculus, a deterministic

strategy → for it, and a term t, the expression #→(t) stands for the
number of reduction steps necessary to reach the normal form of t
along →, or ∞ if t diverges. Similarly, given a natural number n,
the expression →n (t) stands for the term u such that t →n u, if
n ≤ #→(t), or for the normal form of t otherwise.

4. The Proof, Made Abstract

Our proof method can be described abstractly. Such an approach
both clarifies the structure of the proof and prepares the ground
for possible generalisations to, e.g., the call-by-value λ-calculus
or calculi with additional features as pattern matching or control
operators. We want to show that a certain strategy  for the λ-
calculus provides a unitary and invariant cost model, i.e. that the
number of steps is a measure polynomially related to the number
of transitions on Turing machines. As explained in the introduction,
we pass through an intermediary computational model, a calculus
with ES, the linear substitution calculus, playing the role of a very
abstract machine for λ-terms.

We are looking for an appropriate strategy X within the LSC
which is invariant with respect to both  and Turing machines.
Then we need two theorems, which together form the main result
of the paper:
1. High-Level Implementation: terminates iff X terminates.

Moreover, is implemented by X with only a polynomial
overhead. Namely, t  k

X u iff t  h u

→

with k polynomial in
h (our actual bound will be quadratic);

2. Low-Level Implementation:  X is implemented on Turing
machines with an overhead in time which is polynomial in both
k and the size of t.

The high-level part relies on the following notion.

Definition 4.1. Let be a deterministic strategy on λ-terms and
 X a strategy of the LSC. The pair ( , X) is a high-level
implementation system if whenever t is a λ-term and ρ : t  ∗

X u
then:
1. Normal Form: if u is a  X -normal form then u

→

is a  -
normal form.

2. Projection: ρ

→

: t ∗ u

→

and |ρ
→

| = |ρ|dB.

3. Trace: the number |u|[·] of ES in u is exactly the number |ρ|dB
of dB-steps in ρ;

4. Syntactic Bound: the length of a sequence of substitution steps
from u is bounded by |u|[·].

Concretely, the high-level implementation system at work in the
paper will take as the LO strategy of the λ-calculus and as X a
variant of the linear LO strategy for the LSC. A variant is required
because, as we will explain, the linear LO strategy of the LSC does
not satisfy the syntactic bound property.

The normal form and projection properties address the quali-
tative part of the high-level implementation theorem, i.e. the part
about termination. The normal form property guarantees that X

does not stop prematurely, so that when X terminates cannot
keep going. The projection property guarantees that termination of
 implies termination of  X . The two properties actually state
a stronger fact:  steps can be identified with the dB-steps of the
 X strategy.

The trace and syntactic bound properties are instead used for
the quantitative part of the theorem, i.e. to provide the polynomial
bound. The two properties together provide a bound the number
of ls-steps in a X derivation with respect to the number of dB-
steps, that—by the identification of β and dB redexes—is exactly
the length of the associated derivation.

The high-level part can now be proved abstractly.

Theorem 4.2 (High-Level Implementation). Let t be an ordi-
nary λ-term and ( , X) a high-level implementation system.
Then:
1. t is -normalising iff it is X -normalising.

2. If ρ : t ∗
X u then ρ

→

: t ∗ u

→

and |ρ| = O(|ρ

→

|2).

Proof. 1. ⇐) Suppose that t is  X -normalisable and let ρ :
t  ∗

X u a derivation to  X -normal form. By the projection
property there is a derivation t  ∗ u

→

. By the normal form
property u

→

is a -normal form.

⇒) Suppose that t is  -normalisable and let τ : t  k u be
the derivation to  -normal form (unique by determinism of
 ). Assume, by contradiction, that t is not X -normalisable.
Then there is a family of X -derivations ρi : t  i

X ui with
i ∈ N, each one extending the previous one. By the syntactic
bound property, X can make only a finite number of ls steps
(more generally, →ls is strongly normalising in the LSC). Then
the sequence {|ρi|dB}i∈N is non-decreasing and unbounded. By
the projection property, the family {ρi}i∈N unfolds to a family
of -derivations {ρi

→

}i∈N of unbounded length (in particular
greater than k), absurd.

2. By the projection property, it follows that ρ

→

: t  ∗ u

→

.

Moreover, to show |ρ| = O(|ρ

→

|2) it is enough to show |ρ| =
O(|ρ|2dB). Now, ρ has the shape:

t = r1 →
a1

dB p1 →
b1
ls r2 →

a2

dB p2 →
b2
ls . . . rk →

ak
dB pk →

bk
ls u.

By the syntactic bound property, we obtain bi ≤ |pi|[·]. By

the trace property we obtain |pi|[·] =
∑i

j=1 aj , and so bi ≤
∑i

j=1 aj . Then:

|ρ|ls =
∑k

i=1 bi ≤
∑k

i=1

∑i

j=1 aj .

