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Abstract: The paper suggests an explicit form of a general integral of motion
for the dynamics of a mechanical system with n degrees of freedom, while
the system is subject to n − 1 holonomic constraints. The computation of this
integral is given for the cart-pendulum with three different holonomic constraints.
Copyright c© 2003 IFAC

1. INTRODUCTION AND MOTIVATING
EXAMPLE

This paper suggests an explicit formula of a gen-
eral integral for the dynamical system

α(q)q̈ + β(q)q̇2 + γ(q) = 0 (1)

where q ∈ R1; α(q), β(q) and γ(q) are smooth
scalar functions.

Exploring the properties of system (1) is mainly
motivated by the fact that any n-degree of free-
dom mechanical system with (n − 1) holonomic

1 The work has been supported by the European Com-
mission via the Nonlinear and Adaptive Control network
(NACO2) and the Danish Technical Research Council, the
grant 26-01-0164
2 The corresponding author

constraints, can be rewritten in the form (1).
From the point of view of controlling a
mechanical system, such holonomic con-
straints could be seen as ‘artificial’; they are
forced by an appropriate feedback strategy.

To clarify the last point, consider the ubiquitous
cart-pendulum system

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (2)

where q = [x, θ]T ∈ R1 × S1, x is the horizontal
displacement of the cart, θ is the angle between
the pendulum rod and the vertical which is zero
at the upright position;

M(q) =
[

M + m ml · cos θ
ml · cos θ ml2

]
,

paco
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C(q, q̇) =
[

0 −ml · sin θ · θ̇
0 0

]
,

m, M are the masses of the pendulum and the
cart respectively; l is the length of the rod;

G(q) =
[

0
−mgl · sin θ

]
, τ =

[
f
0

]

Fig. 1. The cart pendulum system

Suppose that the external control variable f is
chosen such that the center of mass of the pen-
dulum is forced to belong to a given vertical line
x∗ = a: the variables x and θ of the system (2)
have to satisfy the constraint

x + l · sin θ = a (3)

Taking the first and second time derivatives of (3),
one gets two new relations

ẋ + l · cos θ · θ̇ = 0 (4)

ẍ− l · sin θ · θ̇2 + l · cos θ · θ̈ = 0 (5)

As one can expect, the dynamics of (2) subject
to the constraint (3) result in a system with 1
degree of freedom. To get its expression, one can
substitute the relations (3)–(5) into the second
equation of (2), which is

ml · cos θ · ẍ + ml2 · θ̈ −mgl · sin θ = 0 (6)

This leads to the following equation with respect
to the remaining variable θ

ml2·sin2 θ·θ̈+ml2·cos θ·sin θ·θ̇2−
−mgl · sin θ = 0

(7)

System (7) has the same structure as the general
equation (1) with the parameters

α(θ) = ml2 · sin2 θ,

β(θ) = ml2 · cos θ · sin θ,

γ(θ) =−mgl · sin θ

It will be shown in the next section that, for
system (1), there exists a nontrivial function I,
which preserves its value along any solution of
(1). It will be written explicitly, and this is the
main contribution of the paper. The orbital sta-
bilization of cycles in the zero-dynamics and in
the original system are then discussed as direct
consequences of this development. Afterwards two
illustrative examples are given.

2. MAIN RESULT

Theorem 1. Let
[
q(t), q̇(t)

]
be the solution of sys-

tem (1) with given initial conditions
[
q0, q̇0

]
. The

function

I
(
q, q̇, q0, q̇0

)
= q̇2−exp



−2

q∫

q0

β(τ)
α(τ)

dτ



 q̇2

0 +

+ exp



−2

q∫

q0

β(τ)
α(τ)

dτ



× (8)

×
q∫

q0

exp



2

s∫

q0

β(τ)
α(τ)

dτ





2γ(s)
α(s)

ds

is finite and preserves its value along the solution[
q(t), q̇(t)

]
.

