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Summary. The experimental study of genetic regulatory networks has made tremendous
progress in recent years resulting in a huge amount of data onthe molecular interactions
in model organisms. It is therefore not possible anymore to intuitively understand how the
genes and interactions together influence the behavior of the system. In order to answer such
questions, a rigorous modeling and analysis approach is necessary. In this chapter, we present
a family of such models and analysis methods enabling us to better understand the dynam-
ics of genetic regulatory networks. We apply such methods tothe network that underlies the
nutritional stress response of the bacteriumE. coli.

The functioning and development of living organisms is controlled by large and
complex networks of genes, proteins, small molecules, and their interactions, so-
calledgenetic regulatory networks. The study of these networks has recently taken
a qualitative leap through the use of modern genomic techniques that allow for the
simultaneous measurement of the expression levels of all genes of an organism. This
has resulted in an ever growing description of the interactions in the studied genetic
regulatory networks. However, it is necessary to go beyond the simple description
of the interactions in order to understand the behavior of these networks and their
relation with the actual functioning of the organism. Sincethe networks under study
are usually very large, an intuitive approach for their understanding is out of ques-
tion. In order to support this work, mathematical and computer tools are necessary:
the unambiguous description of the phenomena that mathematical models provide
allows for a detailed analysis of the behaviors at play, though they might not exactly
represent the exact behavior of the networks.

In this chapter, we will be mostly interested in the modelingof the genetic reg-
ulatory networks by means ofdifferential equations. This classical approach allows
precise numerical predictions of deterministic dynamic properties of genetic regu-
latory networks to be made. However, for most networks of biological interest the
application of differential equations is far from straightforward. First, the biochemi-
cal reaction mechanisms underlying the interactions are usually not or incompletely
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known, which complicates the formulation of the models. Second, quantitative data
on kinetic parameters and molecular concentrations is generally absent, even for
extensively-studied systems, which makes standard numerical methods difficult to
apply. In practice, the modeler disposes of much weaker information on the network
components and their interactions. Instead of details on the mechanisms through
which a protein regulates a gene, we typically only know whether the protein is an
activator or an inhibitor. And even if it had been shown, for example, that the protein
binds to one or several sites upstream of the coding region ofthe gene, numerical
values of dissociation constants and other parameters are rarely available. At best, it
is possible to infer that the regulatory protein strongly orweakly binds to the DNA,
with a greater affinity for one site than for another.

Due to those uncertainties, we cannot hope to build a model that is guaranteed
to reproduce the exact behavior of the considered genetic regulatory network. No
model will bequantitativelyaccurate. It is therefore necessary to concentrate on the
construction of models that reproduce thequalitative dynamical propertiesof the net-
work, that is, dynamical properties that are invariant for arange of parameter values
and reaction mechanisms. The qualitative properties express the intimate connection
between the behavior of the system and the structure of the network of molecular
interactions, independently from the quantitative details of the latter.

Consequently, qualitative approaches have been developedfor the modeling,
analysis, and simulation of genetic regulatory networks and other networks of bio-
logical interactions: Boolean networks [20, 30], Petri nets [22, 27], process algebras
[28], qualitative differential equations [17], hybrid automata [11],... In this chapter,
we concentrate on one particular class of qualitative models of genetic regulatory
networks, originally proposed by Glass and Kauffman [12]:piecewise-linear (PL)
differential equations. In Section 1, we describe this family of models and give a
small example. In Section 2, we show qualitative results that have been obtained
for the analysis of such systems. We then illustrate these models on the nutritional
stress response ofE. coli in Section 3, before discussing remaining challenges for
the analysis and control of such models in Section 4.

1 Models of genetic regulatory networks

Among the many emerging families of models (see [5]), a classof piecewise-linear
(PL) models, originally proposed by Glass and Kauffman [12], has been widely
used in modeling genetic regulatory networks. The variables in the piecewise-linear
differential equation (PLDE) models are the concentrations of proteins encoded by
the genes, while the differential equations describe the regulatory interactions in the
network by means of step functions. The use of step functionsis motivated by the
switch-like behavior of many of the interactions in geneticregulatory networks [26],
but it leads to some mathematical difficulties. The vector field for the PLDE model
is undefined when one of the variables assumes a value where the step function is
discontinuous, referred to as a threshold value. Recent work by Gouzé and Sari [13]
uses an approach due to Filippov to define the solutions on thethreshold hyperplanes.



Piecewise-linear models of genetic regulatory networks 3

The approach involves extending the PLDE to a piecewise-linear differential inclu-
sion (PLDI). As is well known, such discontinuities can leadto sliding modes. The
definitions and results of this section are mainly taken from[3].

The family of PL-models is best illustrated with an example:the schematic dia-
gram in Figure 1 describes a simple genetic regulatory network. In this example, the
genesa andb code for the proteins A and B, which in turn control the expression
of the two genesa andb. Protein A inhibits genea and activates geneb above cer-
tain threshold concentrations, which are assumed to be different. Similarly protein
B inhibits geneb and activates genea above different threshold concentrations. This
two-gene regulatory network is simple but represents many features of regulation
found in real networks: auto-regulation, cross-regulation and inhibition/activation.
Such a two-gene network could be found as a module of a more complex genetic
regulatory network from a real biological system.

a b

A B

Fig. 1. Example of a genetic regulatory network of two genes (a andb), each coding for a
regulatory protein (A and B).