Note that
∑i

j=1 aj ≤
∑k

j=1 aj = |ρ|dB and k ≤ |ρ|dB. So



|ρ|ls ≤
∑k

i=1

∑i

j=1 aj ≤
∑k

i=1 |ρ|dB ≤ |ρ|2dB.

Finally, |ρ| = |ρ|dB + |ρ|ls ≤ |ρ|dB + |ρ|2dB = O(|ρ|2dB).

For the low-level part we rely on the following notion.

Definition 4.3. A strategy  X on LSC terms is mechanisable if
given a derivation ρ : t ∗

X u:
1. Subterm: the terms duplicated along ρ are subterms of t.
2. Selection: the search of the next X redex to reduce in u takes

polynomial time in |u|.

The subterm property—essentially—guarantees that any step
has a linear cost in the size of the initial term, the fundamental
parameter for complexity; it will be discussed in more detail in
Sect. 6. At first sight the selection property is always trivially
verified: finding a redex in u takes time linear in |u|. However, our
strategy for ES will reduce only redexes satisfying a side-condition
whose naı̈ve verification is exponential in |u|. Then one has to be
sure that such a computation can be done in polynomial time.

Theorem 4.4 (Low-Level Implementation). Let X be a mecha-
nisable strategy. Then there is an algorithm that on input t and k
outputs k

X(t), and which works in time polynomial in k and |t|.

Proof. By the subterm property, implementing one step takes time
polynomial (if not linear) in |t|. An immediate consequence of
the subterm property is the no size explosion property, i.e. that
|u| ≤ (k+1)·|t|. By the selection property selecting the next redex
takes time polynomial in |u|, that by the no size explosion property
is polynomial in k and |t|. The composition of polynomials is again
a polynomial, and so selecting the redex takes time polynomial in
k and |t|. Hence, the reduction can be implemented in polynomial
time.

In [3], we proved that head reduction and linear head reduc-
tion form a high-level implementation system and that linear head
reduction is mechanisable, even if we did not use such a terminol-
ogy, nor were we aware of the presented abstract scheme. In order
to extend such a result to normal forms we need to replace head
reduction with a normalising strategy (i.e. a strategy reaching the
β-normal form, if any).

One candidate for is the LO strategy →LOβ . Such a choice is
natural, as →LOβ is normalising, it produces standard derivations,
and it is an iteration of head reduction. What is left to do, then, is
to find a strategy  X for ES, which is both mechanisable and a
high-level implementation of →LOβ . Unfortunately, the linear LO
strategy, noted →LO and first defined in [6], is mechanisable but
the pair (→LOβ ,→LO) is not a high-level implementation system.

In general, mechanisable strategies are not hard to find. As
we will show in Sect. 6, the whole class of standard derivations
for ES has the subterm property. In particular, the linear strategy
→LO—which is standard—enjoys all the other properties but for
the syntactic bound property.

Such a problem will be solved by LO useful derivations, to be
introduced in Sect. 5, that will be shown to be both mechanis-
able and a high-level implementation of →LOβ . Useful derivations
avoid those substitution steps that only explicit the normal form
without contributing to explicit β/dB-redexes (that, by the projec-
tion property, can be identified). LO useful derivations will have
all the nice properties of LO derivations and moreover will stop on
shared, minimal representations of normal forms, solving the prob-
lem with linear LO derivations.

Let us point out that our analysis would be vacuous without ev-
idence that useful normal forms are a reasonable representation of
λ-terms. In other words, we must be sure that ES do not hide (too
much of) the inherent difficulty of reducing λ-terms under the car-
pet of sharing. In [3], we solved this issue by providing an efficient

algorithm for checking the equality of any two LSC terms—thus
in particular of useful normal forms—without computing their un-
foldings (that otherwise would reintroduce an exponential blow-
up). Some further discussion can be found in Sect. 10.

5. Useful Derivations

In this section we define a constrained, optimised notion of reduc-
tion, that will be the key to the High-Level Implementation Theo-
rem. The idea is that an optimised step takes place only if it some-
how contributes to explicit a β/dB-redex. Let an applicative con-
text be defined by A ::= S〈Lt〉, where S and L are a shallow and a
substitution context, respectively (note that applicative contexts are
not made out of applications only; for instance tλx.(〈·〉[y�u]r) is
an applicative context). Then:

Definition 5.1 (Useful/Useless Steps and Derivations). A useful
step is either a dB-step or a ls-step S〈x〉 →ls S〈r〉 (in compact
form) s.t. r

→
S

:

1. either contains a β-redex,
2. or is an abstraction and S is an applicative context.

A useless step is a ls-step that is not useful. A useful derivation
(resp. useless derivation) is a derivation whose steps are useful
(resp. useless).