Proof. Observe that for the solution
[
q(t), q̇(t)

]

the following identity

d2

dt2
q(t) =

d

dq

(
1
2

q̇2(t)
)

(9)

holds. Indeed,

d2

dt2
q(t) =

d

dt

(
q̇(t)

)

=
∂

∂q

(
q̇(t)

)
· d

dt

(
q(t)

)
=

∂

∂q

(
q̇(t)

)
· q̇(t)

=
d

dq

(
1
2

q̇2(t)
)

Introducing the new variable

Y = q̇2(t)

and taking (9) into account, one can rewrite the
differential equation (1) in the equivalent form

α(q)
1
2

d

dq
Y + β(q)Y + γ(q) = 0 (10)



This is a linear equation with respect to function
Y and with q (instead of t) as independent vari-
able.

Let us first consider the case where, along the
solution

[
q(t), q̇(t)

]
, α(q) is separated from zero.

Under this assumption, one can divide equation
(10) by α(q) and consider the equation

d

dq
Y +

2β(q)
α(q)

Y +
2γ(q)
α(q)

= 0 (11)

Its general solution looks as follows

Y (q) = exp

{
−2

q∫
q0

β(τ)
α(τ)dτ

}
·Y (q0)−

− exp



−2

q∫

q0

β(τ)
α(τ)

dτ



× (12)

×
q∫

q0

exp



2

s∫

q0

β(τ)
α(τ)

dτ





2γ(s)
α(s)

ds

Introducing function I as

I(q, q̇, q0, q̇0) =

Y (q)− exp



−2

q∫

q0

β(τ)
α(τ)

dτ



 · Y (q0) +

+exp



−2

q∫

q0

β(τ)
α(τ)

dτ



×

×
q∫

q0

exp



2

s∫

q0

β(τ)
α(τ)

dτ





2γ(s)
α(s)

ds

results in I = 0 along the solution
[
q(t), q̇(t)

]
.

This proves the case when α(q) is separated from
zero along the solution

[
q(t), q̇(t)

]
.

Suppose now that there exists a finite time mo-
ment T∗ such that:

(a) the solution
[
q(t), q̇(t)

]
is well defined and re-

mains continuous on the interval
[
T∗ − ε, T∗ + ε

]

for some ε > 0;
(b) the function α(q) equals to zero at q = q(T∗),

that is,
α (q(T∗)) = 0.

Under these assumptions one cannot write the
descriptor equation (10) in the form (11) along
the solution

[
q(t), q̇(t)

]
for the whole time interval

[
T∗ − ε, T + ε

]
. Rather one should consider two

equations

α(q)q̈ + β(q)q̇2 + γ(q) = 0, t ∈
[
T∗ − ε, T∗

)
(13)

α(q)q̈ + β(q)q̇2 + γ(q) = 0, t ∈
(
T∗, T∗ + ε

]
(14)

and one matching condition

lim
t→T∗−

[
q(t), q̇(t)

]
= lim

t→T∗+

[
q(t), q̇(t)

]
, (15)

where t → T∗− is the abbreviation for “approach-
ing T∗ from the left”, and t → T∗+ “from the
right”. The equality (15) is valid due to assump-
tion (a) of continuity of the solution on the inter-
val

[
T∗ − ε, T + ε

]
. This assumption also implies

that
[
q(t), q̇(t)

]
remains bounded on the interval[

T∗ − ε, T + ε
]
.

For systems (13) and (14), one could write (12)
for the subintervals

[
T∗ − ε, T∗

)
and

(
T∗, T∗ + ε

]
,

while the matching condition (15) and bounded-
ness of the solution provide that the function

q̇2(t) = exp




−2

q(t)∫

q0

β(τ)
α(τ)

dτ




· q̇2

0 −

− exp




−2

q(t)∫

q0

β(τ)
α(τ)

dτ




×

×
q(t)∫

q0

exp



2

s∫

q0

β(τ)
α(τ)

dτ





2γ(s)
α(s)

ds

remains continuous for all t ∈
[
0, T + ε

]
. This

finishes the proof.

Let us discuss this result:

(1) Function (8) is not the first integral of system
(1). Indeed, following the definition, a first
integral of a system

d

dt
y = f(t, y)

is a function U = U(t, y) that preserves its
value along any solution y(t) of the system,
see (Hartman, 1964). As shown in the The-
orem, I preserves its value along the solu-
tions, but it depends on the initial conditions
[ q0, q̇0 ]. On the other hand, such a function
is known as a general or full integral of the
system. In turn, one can expect that, in many
cases, this function leads to the explicit form



of the first integral of the system. This point
is illustrated in the next section, where the
cart-pendulum system is presented.