The equations modeling the example network in Figure 1 can bewritten down as
{

ẋa = κas+(xb, θ
1
b )s

−(xa, θ2
a) − γaxa

ẋb = κbs
+(xa, θ1

a)s−(xb, θ
2
b ) − γbxb

(1)

wheres+(xs, θs) is equal to0 whenxs < θs and equal to1 whenxs > θs and
s−(xs, θs) = 1 − s+(xs, θs). In this model, genea is expressed at a rateκa if the
concentrationxb of proteinb is above the thresholdθ1

b and the concentrationxa of
protein A is below the thresholdθ2

a. Similarly, geneb is expressed at a rateκb if the
concentrationxa of protein A is above the thresholdθ1

a and the concentrationxb of
the protein B is below the thresholdθ2

b . Degradation of both proteins is assumed to
be proportional to their own concentrations, so that the expression of the genesa and
b is modulated by the degradation ratesγaxa andγbxb respectively.

Such a model is readily generalized to models containing both expression and
degradation terms for each gene:

ẋi = fi(x) − γixi

wherefi(x) represents the expression rate of genei, depending on the whole state
x = (x1, · · · , xn)T andγixi is the degradation rate. However, the expression rates of
(1) have the additional property of being constant for values ofxa andxb belonging
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to intervals that do not contain thresholds valuesθ
j
i . This can be rewritten by detailing

fi(x) as follows:

fi(x) =

Li
∑

l=1

κilbil(x)

wherebil(x) is a combination of step-functionss±(xr , θ
j
r) andκil > 0 is a rate

parameter. The generalized form of (1) is a piecewise linearmodel

ẋ = f(x) − γx (2)

where the model is linear within hyper-rectangles of the state-space.
The dynamics of the piecewise-linear system (2) can be studied in the n-

dimensional state-spaceΩ = Ω1 × Ω2 × · · · × Ωn, where eachΩi is defined
by Ωi = {x ∈ IR+ | 0 ≤ xi ≤ maxi} for some positive parametermaxi >

maxx∈Ω

(

fi(x)
γi

)

. A protein encoded by a gene will be involved in different interac-

tions at different concentration thresholds, so for each variablexi, we assume there
arepi ordered thresholdsθ1

i , · · · , θ
pi

i (we also defineθ0
i = 0 andθ

pi+1
i = maxi).

The (n − 1)-dimensional hyperplanes defined by these thresholds partition Ω into
hyper-rectangular regions we calldomains. Specifically, a domainD ⊂ Ω is defined
to be a setD = D1 × · · · × Dn, whereDi is one of the following:

Di = {xi ∈ Ωi|0 ≤ xi < θ1
i }

Di = {xi ∈ Ωi|θ
j
i < xi < θ

j+1
i } for j ∈ {1, · · · , pi − 1}

Di = {xi ∈ Ωi|θ
pi

i < xi ≤ maxi}

Di = {xi ∈ Ωi|xi = θ
j
i } for j ∈ {1, · · · , pi}

A domainD ∈ D is called a regulatory domain if none of the variablesxi has a
threshold value inD. In contrast, a domainD ∈ D is called a switching domain of
orderk ≤ n if exactlyk variables have threshold values inD [25]. The correspond-
ing variablesxi are called switching variables inD. For convenience, we denote the
sets of regulatory and switching domains byDr andDs respectively. It is also useful
to define the concept of a supporting hyperplane for a domain.

Definition 1. For every domainD ∈ Ds of orderk ≥ 1, define supp(D) to be the
(n− k)-dimensional hyperplane containing D. IfD ∈ Dr then we define supp(D) to
be equal toΩ.

1.1 Solutions in regulatory domains

For any regulatory domainD ∈ Dr, the functionf(x) is constant for allx ∈ D,
and it follows that the piecewise-linear system (2) can be written as a linear vector
field

ẋ = fD − γx (3)

wherefD is constant inD. Restricted toD, this is a classical linear ordinary differ-
ential equation. From (3), it is clear that all solutions inD monotonically converge
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towards the corresponding equilibriumφ(D), which is defined byγφ(D) = fD.
If φ(D) belongs to the closure ofD, all solutions initiated inD converge towards
φ(D); otherwise, all solutions reach the boundary ofD in finite time (which means
that they exitD).

Definition 2. Given a regulatory domainD ∈ Dr, the pointφ(D) = γ−1fD ∈ Ω

is called the focal point for the flow inD.

xb

0

max b

θ2

b

θ1

b

θ1

a max a

κb/γb

κa/γa

φ(D13)

D13

θ2

a

xa

Fig. 2. Illustration of the focal pointφ(D13) of a domainD13 in example (1)

In Figure 2, example (1) is used to illustrate this concept: the considered regula-
tory domainD is {xa ∈ Ωa|θ

1
a < xa < θ2

a} × {xb ∈ Ωb|θ
1
b < xb < θ2

b}, so that
system (1) becomes

{

ẋa = κa − γaxa

ẋb = κb − γbxb

and the corresponding focal point is
(

κa

γa
, κb

γb

)

. In the figure, this focal point is sup-

posed to be outside ofD: every solution starting inD therefore exits this domain in
finite time.

1.2 Solutions in switching domains

In switching domains, the PL system (2) is not defined, since in a switching domain
of orderk ≥ 1, k variables assume a threshold value. If solutions do not simply go
through a switching domain, it is necessary to give a definition of what a solution
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can be on that domain. Classically, this is done by using a construction originally
proposed by Filippov [10] and recently applied to PL systemsof this form [13, 7].