Let us give some examples. The steps

(tx)[x�(λy.y)u] →ls (t((λy.y)u))[x�(λy.y)u];

(xt)[x�λy.y] →ls ((λy.y)t)[x�λy.y];

are useful because they move or create a β/dB-redex (first and
second case of the definition, respectively) while

(λx.y)[y�zz] →ls (λx.(zz))[y�zz]

is useless. However, useful steps are subtler, for instance

(tx)[x�zz][z�λy.y] →ls (t(zz))[x�zz][z�λy.y]

is useful also if it does not move or create β/dB-redexes, because it
does so up to relative unfolding, i.e. (zz)

→

〈·〉[z�λy.y]
= (λy.y)λy.y

that is a β/dB-redex.
Note that useful steps concern future creations of β-redexes and

yet their definition circumvents the explicit use of residuals, relying
on relative unfoldings only.

Leftmost-Outermost Useful Derivations. The notion of small-
step evaluation that we will use to implement LO β-reduction is the
one of LO useful derivation. We need some preliminary definitions.

Let R be a redex. Its position is defined as follows:
1. If R is a dB-redex S〈L〈λx.t〉u〉 →dB S〈L〈t[x�u]〉〉 then its

position is given by the context S surrounding the changing
expression; β-redexes are treated as dB-redexes.

2. If R is a ls-redex, expressed in compact form S〈x〉 →ls S〈u〉,
then its position is the context S surrounding the variable
occurrence to substitute.

The left-to-right outside-in order on redexes is expressed as an
order on positions, i.e. contexts. Let us warn the reader about
a possible source of confusion. The left-to-right outside-in order
in the next definition is sometimes simply called left-to-right (or
simply left) order. The former terminology is used when terms are
seen as trees (where the left-to-right and the outside-in orders are
disjoint), while the latter terminology is used when terms are seen
as strings (where the left-to-right is a total order). While the study
of standardisation for the LSC [6] uses the string approach (and
thus only talks about the left-to-right order and the leftmost redex),
here some of the proofs (see the long version [2]) require a delicate
analysis of the relative positions of redexes and so we prefer the
more informative tree approach and define the order formally.



Definition 5.2. The following definitions are given with respect to
general (not necessarily shallow) contexts, even if apart from the
next section we will use them only for shallow contexts.
1. The outside-in order:

1. Root: 〈·〉 ≺O C for every context C 6= 〈·〉;
2. Contextual closure: If C ≺O D then E〈C〉 ≺O E〈D〉 for

any context E.
Note that ≺O can be seen as the prefix relation ≺p on contexts.

3. The left-to-right order: C ≺L D is defined by:
1. Application: If C ≺p t and D ≺p u then Cu ≺L tD;
2. Substitution: If C ≺p t and D ≺p u then C[x�u] ≺L

t[x�D];
3. Contextual closure: If C ≺L D then E〈C〉 ≺L E〈D〉 for

any context E.
4. The left-to-right outside-in order: C ≺LO D if C ≺O D or

C ≺L D:

The following are a few examples. For every context C, it holds
that 〈·〉 6≺L C. Moreover,

(λx.〈·〉)t ≺O (λx.(〈·〉[y�u])r)t;

(〈·〉t)u ≺L (rt)〈·〉;

t[x�〈·〉]u ≺L t[x�r]〈·〉.

The next lemma guarantees that we defined a total order.

Lemma 5.3 (Totality of ≺LO). If C ≺p t and D ≺p t then either
C ≺LO D or D ≺LO C or C = D.

The orders above can be extended from contexts to redexes, in
the expected way, e.g. for ≺LO given two redexes R and Q of
positions S and P we write R ≺LO Q if S ≺LO P . Now, we
can define the notions of derivations we are interested in.

Definition 5.4 (Leftmost-Outermost (Useful) Redex). Let t be
a term and R a redex of t. R is the leftmost-outermost (resp.
leftmost-outermost useful, LOU for short) redex of t if R ≺LO Q
for every other redex (resp. useful redex) Q of t. We write t →LO u
(resp. t →LOU u) if a step reduces the LO (resp. LOU) redex.

We need to ensure that LOU derivations are mechanisable and
form a high-level implementation system when paired with LO
derivations. In particular, we will show:
1. the subterm and trace properties, by first showing that they

hold for every standard derivation, in Sect. 6, and then showing
that LOU derivations are standard, in Sect. 7;

2. the normal form and projection properties, by a careful study
of unfoldings and LO/LOU derivations, in Sect. 8;

3. the syntactic bound property, passing through the abstract no-
tion of nested derivation, in Sect. 9;

4. the selection property, by exhibiting a polynomial algorithm to
test whether a redex is useful or not, in Sect. 10.