(2) The knowledge of the explicit form of func-
tion (8) may be useful when the dynamics
of the constraint system exhibits periodic
motions for some initial conditions. Choosing
‘interesting’ initial conditions [ q0d, q̇0d ], one
can use a control Lyapunov function candi-
date of the form

V (q, q̇) =
1
2
I2(q, q̇, q0d, q̇0d)

for the orbital stabilization of a periodic so-
lution corresponding to the choice [ q0d, q̇0d ].

3. ORBITAL STABILIZATION OF CYCLES
IN ZERO DYNAMICS

Suppose that, for some initial conditions [qd
0 , q̇d

0 ],
the corresponding solution of system (1) is a cycle
Γ. In order to orbitally stabilize this cycle in the
controlled system

α(q)q̈ + β(q)q̇2 + γ(q) = u (16)

we can proceed as follows: Choose a Lyapunov
function candidate

V (q, q̇) =
1
2
I(q, q̇, qd

0 , q̇d
0)2 (17)

Its time derivative along any solution [q(t), q̇(t)]
of system (16) has the form

d

dt
V = I

(
q(t), q̇(t), qd

0 , q̇d
0

) (
∂I

∂q
q̇(t) +

∂I

∂q̇
q̈(t)

)

= I ×
(

∂I

∂q
q̇(t)+

+
∂I

∂q̇

[
−β(q(t))

α(q(t))
q̇2(t)− γ(q(t))

α(q(t))

]
+

∂I

∂q̇

u

α(q(t))

)

=−k
[
I

(
q(t), q̇(t), qd

0 , q̇d
0

)
× q̇(t)

]2

≤ 0 (18)

where the controller u = ugood is defined to force
the last equality:

ugood = −k

2
I

(
q(t), q̇(t), qd

0 , q̇d
0

)
q̇(t)α(q(t))+ (19)

+β(q(t))





q̇2(t)− exp


−2

q(t)∫

qd
0

β(τ)
α(τ)

dτ


×

×


(q̇d

0)2 −
q(t)∫

qd
0

exp





2

s∫

qd
0

β(τ)
α(τ)

dτ





2γ(s)
α(s)

ds








with some positive parameter k.

Under appropriate conditions, the following state-
ment is true: Consider system (1) and one of its
cycles Γ. Choose any point

[qd
0 , q̇d

0 ] ∈ Γ

Then Γ is an orbitally asymptotically stable cycle
of the closed loop system (16), (19).

4. ORBITAL STABILIZATION OF CYCLES
FOR THE ORIGINAL SYSTEM

In the previous section a procedure for the sta-
bilization of a cycle in the zero dynamics of the
system has been proposed. In fact, controller (19)
is not defined in the case where the system does
not satisfy the holonomic constraint. Suppose that
the dynamics of the original mechanical system
can be rewritten as follows

q̈ =−β(q)
α(q)

q̇2 − γ(q)
α(q)

+
G(q, q̇, y, ẏ, v)

α(q)
(20)

ÿ =−k1y − k2ẏ + v (21)

where v is a control variable, and

G(q, q̇, y, ẏ, v) = 0, if y = ẏ = v = 0

where y designates the configuration variables not
present in the state of the zero-dynamics (possibly
after some feedback transformation).

Suppose again that we are given a cycle Γ of
subsystem (20) (characterized by some [qd

0 , q̇d
0 ]),

and that we are asked to orbitally stabilize this
cycle. To proceed we can utilize the back-stepping
idea: Consider a Lyapunov function candidate

W (q, q̇, y, ẏ) =
1
2
I(q, q̇, qd

0 , q̇d
0)2+ (22)

+
ε

2

(
G(q, q̇, y, ẏ, v)− ugood

)2

where ugood is defined in (19). Taking the time
derivative of W along any solution of system (20)–
(21), we get

d

dt
W = ε

(
G(q, q̇, y, ẏ, v)− ugood

)
×

× d

dt

(
G(q, q̇, y, ẏ, v)− ugood

)
+ I

(
q, q̇, qd

0 , q̇d
0

)
×

×
(

∂I

∂q
q̇(t)− ∂I

∂q̇

[
β(q)
α(q)

q̇2 +
γ(q)
α(q)