The method consists of extending the system (3) to a differential inclusion,

ẋ ∈ H(x), (4)

whereH is a set-valued function (i.e.H(x) ⊆ IRn). If D is a regulatory domain,
then we defineH simply as

H(x) = {fD − γx}, (5)

for x ∈ D. If D is a switching domain, forx ∈ D, we defineH(x) as

H(x) = co({fD′

− γx | D′ ∈ R(D)}), (6)

whereR(D) = {D′ ∈ Dr|D ⊆ ∂D′} is the set of all regulatory domains withD in
their boundary, andco(X) is the closed convex hull ofX . For switching domains,
H(x) is generally multi-valued so we define solutions of the differential inclusion as
follows.

Definition 3. A solution of (4) on[0, T ] in the sense of Filippovis an absolutely
continuous function (w.r.t.t) ξt(x0) such thatξ0(x0) = x0 and ξ̇t ∈ H(ξt), for
almost allt ∈ [0, T ].

In order to more easily define these Filippov solutions, it isuseful to define a
concept analogous to the focal points defined for regulatorydomains, extended to
deal with switching domains.

Definition 4. LetD ∈ Ds be a switching domain of orderk. Then its focal setΦ(D)
is

Φ(D) = supp(D) ∩ co({φ(D′) | D′ ∈ R(D)}). (7)

HenceΦ(D) for D ∈ Ds is the convex hull of the focal pointsφ(D′) of all the
regulatory domainsD′ havingD in their boundary, as defined above, intersected
with the threshold hyperplanesupp(D) containing the switching domainD (Figure
3).

We have shown that
H(x) = γ(Φ(D) − x) (8)

which is a compact way of writing thatH(x) = {y ∈ IRn | ∃φ ∈ Φ(D) such thaty =
γ(φ − x)}. The Filippov vector field is defined by means of the focal set.

If Φ(D) = { }, with D a switching domain, solutions will simply crossD;
otherwise, sliding mode is possible and convergence takes place “in the direction” of
Φ(D). If Φ(D)∩D = { }, solutions eventually leaveD. In the case whereΦ(D)∩D

is not empty, it can be assimilated to an equilibrium set within D towards which all
solutions will converge in the following sense
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D1

D2

φ(D1)

φ(D2)

D
φ(D)

Fig. 3. Illustration of the definition of the focal set on a switchingsurfaceD according to the
Filippov definition of solutions. The convex hull of the pointsφ(D1) andφ(D2) is simply the
segment that links them, so that (7) implies thatφ(D) is the intersection of this segment with
supp(D).

Lemma 1. [3] For every regulatory domainD ∈ Dr, all solutionsξt in D monoton-
ically converge towards the focal setΦ(D). For every switching domainD ∈ Ds,
the non-switching component(ξt)i of the solutionξt in D monotonically converges
towards the closed interval

πi(Φ(D)) = {φi ∈ Ωi | φ ∈ Φ(D)},

the projection ofΦ(D) ontoΩi, if (ξ0)i 6∈ πi(Φ(D)). Every switching component
(ξt)i of the solutionξt in D is a constant(ξt)i = πi(Φ(D)) = θ

qi

i .

Basically, this means that convergence does not take place towardsΦ(D), but
towards the smallest hyper-rectangle that containsΦ(D). Indeed, ifΦ(D) is neither
empty, nor a singleton, andξt0 belongs toΦ(D), the Filippov vector field at this point
is defined asH(ξt0) = γ(Φ(D) − ξt0) and there is no guarantee that no element of
H(ξt0) points outside ofΦ(D) (we know however that a solution stays atξt0 ). Due
to the structure of the differential equations, it is on the other hand certain that the
transient solution does not leave the smallest hyper-rectangle containingΦ(D). This
phenomenon is illustrated in Figure 4

We then have the following corollary

Corollary 1. [3] All solutions ξt in D converge towardsΠ(D), if ξ0 6∈ Π(D). For
all solutionsξt in D, Π(D) is invariant.
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φ1

φ2
Π(D)

Φ(D)

Fig. 4. Illustration of the non invariance ofΦ(D): solutions with initial condition onΦ(D)
stay inside the boxΠ(D) but do not necessarily stay inΦ(D)

Adding the following assumption

Assumption 1 For all domainsD ∈ D,

Φ(D) ∩ supp(D′) = {}, ∀D′ ⊆ ∂D. (9)

it has been possible to develop stability results for this family of systems.

2 Stability and qualitative properties of PL models

The stability analysis of the various equilibria is a directconsequence of the analysis
in the previous section. It is easily seen that equilibriax̄r in someD ∈ Dr are
asymptotically stable. Indeed, they are the focal points ofthe domains in which they
are contained, so that the convergence that was described inthe previous section,
leads to asymptotic stability. The more difficult part consists in defining and handling
the stability of Filippov equilibria that lie in switching surfaces.

In a switching domainD ∈ Ds, recall that solutions are defined by considering
the differential inclusionH(x). We say that a pointy ∈ Ω is an equilibrium point
for the differential inclusion if

0 ∈ H(y), (10)

whereH is computed using the Filippov construction in (6). In otherwords, there is
a solution in the sense of Filippov,ξt, such thatξt(y) = y, ∀t > 0. We call such a
point asingular equilibrium point. It is easily seen that, fory to be an equilibrium
point insideD, it must belong toΦ(D). Also, since Assumption 1 preventsΦ(D)
from intersecting the border ofD, we then have thatΦ(D) ⊂ D. Every elementφ
of Φ(D) is then an equilibrium whenΦ(D) ⊂ D so that, for everyφ ∈ Φ(D), there
exists a solutionξt(φ) = φ for all t.