6. Standard Derivations

We need to show that LOU derivations have the subterm property.
It could be done directly. However, we will proceed in an abstract
way, by first showing that the subterm property is a property of
standard derivations for the LSC, and then showing (in Sect. 7)
that LOU derivations are standard. The detour has the purpose of
shedding a new light on the notion of standard derivation, a classic
concept in rewriting theory. For the sake of readability, we use the
concept of residual without formally defining it (see [6] for details).

Definition 6.1 (Standard Derivation). A derivation ρ : R1; . . . ;Rn

is standard if Ri is not the residual of a redex Q ≺LO Rj for every
i ∈ {2, . . . , n} and j < i.

The same definition where terms are ordinary λ-terms gives the
ordinary notion of standard derivation.

Note that any single reduction step is standard. Then, notice that
standard derivations select redexes in a left-to-right and outside-in
way, but they are not necessarily LO. For instance, the derivation

((λx.y)y)[y�z] →ls ((λx.z)y)[y�z] →ls ((λx.z)z)[y�z]

is standard even if the LO redex (i.e. the dB-redex on x) is not
reduced. The extension of the derivation with ((λx.z)z)[y�z] →dB

z[x�z][y�z] is not standard. Last, note that the position of a ls-
step is given by the substituted occurrence and not by the ES, that
is (xy)[x�u][y�t] →ls (xt)[x�u][y�t] →ls (ut)[x�u][y�t] is
not standard.

In [6] it is showed that in the full LSC standard derivations are
complete, i.e. that whenever t →∗ u there is a standard derivation
from t to u. The shallow fragment does not enjoy such a standard-
isation theorem, as the residuals of a shallow redex need not be
shallow. This fact however does not clash with the technical treat-
ment in this paper. The shallow restriction is indeed compatible
with standardisation in the sense that:
1. The linear LO strategy is shallow: if the initial term is a λ-term

then every redex reduced by the linear LO strategy is shallow
(every non-shallow redex R is contained in a substitution, and
every substitution is involved in an outer redex Q);

2. ≺LO-ordered shallow derivations are standard: any strategy
picking shallow redexes in a left-to-right and outside-in fashion
does produce standard derivations (it follows from the easy fact
that a shallow redex R cannot turn a non-shallow redex Q s.t.
Q ≺LO R into a shallow redex).

Moreover, the only redex swaps we will consider (Lemma 7.1) will
produce shallow residuals.

We are now going to show a fundamental property of stan-
dard derivations. The subterm property states that at any point of
a derivation ρ : t →∗ u only sub-terms of the initial term t are
duplicated. It immediately implies that any rewriting step can be
implemented in time polynomial in the size |t| of t. A first conse-
quence is the fact that |u| is linear in the size of the starting term
and the number of steps, that we call the no size explosion property.

These properties are based on a technical lemma relying on
the notions of box context and box subterm, where a box is the
argument of an application or the content of an explicit substitution,
corresponding to explicit boxes for promotions in the proof nets
representation of λ-terms with ES.

Definition 6.2 (Box Context, Box Subterm). Let t be a term.
Box contexts (that are not necessarily shallow) are defined by the
following grammar, where C is an generic context:

B ::= t〈·〉 | t[x�〈·〉] | C〈B〉.

A box subterm of t is a term u s.t. t = B〈u〉 for some box context
B.

We are now ready for the lemma stating the fundamental invari-
ant of standard derivations.

Lemma 6.3 (Standard Derivations Preserve Boxes on Their Right).
Let ρ : t0 →k tk → tk+1 be a standard derivation and let S be
the position of the last contracted redex, k ≥ 0, and B ≺p tk+1 be
a box context s.t. S ≺LO B. Then the box subterm u identified by
B (i.e. s.t. tk+1 = B〈u〉) is a box subterm of t0.

From the invariant, one easily obtains the subterm property, that
in turn implies the no size explosion and the trace properties.

Corollary 6.4. Let ρ : t →k u be a standard derivation.
1. Subterm: every →ls-step in ρ duplicates a subterm of t.



2. No Size Explosion: |u| ≤ (k + 1) · |t|.
3. Trace: if t is an ordinary λ-term then |u|[·] = |ρ|dB.

The subterm property of standard derivations is specific to eval-
uation in the LSC, and it is the crucial half of the notion of mech-
anisable strategy. It allows to see the standardisation theorem as
the unveiling of a very abstract machine, hidden inside the calculus
itself.

Let us conclude the section with a further invariant of stan-
dard derivations. It is not needed for the invariance result, but it
sheds some light on the shallow subsystem under study. Let a
term be shallow if its substitutions do not contain substitutions.
The invariant is that if the initial term is a λ-term then standard
shallow derivations involve only shallow terms. This fact is the
only point of this section relying on the assumption that reduc-
tion is shallow (the standard hypothesis is also necessary, consider
(λx.x)((λy.y)z) →dB (λx.x)(y[y�z]) →dB x[x�y[y�z]]).

