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Summary. The experimental study of genetic regulatory networks haslantremendous
progress in recent years resulting in a huge amount of dathe@molecular interactions
in model organisms. It is therefore not possible anymorentuitively understand how the
genes and interactions together influence the behavioreao$ythtem. In order to answer such
guestions, a rigorous modeling and analysis approach &ssagy. In this chapter, we present
a family of such models and analysis methods enabling ustterbenderstand the dynam-
ics of genetic regulatory networks. We apply such methodbemetwork that underlies the
nutritional stress response of the bacteridncoli.

The functioning and development of living organisms is colted by large and
complex networks of genes, proteins, small molecules, aed interactions, so-
calledgenetic regulatory network3 he study of these networks has recently taken
a qualitative leap through the use of modern genomic teckasighat allow for the
simultaneous measurement of the expression levels of afiggef an organism. This
has resulted in an ever growing description of the inteoastin the studied genetic
regulatory networks. However, it is necessary to go beytedsimple description
of the interactions in order to understand the behavior e¢éhnetworks and their
relation with the actual functioning of the organism. Sitlee networks under study
are usually very large, an intuitive approach for their wstending is out of ques-
tion. In order to support this work, mathematical and coreptaols are necessary:
the unambiguous description of the phenomena that matieahatodels provide
allows for a detailed analysis of the behaviors at play, giothey might not exactly
represent the exact behavior of the networks.

In this chapter, we will be mostly interested in the modelirighe genetic reg-
ulatory networks by means diifferential equationsThis classical approach allows
precise numerical predictions of deterministic dynamiogarties of genetic regu-
latory networks to be made. However, for most networks ofdgiwal interest the
application of differential equations is far from straifgrtvard. First, the biochemi-
cal reaction mechanisms underlying the interactions amallysnot or incompletely
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known, which complicates the formulation of the models.del; quantitative data
on kinetic parameters and molecular concentrations is rgéipeabsent, even for
extensively-studied systems, which makes standard nuoaleriethods difficult to

apply. In practice, the modeler disposes of much weakeriimétion on the network
components and their interactions. Instead of details enntlechanisms through
which a protein regulates a gene, we typically only know Wwkethe protein is an
activator or an inhibitor. And even if it had been shown, feample, that the protein
binds to one or several sites upstream of the coding regidgheofjene, numerical
values of dissociation constants and other parametersiegly mvailable. At best, it
is possible to infer that the regulatory protein stronglyw@akly binds to the DNA,

with a greater affinity for one site than for another.

Due to those uncertainties, we cannot hope to build a mod¢lishguaranteed
to reproduce the exact behavior of the considered gendidatory network. No
model will bequantitativelyaccurate. It is therefore necessary to concentrate on the
construction of models that reproduce thalitative dynamical propertiesf the net-
work, that is, dynamical properties that are invariant foaage of parameter values
and reaction mechanisms. The qualitative properties sgphe intimate connection
between the behavior of the system and the structure of ttveorle of molecular
interactions, independently from the quantitative detaflthe latter.

Consequently, qualitative approaches have been develiopetie modeling,
analysis, and simulation of genetic regulatory networks ather networks of bio-
logical interactions: Boolean networks [20, 30], Petrinf@2, 27], process algebras
[28], qualitative differential equations [17], hybrid amtata [11],... In this chapter,
we concentrate on one particular class of qualitative nedélgenetic regulatory
networks, originally proposed by Glass and Kauffman [Y#&cewise-linear (PL)
differential equationsin Section 1, we describe this family of models and give a
small example. In Section 2, we show qualitative result$ tiawve been obtained
for the analysis of such systems. We then illustrate thesgetsan the nutritional
stress response @&. coliin Section 3, before discussing remaining challenges for
the analysis and control of such models in Section 4.