One of the interesting results of [3] concerns the link between the configuration of
the state transition graph and the stability of an equilibrium. This discrete, qualitative
description of the dynamics of the PL system that underlies the qualitative simulation
of genetic regulatory networks was originally due to Glass.It indicates the passages
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between the different domains making up the phase space. A state transition graph is
a directed graph whose vertices are the domains of the systemand whose edges are
the possible transitions between these domains (easily determined by examining the
PL model [3]). The transition graph of system (1) is illustrated in Figure 5.

xb

D
2

D
7

D
12

D
17 D

22

0

xa

max b

θ
1

a θ
2

a
max a

D
1

D
3

D
5

D
6

D
8

D
13

D
20

D
18

D
16D

11
D

21

D
23

D
15

D
10

D
25

D
4

D
9 D

14
D

19θ
2

b

θ
1

b

D
24

D
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D
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D
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D
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D
24D

9

D
8

D
7

D
16

D
6
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11
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D
10

D
15

D
20

D
25

D
17

D
18

D
19

D
1

D
2

D
3

D
4

D
5

Fig. 5. Subdivision of the state-space in 25 domains and transitiongraph of system (1)

For a two-dimensional system, we show how this graph indicates the stability of
singular equilibria:

Theorem 1. [3] Let the dimension of the PL model be 2, and letD be a switching
domain containing a singular equilibrium pointφ(D). If for all regulatory domains
D′ ∈ R(D) (that is, adjacent toD), there exists a transition fromD′ to D in the
state transition graph, thenφ(D) is asymptotically stable.

This result is purely qualitative: the actual value of the parameters is not needed. It
can be directly applied to show that the singular equilibrium (xa, xb) = (θ2

a, θ2
b ), cor-

responding toD19 on Figure 5, is asymptotically stable because there are transitions
to D19 from D13, D15, D23 andD25, the regulatory domains adjacent toD19.

A generalization, but in a weaker form, of this theorem to dimensionn is also
available.

Theorem 2.AssumeΩ ⊂ IRn. LetD ∈ Ds be a switching domain of orderp ≥ 1
containing a singular equilibrium setΦ(D) that satisfies Assumption 1. If for all
D′ ∈ R(D), there is a transition fromD′ to D in the state transition graph, then
Π(D) is asymptotically stable.
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These results are very helpful for the qualitative analysisof the genetic regulatory
networks. However, some stable equilibria cannot be identified through those criteria.
Some less restrictive criteria are therefore under development.

Besides this method, we can discover stable equilibria thatwould not have been
directly identified by our criteria, through a rigorous simplification of the model.
This can be done through model reduction or identification ofregions of the state-
space that cannot be reached by the solutions (maybe after some finite time). We will
illustrate the kind of things that can be done on an example inthe following section.
In that section, since the resulting models are very simple,we do not need to go back
to transition graph analysis at the end of the reduction procedure, but we could have
done so, and it will be necessary to do so if the model reduction procedure does not
yield very small models.

3 Carbon starvation response ofE. coli

We will present a specific model reduction and stability analysis for the model in
dimension 6 of the carbon starvation response ofE. coli of Ropers et al. [29]. In
their natural environment, bacteria likeEscherichia colirarely encounter conditions
allowing continuous, balanced growth. While nutrients areavailable,E. coli cells
grow quickly, leading to an exponential increase of their biomass, a state calledex-
ponential phase. However, upon depletion of an essential nutrient, the bacteria are
no longer able to maintain fast growth rates, and the population consequently enters
a non-growth state, calledstationary phase(Figure 6). During the transition from
exponential to stationary phase, each individualE. coli bacterium undergoes numer-
ous physiological changes, concerning among other things the morphology and the
metabolism of the cell, as well as gene expression [19]. These changes enable the
cell to survive prolonged periods of starvation and be resistant to multiple stresses.
This carbon starvation responsecan be reversed and growth resumed, as soon as
carbon sources become available again.

?Exponential phase

Signal of nutrient
deprivation

Stationary phase

Fig. 6. Nutrient-stress response of bacteria during the transition from exponential to stationary
phase.
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On the molecular level, the transition from exponential phase to stationary phase
is controlled by a complex genetic regulatory network integrating various environ-
mental signals [18, 24, 32]. The molecular basis of the adaptation of the growth of
E. coli to carbon starvation conditions has been the focus of extensive studies for
decades [18]. However, notwithstanding the enormous amount of information accu-
mulated on the genes, proteins, and other molecules known tobe involved in the
stress adaptation process, there is currently no global understanding of how the re-
sponse of the cell emerges from the network of molecular interactions. Moreover,
with some exceptions [1, 16, 31], numerical values for the parameters characterizing
the interactions and the molecular concentrations are absent, which makes it diffi-
cult to apply traditional methods for the dynamical modeling of genetic regulatory
networks.

CRP
activation

Inhibition

Activation Abstract description of
a set of interactions

Directed enzymatic
stimulation of a reactionP

CRP

P
Fis

P

P1 P2

P1 P2

Signal

P1

TopA

P2 P1/P’1

Supercoiling

Legend

fis

Fis Synthesis of protein Fis
from gene fis

gyrAB

topA

crp

Stable RNAs

rrn

fis

GyrAB
Cya

cya

cAMP·CRP

1

Fig. 7. Network of key genes, proteins, and regulatory interactions involved in the carbon
starvation network inE. coli. The notation follows, in a somewhat simplified form, the graph-
ical conventions proposed by Kohn [23]. The contents of the boxes labeled ‘Activation’ and
‘Supercoiling’ are detailed in [29].