Lemma 6.5 (Shallow Invariant). Let t be a λ-term and ρ : t →k u
be a standard derivation. Then u is a shallow term.

7. The Subterm and Trace Properties, via

Standard Derivations

While LO derivations are evidently standard, a priori LOU deriva-
tions may not be standard, if the reduction of a useful redex R
could turn a useless redex Q ≺LO R into a useful redex. Luck-
ily, this is not possible, i.e. uselessness is stable by reduction of
≺LO-majorants, as proved by the next lemma.

Lemma 7.1 (Useless Persistence). Let R : t →ls u be a useless
redex and Q : t → r be a useful redex s.t. R ≺LO Q. The unique
residual R′ of R after Q is shallow and useless.

Using the lemma above and a technical property of standard
derivations (the enclave axiom, see [6]) we obtain:

Proposition 7.2 (LOU-Derivations Are Standard). Let ρ be a LOU
derivation. Then ρ is a standard derivation.

We conclude applying Corollary 6.4:

Corollary 7.3 (Subterm and Trace). LOU derivations have the
subterm and the trace properties, and only involve shallow terms.

8. The Normal Form and Projection Properties

For the normal form property it is necessary to show that the
position of a redex in an unfolded term t

→

can be traced back
to the position of a useful redex in the original term t. Such a
property requires a very detailed and technical study of unfoldings
and position, and it is thus omitted (see [2]).

By induction on t and using the omitted property we obtain:

Proposition 8.1 (Normal Form). Let t be a LSC term in useful
normal form. Then t

→

is a β-normal form.

The next lemma shows that useful reductions match their in-
tended semantics, in the sense that every useful redex contributes
somehow to a β-redex. It is not needed for the invariance result.

Lemma 8.2 (Inverse Normal Form). Let t be a LSC term s.t. t

→

is
a β-normal form. Then t is a useful normal form.

For the projection property, we first show that the LO order is
stable by unfolding, that in turn requires to show that it is stable by
substitution. By induction on t:

Lemma 8.3 (≺LO and Substitution). Let t be a λ-term, S ≺p t
and P ≺p t. If S{x�u} ≺LO P{x�u} then S ≺LO P .

Lemma 8.4 (≺LO and Unfolding). Let t be a LSC term, S ≺p t
and P ≺p t. If S

→

≺LO P

→

then S ≺LO P .

The next lemma deals with the hard part of the projection
property. We use 7→β for β-reduction at top level.

Lemma 8.5 (LOU dB-Step Projects on →LOβ). Let t be a LSC
term and R : t = S〈r〉 →dB S〈p〉 = u with r 7→dB p. Then:
1. Projection: R

→

: t

→

= S

→

〈r

→

S
〉 →β S

→

〈p

→

S
〉 = u

→

with

r

→

S
7→β p

→

S
;

2. Minimality: if moreover R is the LOU redex in t then R

→

is the
LO β-redex in t

→

.

The first point is an ordinary projection of reductions. The
second one is instead involved, as it requires to prove that if R

→

is not LO then R is not LOU, i.e. to be able to somehow trace
LO redexes back through unfoldings. The proof is by induction
on S, that by hypothesis is the position of the LOU redex. The
difficult case — not surprisingly — is when S = P [x�p], and
where Lemma 8.3 is applied. The proof also uses the normal form
property, when the position S is on the argument p of an application
rp. Since R is LOU, r is useful-normal. To prove that R

→

is the LO
β redex in (rp)

→

= r

→

p

→

we use the fact that r

→

is normal.
Projection of derivations now follows as an easy induction:

Theorem 8.6 (Projection). Let t be a LSC term and ρ : t →∗
LOU u.

Then there is a LO β-derivation ρ

→

: t

→

→∗
β u

→

s.t. |ρ

→

| = |ρ|dB.

9. The Syntactic Bound Property, via Nested

Derivations

In this section we show that LOU derivations have the syntactic
bound property. Instead of proving this fact directly, we introduce
an abstract property, the notion of nested derivation and then prove
that 1) nested derivations ensure the syntactic bound property, and
2) LOU derivations are nested. Such an approach helps to under-
stand both LOU derivations and the syntactic bound property.

Definition 9.1 (Nested Derivation). Two ls-steps t →ls u →ls r
are nested if the second one substitutes on the subterm substituted
by the first one, i.e. if exist S and P s.t. the two steps have the
compact form S〈x〉 →ls S〈P 〈y〉〉 →ls S〈P 〈u〉〉. A derivation is
nested if any two consecutive substitution steps are nested.