]
+

∂I

∂q̇

G

α(q)

)

= ε
(
G− ugood

)
× d

dt

(
G− ugood

)
−

−k
[
I

(
q, q̇, qd

0 , q̇d
0

)
× q̇

]2

+

+I
(
q, q̇, qd

0 , q̇d
0

)
× 2q̇ × G− ugood

α(q(t))



=−k
[
I

(
q, q̇, qd

0 , q̇d
0

)
× q̇

]2

+
(
G− ugood

)
× (23)

×
(

ε
d

dt
G− ε

d

dt
ugood + I

(
q, q̇, qd

0 , q̇d
0

)
× 2q̇

α(q)

)

If we choose the control variable v as a solution of
the equation

ε
d

dt
G(q, q̇, y, ẏ, v)−ε

d

dt
ugood+

+I
(
q, q̇, qd

0 , q̇d
0

)
× 2q̇

α(q)
= (24)

= −ρ
(
G(q, q̇, y, ẏ, v)− ugood

)

with some ρ > 0, then the time derivative of W
takes the form

d

dt
W =− k

[
I

(
q, q̇, qd

0 , q̇d
0

)
× q̇

]2

− (25)

−ρ
(
G(q, q̇, y, ẏ, v)− ugood

)2

The last equality (25) implies that the function W
is not increasing along the solution of the closed
lop system (20), (21), (24), (19). The function
W may not be proper even locally around the
cycle Γ. Therefore, convergence of solutions of
the closed loop system to the cycle Γ remains
unproven in general (while it could be proven in
some examples).

5. EXAMPLE: THE CART-PENDULUM

In this section, we analyze the effect of different
holonomic constraints on the zero-dynamics and
the general integral of the cart-pendulum.

5.1 The Center of Mass of the Pendulum Belongs
to a Given Vertical

This example has been discussed in the Introduc-
tion, and the constrained dynamics of the sys-
tem is covered by equation (7). Straightforward
calculations, based on formula (8), result in the
following expression

I(θ, θ̇, θ0, θ̇0) = θ̇2−
[
sin θ0

sin θ

]2

θ̇2
0+ (26)

+
2g

l · sin2 θ

[
cos θ − cos θ0

]

Theorem 1 implies that this function remains
zero along the solution

[
θ(t), θ̇(t)

]
that starts at[

θ0, θ̇0

]
. Therefore, function

sin2 θ·I(θ, θ̇, θ0, θ̇0) = sin2 θ·θ̇2− (27)

− sin2 θ0 · θ̇2
0 +

2g

l

[
cos θ − cos θ0

]

will also be zero along the solution. Introducing a
function

U(θ, θ̇) = sin2 θ · θ̇2 +
2g

l
cos θ

one gets

sin2 θ · I(θ, θ̇, θ0, θ̇0) = U(θ, θ̇)− U(θ0, θ̇0)

From the last relation one can conclude that U is
a first integral of system (7).

5.2 A Fixed Point on the Pendulum’s Rod Belongs
to a Given Vertical

To extend the previous example, consider again
the constraint

x + Lu · sin θ = a (28)

where Lu is a fixed parameter (possibly different
from the distance l to the center of mass of the
pendulum). Taking the first and second time-
derivatives of (28), one gets

ẋ + Lu · cos θ · θ̇ = 0 (29)

ẍ− Lu · sin θ · θ̇2 + Lu · cos θ · θ̈ = 0 (30)

The substitution of ẍ from the second relation into
(6) results in the zero-dynamics

[
l − Lu · cos2 θ

]
·θ̈+ (31)

+ Lu · cos θ · sin θ · θ̇2 − g · sin θ = 0

The straightforward calculation of formula (8)
results in the following expression

I(θ, θ̇, θ0, θ̇0) = θ̇2−
∣∣∣∣
l − Lu · cos2 θ0

l − Lu · cos2 θ

∣∣∣∣ θ̇2
0− (32)