The above circumstances have motivated the qualitative analysis of the carbon
starvation response network inE. coli [29]. The objective of the study was to simu-
late the response of anE. colibacterium to the absence or presence of carbon sources
in the growth medium. To this end, an initial, simple model ofthe carbon starvation
response network has been built on the basis of literature data. It includes six genes
that are believed to play a key role in the carbon starvation response (Figure 7). More
specifically, the network includes genes encoding proteinswhose activity depends
on the transduction of the carbon starvation signal (the global regulatorcrp and the
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adenylate cyclasecya), genes involved in the metabolism (the global regulatorfis),
cellular growth (therrn genes coding for stable RNAs), and DNA supercoiling, an
important modulator of gene expression (the topoisomerasetopAand the gyrasegy-
rAB).

3.1 Model of carbon starvation response

The graphical representation of the network has been translated into a PL model
supplemented with parameter inequality constraints. The resulting model consists of
seven variables, one concentration variable for the product of each of the six genes
((xc, xy, xf , xg, xt, xr) for (crp, cya, fis, gyrAB, topA, rrn)) and one input variable
us representing the presence or absence of a carbon starvationsignal [29]. The 38 pa-
rameters are constrained by 54 parameter inequalities, thechoice of which is largely
determined by experimental data.

The model of Ropers et al. is:


















































ẋc = κ1
c + κ2

cs
−(xf , θ2

f )s+(xc, θ
1
c )s+(xy , θ1

y)s
+(us, θs)

+κ3
cs

−(xf , θ1
f ) − γcxc

ẋy = κ1
y + κ2

y

(

1 − s+(xc, θ
3
c)s

+(xy , θ3
y)s+(us, θs)

)

− γyxy

ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)s−(xt, θ

2
t )
)

(

1 − s+(xc, θ
1
c)s

+(xy, θ1
y)s+(us, θs)

)

s−(xf , θ5
f ) − γfxf

ẋg = κg

(

1 − s+(xg , θ2
g)s

−(xt, θ
1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg , θ2

g)s
−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

ẋr = κ1
rs

+(xf , θ3
f ) + κ2

r − γrxr

with us = 0 in the presence of carbon sources andus = 1 in a depleted environment
(andθs = 0.5). In order to uniquely determine the situation of the various focal
points in the state-space, the following constraints on theparameters are needed:


































































0 < θ1
c < θ2

c < θ3
c < maxc, θ1

c <
κ1

c

γc
< θ2

c , θ1
c <

(κ1
c+κ2

c)
γc

< θ2
c ,

θ3
c <

(κ1
c+κ3

c)
γc

< maxc

0 < θ1
y < θ2

y < θ3
y < maxy, θ1

y <
κ1

y

γy
< θ2

y, θ3
y <

(κ1
y+κ2

y)

γy
< maxy

0 < θ1
f < θ2

f < θ3
f < θ4

f < θ5
f < maxf , θ1

f <
κ1

f

γf
< θ2

f ,

θ5
f <

(κ1
f+κ2

f )

γf
< maxf

0 < θ1
g < θ2

g < maxg, θ2
g <

κg

γg
< maxg

0 < θ1
t < θ2

t < maxt, θ2
t < κt

γt
< maxt

0 < θr < maxr, 0 <
κ2

r

γr
< θr, θr <

(κ1
r+κ2

r)
γr

< maxr

A qualitative analysis of this model has been carried out in [29] by using GNA (Ge-
netic Network Analyzer[6]), a computer tool that automatically generates the state-
transition graph and possible trajectories in that graph, that is, qualitative solutions
that are possible for this system. The following simulations are produced for the tran-
sition to the stationary phase (Figure 8) and to the exponential phase (Figure 9). In
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the first case, we see that the solution converges towards a single region of the state
space, where we can guess that convergence towards an equilibrium takes place. In
the second case, the behavior of the solution is not as clear:oscillations can be de-
tected between various regions but it is impossible to say, based on the transition
graph alone, if those oscillations are damped or not. Therefore, it is useful to try and
analyze the model further to check what kind of oscillationstake place (and in the
same time if convergence actually takes place towards an equilibrium in the case of
the entry in stationary phase).

3.2 Asymptotic dynamics

Since the 6-dimensional model, with all its constraints, istoo complex to handle
directly, we first check if some kind of simplifications can bemade. Independently
of the case that we will study (stationary phase or exponential phase conditions), we
notice that

• xr is a variable whose evolution depends on, but does not influence the rest of
the system. As a consequence, it can be removed from the analysis. Once the
analysis of the remaining 5-dimensional system is completed, we will be able
to easily identify the consequence of its behavior on the concentration of stable
RNAs (xr).

• There exists a finite time after whichxt(t) ≤ θ1
t since, as long asxt > θ1

t , thext

dynamics reduces to
ẋt = −γtxt.

Oncext reachesθ1
t , we cannot a priori rule out a sliding mode alongxt = θ1

t .
Sinceθ1

t < θ2
t , this indicates that we can replaces−(xt, θ

2
t ) with 1 for the pur-

pose of our analysis. We simply consider that the aforementioned finite time has
already occurred.

• Similar studies show thatxc(t) ≥ θ1
c andxy(t) ≥ θ1

y after some finite time. We
can then replaces+(xc, θ

1
c ) ands+(xy , θ1

y) with 1 in our analysis.