For instance, the first of the following two sequences of steps is
nested while the second is not:

(xy)[x�yt][y�u] →ls ((yt)y)[x�yt][y�u]

→ls ((ut)y)[x�yt][y�u];

(xy)[x�yt][y�u] →ls ((yt)y)[x�yt][y�u]

→ls ((yt)u)[x�yt][y�u].

The idea is that nested derivations ensure the syntactic bound prop-
erty because no substitution can be used twice in a nested sequence
u →k

ls r, and so k is necessarily bounded by |u|[·].

Lemma 9.2 (Nested + Subterm = Syntactic Bound). Let t be a

λ-term, ρ : t →n u →k
ls r be a derivation having the subterm

property and whose suffix u →k
ls r is nested. Then k ≤ |u|[·].

We are left to show that our small-step implementation of β —
LOU derivations — indeed are nested derivations with the subterm
property. We already know that they have the subterm property
(Corollary 7.3), so we only need to show that they are nested.
Using an omitted technical lemma, a case analysis on why a given
substitution step is LOU proves:

Proposition 9.3. LOU derivations are nested, and so they have the
syntactic bound property.



At this point, we proved all the abstract properties implying the
high-level implementation theorem.

10. The Selection Property, or Computing

Functions in Compact Form

This section proves the selection property for LOU derivations,
which is the missing half of the proof that they are mechanisable,
i.e. that they enjoy the low-level implementation theorem. The
proof consists in providing a polynomial algorithm for testing the
usefulness of a substitution step. The subtlety is that the test has to
check whether a term in the form t

→

S
contains a β-redex, or whether

it is an abstraction, without explicitly computing t

→

S
(which, of

course, takes exponential time in the worst case). If one does not
prove that this can be done in time polynomial in (the size of) t and
S, then firing each reduction step can cause an exponential blowup!

Our algorithm consists in the simultaneous computation of 4
correlated functions on terms in compact form, two of which will
provide the answer to our problem. We need some abstract prelim-
inaries about computing functions in compact form.

A function f from n-uples of λ-terms to a set A is said to have
arity n, and we write f : n → A in this case. The function f is
said to be:
• Efficiently computable if there is a polynomial time algorithm

A such that for every n-uple of λ-terms (t1, . . . , tn), the result
of A(t1, . . . , tn) is precisely f(t1, . . . , tn).

• Efficiently computable in compact form if there is a polyno-
mial time algorithm A such that for every n-uple of LSC
terms (t1, . . . , tn), the result of A(t1, . . . , tn) is precisely
f(t1

→

, . . . , tn

→

).
• Efficiently computable in compact form relatively to

a context if there is a polynomial time algorithm A
such that for every n-uple of pairs of LSC terms
and contexts ((t1, S1), . . . , (tn, Sn)), the result of
A((t1, S1), . . . , (tn, Sn))) is precisely f(t1

→

S1

, . . . , tn

→

Sn
).

An example of function is alpha : 2 → B, which given two λ-
terms t and u, returns true if t and u are α-equivalent and false
otherwise. In [3], alpha is shown to be efficiently computable
in compact form, via a dynamic programming algorithm Balpha

taking in input two LSC terms and computing, for every pair of
their subterms, whether the (unfoldings) are α-equivalent or not.
Proceeding bottom-up, as usual in dynamic programming, allows
to avoid the costly task of computing unfoldings explicitly, which
takes exponential time in the worst-case. More details about Balpha

can be found in [3].
Each one of the functions of our interest take values in one of

the following sets:

VARS = the set of finite sets of variables

B = {true, false}

T = {var(x) | x is a variable} ∪ {lam, app}

Elements of T represent the nature of a term. The functions are:
• nature : 1 → T, which returns the nature of the input term;
• redex : 1 → B, which returns true if the input term contains a

redex and false otherwise;
• apvars : 1 → VARS, which returns the set of variables

occurring in applicative position in the input term;
• freevars : 1 → VARS, which returns the set of free variables

occurring in the input term.
Note that they all have arity 1 and that showing redex and nature
to be efficiently computable in compact form relatively to a con-
text is precisely what is required to prove the efficiency of useful
reduction.

The four functions above can all be proved to be efficiently
computable (in the three meanings). It is convenient to do so by

giving an algorithm computing the product function nature ×
redex × apvars × freevars : 1 → T × B × VARS × VARS
(which we call g) compositionally, on the structure of the input
term, because the four function are correlated (for example, tu
has a redex, i.e. redex (tu) = true, if t is an abstraction, i.e. if
nature(t) = lam). The algorithm computing g on terms is Ag and
is defined in Figure 1.

The interesting case in the algorithms for the two compact cases
is the one for ES, that makes use of a special notation: given two
sets of variables V,W and a variable x, V ⇓x,W is defined to be
V if x ∈ W and the empty set ∅ otherwise. The algorithm Bg

computing g on LSC terms is defined in Figure 2. The algorithm
computing g on pairs in the form (t, S) (where t is a LSC term and
S is a shallow context) is defined in Figure 3.