− 2g∣∣∣l − Lu cos2 θ
∣∣∣

θ∫

θ0

sign
{
l − Lu cos2 s

}
sin sds

If one assumes that along the solution
[
θ(t), θ̇(t)

]

the function

l − Lu · cos2 θ(t) > 0

then, along this solution, the formula (32) could
be rewritten as

I(θ, θ̇, θ0, θ̇0) = θ̇2− l − Lu · cos2 θ0

l − Lu · cos2 θ
θ̇2
0+ (33)

+
2g

[
cos θ0 − cos θ

]

l − Lu · cos2 θ



Theorem 1 indicates that this function remains
equal to zero along the solution. Therefore, the
function

(
l − Lu · cos2 θ

)
·I(θ, θ̇, θ0, θ̇0) =

=
(
l − Lu · cos2 θ

)
θ̇2 + 2g cos θ︸ ︷︷ ︸

U(θ, θ̇)

−

− (
l − Lu · cos2 θ0

)
θ̇2
0 + 2g cos θ0

= U(θ, θ̇)− U(θ0, θ̇0) (34)

will also be zero along the solution, while U is the
first integral. It is interesting to observe that, if
the parameter Lu is chosen as

Lu > l

then the upright equilibrium of system (31) is
neutrally stable, and the system possesses stable
cycles around the upright equilibrium.

5.3 Constraints without Physical Interpretation

In the previous examples, the computation of gen-
eral integrals of the system can easily be trans-
fered to corresponding first integrals. This is not
the case in general. To observe this consider the
constraint

x + Lu · sin θ = ε · sin(kθ), (35)

which is a modified version of (28) with new
parameters ε and k. Taking the first and second
time-derivatives of (28), one gets

ẋ + Lu · cos θ · θ̇ = ε · k · cos(kθ) · θ̇

ẍ− Lu · sin θ · θ̇2 + Lu · cos θ · θ̈ =

ε · k · cos(kθ) · θ̈ − ε · k2 sin(kθ) · θ̇2

Substitution of ẍ from the second relation into (6)
results in the dynamics

[
l + ε · k · cos(kθ) · cos θ − Lu · cos2 θ

]
·θ̈+

+
[
Lu · cos θ · sin θ − ε · k2 · sin(kθ) · cos θ

]
· θ̇2 −

−g · sin θ = 0 (36)

For this system the function I in (8) looks as
follows

I
(
θ, θ̇, θ0, θ̇0

)
= θ̇2−

− exp



−2

θ∫

θ0

Lu cos τ sin τ − εk2 sin(kτ) cos τ

l + εk cos(kτ) cos τ − Lu cos2 τ
dτ



 θ̇2

0+

+exp



−2

θ∫

θ0

Lu cos τ sin τ − εk2 sin(kτ) cos τ

l + εk cos(kτ) cos τ − Lu cos2 τ
dτ



×

×
θ∫

θ0

exp



2

s∫

θ0

Lu cos τ sin τ − εk2 sin(kτ) cos τ

l + εk cos(kτ) cos τ − Lu cos2 τ
dτ



×

× −2g · sin s

l + εk cos(ks) cos s− Lu cos2 s
ds

The direct integration inside the last formula may
be difficult for different values of parameters Lu, ε,
k, and the form of the corresponding first integral,
if it exists, is not straightforward, as it was in the
previous examples. Nevertheless, this expression
could be used for analysis and control of the
system.

6. CONCLUSIONS

This paper is aimed at a development of a new
method for construction and local orbital stabi-
lization of cycles in mechanical systems. The main
idea comes from the fact that we were able to
explicitly build a a general integral of motion for
any mechanical system with configuration space of
dimension n with (n− 1) holonomic constraints.

The dynamics of such a system could be reduced
to a system with one degree of freedom. If such a
system has a cycle, then the explicit form of its
general integral of motion enables us to describe
this cycle as a zero-level set of the square of
this integral function, and use it as a Lyapunov
function for deriving a controller and checking
orbital asymptotic stability of this cycle in the
closed loop system.

For the stabilization of this cycle in the original
n-degree of freedom mechanical system, an algo-
rithm based on the extension of the back-stepping
idea, has been suggested.
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