The system that we need to analyze has now become



























ẋc = κ1
c + κ2

cs
−(xf , θ2

f )s+(us, θs) + κ3
cs

−(xf , θ1
f ) − γcxc

ẋy = κ1
y + κ2

y

(

1 − s+(xc, θ
3
c)s

+(xy, θ3
y)s+(us, θs)

)

− γyxy

ẋf =
(

κ1
f + κ2

fs+(xg , θ1
g)
)

s−(us, θs)s
−(xf , θ5

f ) − γfxf

ẋg = κg

(

1 − s+(xg, θ
2
g)s−(xt, θ

1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg , θ2

g)s
−(xt, θ

1
t )s+(xf , θ4

f ) − γtxt

The next simplification step consists in seeing thatxy does not influence the rest of
the model, so that it can be removed, and thatxc does not influence the rest of the
model either (exceptxy) so that it can also be removed. These actions are in the same
line of thought as the removal ofxr . As a consequence of these simplifications, we
are able to see that the core of the long term dynamics is not really influenced byxr,
xy andxc. We now have the three-dimensional system:
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θ3

fis

0

maxcrp
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Fig. 8. Entry into stationary phase: qualitative temporal evolution of the proteins and stable
RNA concentration in a depleted environment with the organisms being at the equilibrium of
the exponential phase at the initial time. Convergence to one domain is detected (the domain
wherexc > θ3

c , xy = θ3

y , xf < θ1

f , xg = θ2

g, xt < θ1

t andxr < θr)
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0

0
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Fig. 9. Entry into exponential phase: qualitative temporal evolution of the proteins and stable
RNA concentration in a rich environment with the organisms being at the equilibrium of the
stationary phase at the initial time. Oscillations of thexf andxg states is detected.
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









ẋf =
(

κ1
f + κ2

fs+(xg , θ1
g)
)

s−(us, θs)s
−(xf , θ5

f) − γfxf

ẋg = κg

(

1 − s+(xg, θ
2
g)s−(xt, θ

1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s

−(xt, θ
1
t )s

+(xf , θ4
f ) − γtxt

(11)

Once we have analyzed the behavior of the solutions of this model, we will be able
to reconstruct what happens withxc, xy andxr. For this analysis, we still suppose
thatxt ≤ θ1

t .

3.3 Asymptotic dynamics in the absence of carbon sources

The analysis of the caseus = 1, the stationary phase solution in a depleted environ-
ment, is very straightforward. System (11) becomes







ẋf = −γfxf

ẋg = κg

(

1 − s+(xg, θ
2
g)s−(xt, θ

1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s

+(xf , θ4
f ) − γtxt

so thatxf goes to0. It is then directly seen that, after a finite time (the time taken for
xf to fall belowθ4

f ), we have
ẋt = −γtxt

so thatxt also goes to zero. Thexg dynamics then reduce to

ẋg = κgs
−(xg , θ2

g) − γgxg

so thatxg reachesθ2
g in finite time. The three dimensional system thus has a very

simple behavior: the state goes to(xf , xg, xt) = (0, θ2
g, 0).

Since the solutions of the 6-dimensional system are bounded, the behavior of the
other three states can be deduced from the analysis of the corresponding equations
with (xf , xg, xt) approaching their equilibrium (so thatxf < θ1

f , xt < θ1
t andxg >

θ1
g). We then have:







ẋc = κ1
c + κ2

c + κ3
c − γcxc

ẋy = κ1
y + κ2

y

(

1 − s+(xc, θ
3
c)s

+(xy , θ3
y)
)

− γyxy

ẋr = κ2
r − γrxr

It is then directly seen that, once(xf , xg, xt) is close to its equilibrium, the vari-

ables(xc, xr) exponentially converge towards(κ1
c+κ2

c+κ3
c

γc
,

κ2
r

γr
) while xy reachesθ3

y

in finite time.

3.4 Asymptotic dynamics in the presence of carbon sources

The caseus = 0, the behavior of the model in an environment rich in carbon sources,
is more intricate to analyze. System (11) becomes
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









ẋf =
(

κ1
f + κ2

fs+(xg , θ1
g)
)

s−(xf , θ5
f ) − γfxf

ẋg = κg

(

1 − s+(xg, θ
2
g)s−(xt, θ

1
t )
)

s−(xf , θ4
f ) − γgxg

ẋt = κts
+(xg, θ

2
g)s−(xt, θ

1
t )s

+(xf , θ4
f ) − γtxt

As stated earlier, we know thatxt ≤ θ1
t after some finite time; this does not help us

for further simplifications of this model. In the following,we will show that, after
some finite-time, we havext < θ1

t , which will help us eliminate thext equation. In
order to do that, we first show that, after some finite time,xg ≤ θ2

g.
Indeed, if we suppose thatxg > θ2

g for all times, system (11) would become










ẋf =
(

κ1
f + κ2

f

)

s−(xf , θ5
f ) − γfxf

ẋg = κgs
+(xt, θ

1
t )s

−(xf , θ4
f ) − γgxg

ẋt = κts
−(xt, θ

1
t )s

+(xf , θ4
f ) − γtxt

which shows thatxf reachesθ5
f in finite time so thaṫxg becomes equal to

ẋg = −γgxg

This leads to the convergence ofxg to 0 and thus to belowθ2
g , which is a contradic-

tion. This shows thatxg should reachθ2
g in finite time whenxg(0) > θ2

g .
An ensuing case-by-case analysis shows that the region wherexg ≤ θ2

g is invari-
ant [2].

We will now show thatxt is decreasing almost all of the time whenxg ≤ θ2
g and

xt ≤ θ1
t , that is in a region which we have shown to be reached in finite time and

invariant. Detailing three cases, we have:

xg < θ2
g or xf < θ4

f : ẋt = −γtxt.
xg = θ2

g andxf > θ4
f : We haveẋg = −γgxg < 0 at such a point and in a neighbor-

hood surrounding each such point so that any solution directly enters the region
wherexg < θ2

g (and consequentlẏxt = −γtxt, as we have seen).

xg = θ2
g andxf = θ4

f : We haveẋf =
(

κ1
f + κ2

f

)

− γfxf > 0 at this point and in a

neighborhood surrounding it, so that any solution directlygoes in one of the two
previously described regions, where we have seen thatxt is decreasing.