First of all, we need to convince ourselves about the correctness
of the proposed algorithms: do they really compute the function g?
Actually, the way the algorithms are defined, namely by primitive
recursion on the input terms, helps very much here: a simple induc-
tion suffices to prove the following:

Proposition 10.1. The algorithms Ag ,Bg ,Cg are all correct,
namely for every λ-term t, for every term u and for every con-
text S, it holds that

Ag(t) = g(t); Bg(u) = g(u

→

); Cg(u, S) = g(u

→

S
).

The way the algorithms above have been defined also helps
while proving that they work in bounded time, e.g., the number of
recursive calls triggered by Ag(t) is linear in |t| and each of them
takes polynomial time. As a consequence, we can also easily bound
the complexity of the three algorithms at hand.

Proposition 10.2. The algorithms Ag ,Bg ,Cg all work in polyno-
mial time. Thus LOU derivations are mechanisable.

11. Summing Up

The various ingredients from the previous sections can be com-
bined together so as to obtain the following result:

Theorem 11.1 (Invariance). There is an algorithm which takes in
input a λ-term t and which, in time polynomial in #→LOβ

(t) and

|t|, outputs an LSC term u such that u

→

is the normal form of t.

As we have already mentioned, the algorithm witnessing the in-
variance of λ-calculus does not produce in output a λ-term, but
a compact representation in the form of a term with ES. The-
orem 11.1, together with the fact that equality of terms can be
checked efficiently in compact form, entail the following formu-
lation of invariance, akin in spirit to, e.g., Statman’s Theorem [26]:

Corollary 11.2. There is an algorithm which takes in input two
λ-terms t and u and checks whether t and u have the same normal
form in time polynomial in #→LOβ

(t), #→LOβ
(u), |t|, and |u|.

If one instantiates Corollary 11.2 to the case in which u is a normal
form, one obtains that checking whether the normal form of any
term t is equal to u can be done in time polynomial in #→LOβ

(t),
|t|, and |u|. This is particularly relevant when the size of u is
constant, e.g., when the λ-calculus computes decision problems
and the relevant results are truth values.

Please observe that whenever one (or both) of the involved terms
are not normalisable, the algorithms above (correctly) diverge.

12. Discussion

Here we further discuss invariance and some potential optimisa-
tions, that, however, are outside the scope of this work (which only
deals with asymptotical bounds and is thus foundational in spirit).



Ag(x) = (var(x), false, ∅, {x});

Ag(λx.t) = (lam, bt, Vt − {x},Wt − {x})

where Ag(t) = (nt, bt, Vt,Wt);

Ag(tu) = (app, bt ∨ bu ∨ (nt = lam), Vt ∪ Vu ∪ {x | nt = var(x)},Wt ∪Wu)

where Ag(t) = (nt, bt, Vt,Wt) and Ag(u) = (nu, bu, Vu,Wu);

Figure 1. Computing g in explicit form.

Bg(x) = (var(x), false, ∅, {x});

Bg(λx.t) = (lam, bt, Vt − {x},Wt − {x})

where Bg(t) = (nt, bt, Vt,Wt);

Bg(tu) = (app, bt ∨ bu ∨ (nt = lam), Vt ∪ Vu ∪ {x | nt = var(x)},Wt ∪Wu)

where Bg(t) = (nt, bt, Vt,Wt) and Bg(u) = (nu, bu, Vu,Wu);

Bg(t[x�u]) = (n, b, V,W )

where Bg(t) = (nt, bt, Vt,Wt) and Bg(u) = (nu, bu, Vu,Wu) and:

nt = var(x) ⇒ n = nu; nt = var(y) ⇒ n = var(y); nt = lam ⇒ n = lam; nt = app ⇒ n = app;

b = bt ∨ (bu ∧ x ∈ Wt) ∨ ((nu = lam) ∧ (x ∈ Vu));

V = (Vt − {x}) ∪ Vu ⇓x,Wt ∪ {y | nu = var(y) ∧ x ∈ Vt};

W = (Wt − {x}) ∪Wu ⇓x,Wt

Figure 2. Computing g in implicit form.