For any solution of (11),xt could only increase ifx stayed in the second or third
region, which we have shown not to be possible. We then haveẋt = −γtxt for
almost all times in the region of interest. After elimination of xt, we have to analyze
the following system:

{

ẋf =
(

κ1
f + κ2

fs+(xg, θ
1
g)
)

s−(xf , θ5
f ) − γfxf

ẋg = κgs
−(xg, θ

2
g)s

−(xf , θ4
f ) − γgxg

(12)

At first sight, this analysis is not straightforward becausethis is a second order piece-
wise linear system with two thresholds in each direction, which theoretically gives
rise to 9 regions. However, as is illustrated on Figure 10, some of the regions have
the same dynamics and can be grouped together, giving rise tosix regions.
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Fig. 10. Illustration of the vector field and the various regions for system (12). The thick black
lines indicate where sliding modes can occur.

The behavior of the solutions along the thick black lines, where sliding modes
are present, can be directly inferred from the Filippov construction. However, simple
observations indicate what actually happens: along the line wherexg = θ2

g andxf <

θ4
f , we have

ẋg = κgs
−(xg , θ2

g) − γgxg

with
κg

γg

> θ2
g

so that the line is attractive (black wall). Moreover,

ẋf =
(

κ1
f + κ2

f

)

− γfxf > 0

so thatxf is increasing and all solutions reach the end-point(xf , xg) = (θ4
f , θ2

g) in
finite time. In some sense, each time the solution reaches this black wall, there is a
resettaking place that sends the system to the end-point(θ4

f , θ2
g)

Along the line wherexf = θ5
f andxg > θ1

g , we have

ẋf =
(

κ1
f + κ2

f

)

s−(xf , θ5
f ) − γfxf

so that this line also is a black wall (bearing in mind that
κ1

f+κ2
f

γf
> θ5

f ). In addition,

ẋg = −γgxg

so thatxg is decreasing and all solutions reach the end-point(xf , xg) = (θ5
f , θ1

g) in
finite time.
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The observation of Figure 10 (as well as a detailed analysis of the linear sys-
tems in each of the regions) indicate that, eventually, the solutions oscillate around
(xf , xg) = (θ4

f , θ1
g). Whether this oscillation is damped, neutrally stable or unsta-

ble is still unclear. It is clear, though, that the oscillation is bounded, as it cannot go
beyond the black walls.

In order to analyze the oscillations, we will compute the first return map from
and to the segment that links(θ4

f , θ1
g) to (θ4

f , θ2
g). We will therefore consider some

(θ4
f , x) as initial condition and compute the functionf(x) such that(θ4

f , f(x)) is the
image of(θ4

f , x) on the segment after one cycle around(θ4
f , θ1

g). The computation of
this first-return map can be handled in four steps, corresponding to the passages in
the four regions surrounding(θ4

f , θ1
g).

The first step consists in computing the image of(θ4
f , x), belonging to the initial

segment, on the horizontal segment that links(θ4
f , θ1

g) to (θ5
f , θ1

g). The transition

takes place in the region∆(4) so that (12) becomes
{

ẋf = κ1
f + κ2

f − γf xf

ẋg = −γg xg
(13)

whose solution is
{

xf (t) = θ4
f e−γf t +

κ1
f +κ2

f

γf
(1 − e−γf t)

xg(t) = x e−γgt
(14)

In a first computation, we will suppose the absence of the vertical black wall, and
use the dynamics (13) for both regions∆(4) and ∆(5): it is then straightforward
to see that the solution impacts the target segment whenxg(t) = θ1

g , that is, at

t = t1(x) =
ln(x)−ln(θ1

g)
γg

, so that

xf (t1(x)) = θ4
f e−γf t1(x) +

κ1
f +κ2

f

γf
(1 − e−γf t1(x))

= θ4
f

(

θ1
g

x

)

γf
γg

+
κ1

f +κ2
f

γf

(

1 −
(

θ1
g

x

)

γf
γg

)

However, we must account for the black-wall and it is possible that the actual solution
hits this wall before reaching the target segment, so that the previously computed
xf (t1(x)) > θ5

f . In that case, the actual solution stays on the vertical black wall
until it reaches the point(θ5

f , θ1
g). Therefore the target of the point(θ4

f , x) on the
horizontal segment is

(f1(x), θ1
g) =



min



θ4
f

(

θ1
g

x

)

γf
γg

+
κ1

f + κ2
f

γf



1 −

(

θ1
g

x

)

γf
γg



 , θ5
f



 , θ1
g





Similarly we can define(θ4
f , f2(x)) as the image of(x, θ1

g) (with x ∈ [θ4
f , θ5

f ]) on
the vertical segment below the equilibrium,(f3(x), θ1

g) as the image of(θ4
f , x) (with
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x ∈ [0, θ1
g]) on the horizontal segment on the left of the equilibrium and(θ4

f , f4(x))

as the image of(x, θ1
g) (with x ∈ [0, θ4

f ]) on the initial segment.
This yields

f1(x) = min

(

θ4
f

(

θ1
g

x

)

γf
γg

+
κ1

f+κ2
f

γf

(

1 −
(

θ1
g

x

)

γf
γg

)

, θ5
f

)

f2(x) = θ1
g

(

θ4
f−

κ1
f

γf

x−
κ1

f
γf

)

γg
γf

f3(x) = θ4
f

(

θ1
g−

κg
γg

x−
κg
γg

)

γf
γg

+
κ1

f

γf



1 −

(

θ1
g−

κg
γg

x−
κg
γg

)

γf
γg





f4(x) = min






θ1

g

(

θ4
f−

κ1
f
+κ2

f
γf

x−
κ1

f
+κ2

f
γf

)

γg
γf

+
κg

γg






1 −

(

θ4
f−

κ1
f
+κ2

f
γf

x−
κ1

f
+κ2

f
γf

)

γg
γf






, θ2

g







andf(x) = f4(f3(f2(f1(x)))) which hasx = θ1
g as a fixed point. It was then shown

in [2] that f ′(x) < 1 whenx > θ4
f , so that the sequencexn+1 = f(xn), which

represents the successive impacts on the initial segment converges tox = θ4
f . We

can then conclude that the cyclic solutions that surround(θ4
f , θ1

g) are damped. This
point is therefore a globally attractive equilibrium of (12) (cf. [9] that gives more
general results inn dimensions for a negative feedback loop).

Having elucidated the dynamical behavior of the(xf , xg) subsystem, we can
now deduce the behavior of all other states. From the moment that we havexg < θ2

g ,
it comes from (11) that

ẋt = −γtxt

so thatxt goes to0. Once those three states are close to their equilibrium value, the
remaining three equations become







ẋc = κ1
c − γcxc

ẋy = κ1
y + κ2

y − γyxy

ẋr = κ1
r + κ2

r − γrxr

so that convergence of(xc, xy, xr) towards
(

κ1
c

γc
,

κ1
y+κ2

y

γy
,

κ1
r+κ2

r

γr

)

takes place.

3.5 Comparison of the equilibria

It is interesting to compare both equilibria: we have
xc xy xf xg xt xr

us = 1
κ1

c+κ2
c+κ3

c

γc
θ3

y 0 θ2
g 0

κ2
r

γr

us = 0
κ1

c

γc

κ1
y+κ2

y

γy
θ4

f θ1
g 0

κ1
r+κ2

r

γr
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We see that most genes settle at different levels depending on the absence or pres-
ence of carbon sources. The most illustrative of the difference between the two states
(carbon starved or not) isxr, which represents the concentration of stable RNAs and
is a good indicator of the cellular growth. As expected, whencarbon sources are de-
pleted, the equilibrium level ofxr is smaller than when carbon sources are abundant:

when carbon shortage occurs,xr stays at a "house-keeping"-level whereasκ1
r+κ2

r

γr
,

the equilibrium value in the presence of carbon sources, allows for fast cell growth.
Also to be noted is the fact thatxt = 0 in both cases; this does not mean thattopA,
the gene corresponding toxt, is useless. Indeed, when the carbon sources are either
continuously present or absent, the effect oftopAeventually dies down. However, in
a time-varying environment, where nutrients are alternatively present and absent, an
increase of thext concentration can occur wheneverxg > θ2

g andxf > θ4
f . TopA

thus influences the transients.

3.6 Abstraction of the reduction method

We have seen that the preliminary model reduction has allowed for a simplification
of the model analysis. Indeed, a global stability analysis of a 6-order model is no easy
task, whereas there are various methods for the analysis of second order models. The
reduction of the dimension of dynamical models is critical in the further develop-
ment of the mathematical methods for genetic regulatory networks analysis because
the networks typically are very large, so that it is rarely possible to study them di-
rectly. Classically, it has been attempted to apply time-scale separation methods, but
these are mainly efficient for eliminating the fast metabolic components from mixed
metabolic-genetic networks. Also balanced truncation methods have been introduced
for genetic regulatory networks where inputs signals (action on the network) and out-
put signals (measurements) are clearly identified ([15, 21]). In this example, we have
exploited thehierarchicaltriangular structure of the model arising after a finite time
(this finite time allowed us to get rid of some of the interactions interfering with the
triangular structure). We notice from graph theory that theidentification of such a
structure in the graph corresponding to the network is equivalent to the search for
the strongly connected components of the graph. There are efficient algorithms to
do so on large graphs, so that this model reduction method is tractable for the huge
graphs that represent genetic regulatory networks (preliminary work on that subject
has been done in [4] with links to GNA). Combining this approach with thresholds
elimination allows for a progressive simplification of the graphs.

4 Challenges in PL models analysis

One of the major challenges in the analysis of models of genetic regulatory net-
works lies in the difficulty of obtaining accurate parameters. Therefore, one has to
develop methods to identify the qualitative behavior of thesystem: when the param-
eters are linked together through inequalities (instead ofbeing fixed at given values),
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we would like to be able to say something about the stability of the equilibria. Some
interesting results have been obtained on that subject in [3], as was shown in Section
2, and we would like to identify other cases where stability results can be deduced.

As we have seen in the analysis ofE. coli, we are able to mathematically analyze
PL models that are not trivial (dimension 6). However, actual genetic regulatory net-
works are much larger than that. It is therefore of paramountimportance to develop
methods that will help analyzing such large systems. Two major research directions
are explored for that purpose: the model reduction approach(through balancing or
through singular perturbations, in the linear case) and theseparation of the original
model into smaller, interconnected pieces that can be easily analyzed, as we have
shown here.

Moreover, experimental techniques (e.g. gene deletion) are now available and
allow to modify the production or degradation terms of some genes of the networks.
This leads to problems of mathematical control of piecewiseaffine genetic networks,
similar to more general problems for hybrid affine systems [14]. The global problem
is to control the trajectories through some prescribed sequence of rectangular regions.
Some preliminary results have been obtained in [8]. For example, we have shown that
a simple two-gene inhibitor system with a single equilibrium can be controlled to a
bistable switch. We believe that interesting and original control problems are still to
be solved in this domain.
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