Cg(t, 〈·〉) = Bg(t);

Cg(t, λx.S) = Cg(t, S);

Cg(t, Su) = Cg(t, S);

Cg(t, uS) = Cg(t, S);

Cg(t, S[x�u]) = (n, b, V,W )

where Cg(t, S) = (nt,S , bt,S , Vt,S ,Wt,S) and Bg(u) = (nu, bu, Vu,Wu) and:

nt = var(x) ⇒ n = nu; nt = var(y) ⇒ n = var(y); nt = lam ⇒ n = lam; nt = app ⇒ n = app;

b = bt ∨ (bu ∧ x ∈ Wt,S) ∨ ((nu = lam) ∧ (x ∈ Vu));

V = (Vt,S − {x}) ∪ Vu ⇓x,Wt,S
∪ {y | nu = var(y) ∧ x ∈ Vt};

W = (Wt,S − {x}) ∪Wu ⇓x,Wt,S

Figure 3. Computing g in implicit form, relative to a context

Mechanisability vs Efficiency. Let us stress that the study of in-
variance is about mechanisability rather than efficiency. One is not
looking for the smartest or shortest evaluation strategy. But rather,
for one that does not hide the complexity of its implementation in
the cleverness of its definition, as it is the case for Lévy’s opti-
mal evaluation. Indeed, an optimal derivation can be even shorter
then the shortest sequential strategy, but—as shown by Asperti and
Mairson [7]—its definition hides hyper-exponential computations,
and consequently optimal derivations do not provide an invariant
cost model. The leftmost-outermost strategy, is a sort of maximally
unshared normalising strategy, where redexes are duplicated when-
ever possible (and unneeded redexes are never reduced), somehow
dually with respect to optimal derivations. It is exactly this inef-
ficiency that induces the subterm property, the key point for its

mechanisability. It is important to not confuse two different levels
of sharing: our LOU derivations share subterms, but not computa-
tions, while Lévy’s optimal derivations do the opposite. By sharing
computations, they collapse the complexity of many steps into a
single one, making the number of steps an unreliable measure.

Call-by-Value and Call-by-Need. Call-by-name evaluation is in
many cases less efficient than call-by-value or call-by-need evalu-
ation. Since we follow the call-by-name policy, the same kind of
inefficiency shows up here. However, as already said, invariance is
not about absolute efficiency: call-by-name and call-by-value are
incomparable — sometimes the former can even be exponentially
faster than the latter, sometimes the other way around—but this fact
does not forbid both to be invariant, i.e. reasonably mechanisable.



We did not prove call-by-value/need invariance. Nonetheless,
we strove to provide an abstract view of both the problem and of
the architecture of our solution, having already in mind the adapta-
tion to call-by-value/need λ-calculi. Recently, the first author and
Sacerdoti Coen show [4] that (in the much simpler weak case) these
policies provide an improved high-level implementation theorem,
where evaluation in the LSC has a linear overhead, rather than
quadratic.

Usefulness. Another source of inefficiency is the fact that at each
reduction step we need to check whether the LO redex is useful
before firing it, and this potentially amounts to doing a global
analysis of the term. One could imagine decorating terms with
additional tags in such a way that the check for usefulness becomes
local and updating tags is not too costly, so that useful reduction
may be implemented more efficiently. In particular, building on
the already established relationships between the LSC and abstract
machines [5], we expect to be able to design an abstract machine
implementing LOU evaluation and testing for usefulness in time
linear in the size of the starting term.

13. Conclusions

This work is the last tale in the long quest for an invariant cost
model for the λ-calculus. In the last ten years, the authors have been
involved in various works in which parsimonious time cost models
have been shown to be invariant for more and more general notions
of reduction, progressively relaxing the conditions on the use of
sharing [3, 13, 14]. None of the results in the literature, however,
concerns reduction to normal form as instead we do here.

By means of explicit substitutions—our tool for sharing—we
provided the first full answer to this long-standing open problem:
we proved that the λ-calculus is indeed a reasonable machine, by
showing that the length of the leftmost-outermost derivation to
normal form is an invariant cost model.

The solution required the development of a whole new tool-
box: an abstract deconstruction of the problem, a detailed study
of unfoldings, a theory of useful derivations, and a general view of
functions efficiently computable in compact form. Along the way,
we showed that standard derivations for explicit substitutions enjoy
the crucial subterm property. Essentially, it ensures that standard
derivations are mechanisable, unveiling a very abstract notion of
machine hidden deep inside the λ-calculus itself, and also a sur-
prising perspective on the standardisation theorem, a classic result
apparently unrelated to the complexity of evaluation.

Among the downfalls of our results, one can of course mention
that proving systems to characterise time complexity classes equal
or larger than P can now be done merely by deriving bounds on
the number of leftmost-outermost reduction steps to normal form.
This could be useful, e.g., in the context of light logics [9, 11, 17].
The kind of bounds we obtain here are however more general than
those obtained in implicit computational complexity (since we deal
with a universal model of computation).

While there is room for finer analyses (e.g. studying call-by-
value or call-by-need evaluation), we consider the understanding of
time invariance essentially achieved. However, the study of com-
plexity measures for λ-terms is far from being over. Indeed, the
study of space complexity for functional programs has only made
its very first steps [15, 18, 24], and not much is known about invari-
ant space cost models.
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