1 Models of genetic regulatory networks

Among the many emerging families of models (see [5]), a otdiggecewise-linear
(PL) models, originally proposed by Glass and Kauffman [1#s been widely
used in modeling genetic regulatory networks. The vargmbighe piecewise-linear
differential equation (PLDE) models are the concentratiohproteins encoded by
the genes, while the differential equations describe thalegory interactions in the
network by means of step functions. The use of step funci®nsotivated by the
switch-like behavior of many of the interactions in gene¢igulatory networks [26],
but it leads to some mathematical difficulties. The vectddfier the PLDE model
is undefined when one of the variables assumes a value wreestgh function is
discontinuous, referred to as a threshold value. Recerk bpGouzé and Sari [13]
uses an approach due to Filippov to define the solutions ahtbshold hyperplanes.
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The approach involves extending the PLDE to a piecewisgalinlifferential inclu-
sion (PLDI). As is well known, such discontinuities can lgadliding modes. The
definitions and results of this section are mainly taken ff8m

The family of PL-models is best illustrated with an exampies schematic dia-
gram in Figure 1 describes a simple genetic regulatory nétwo this example, the
genesa andb code for the proteins A and B, which in turn control the expies
of the two genes andb. Protein A inhibits gene and activates geneabove cer-
tain threshold concentrations, which are assumed to berdiit. Similarly protein
B inhibits gen& and activates geneabove different threshold concentrations. This
two-gene regulatory network is simple but represents maayufes of regulation
found in real networks: auto-regulation, cross-regulatmd inhibition/activation.
Such a two-gene network could be found as a module of a morgleangenetic
regulatory network from a real biological system.

B
|
N vl
[ - |‘ ’| ; |

Fig. 1. Example of a genetic regulatory network of two genasufdb), each coding for a
regulatory protein (A and B).

The equations modeling the example network in Figure 1 camrlieen down as

To = KasT (2, Hé)sf(xa, 02) — a4 (1)
iy = kpsT (2a,01)s™ (24, 07) — W

wheres™ (zs, 05) is equal to0 whenz; < 6, and equal tol whenz; > 65 and
s7(ws,05) = 1 — st (ws,05). In this model, gene is expressed at a rate, if the
concentrationz;, of proteinbd is above the threshol@% and the concentration,, of
protein A is below the thresholgf. Similarly, geneb is expressed at a ratg if the
concentration:,, of protein A is above the thresholt} and the concentration, of
the protein B is below the threshofij. Degradation of both proteins is assumed to
be proportional to their own concentrations, so that theesgion of the genesand
b is modulated by the degradation rates:, and~,x;, respectively.

Such a model is readily generalized to models containing e&pression and
degradation terms for each gene:

& = fi(z) — vix;

where f;(z) represents the expression rate of géngepending on the whole state
r = (z1,---,2,)T andy;z; is the degradation rate. However, the expression rates of
(1) have the additional property of being constant for valokr, andx; belonging
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to intervals that do not contain thresholds valagasThis can be rewritten by detailing
fi(x) as follows:

L;
fix) = ruba()
=1

whereb;; () is a combination of step-functions™(z,.,67) andx; > 0 is a rate
parameter. The generalized form of (1) is a piecewise linezdel

&= flz) —ya )

where the model is linear within hyper-rectangles of théestpace.

The dynamics of the piecewise-linear system (2) can be etudi the n-
dimensional state-spad@ = (2, x % x --- x 2, where each(?; is defined
by 2, = {z € Ry | 0 < x; < maz;} for some positive parametenax; >
max; ¢ o (@) . A protein encoded by a gene will be involved in differentiratc-
tions at different concentration thresholds, so for eactabte x;, we assume there
arep; ordered thresholdg}, - - - , 67" (we also defing? = 0 and¢” ™" = maxz;).
The (n — 1)-dimensional hyperplanes defined by these thresholdgipart? into
hyper-rectangular regions we cdibmains Specifically, a domai® C (2 is defined
tobeaseD = Dy x --- x D,, whereD; is one of the following:

Dy ={z; € |07 <a; <7t} forj e{1,---,pi—1}
D; = {z; € ;|07 < xz; < max;}
Di:{xi GQl|xl:9f} forj 6{1,--- ,pi}

A domainD € D is called a regulatory domain if none of the variablgshas a
threshold value imD. In contrast, a domai® € D is called a switching domain of
orderk < n if exactly k variables have threshold valuesiin[25]. The correspond-
ing variablest; are called switching variables iR. For convenience, we denote the
sets of regulatory and switching domainsBy andD, respectively. It is also useful
to define the concept of a supporting hyperplane for a domain.

Definition 1. For every domainD € D, of orderk > 1, define supp(D) to be the
(n — k)-dimensional hyperplane containing D.If € D,. then we define supp(D) to
be equal taf?.

1.1 Solutions in regulatory domains

For any regulatory domai® € D,, the functionf(x) is constant for al: € D,
and it follows that the piecewise-linear system (2) can bigtevr as a linear vector
field

&= fP -z 3)

wheref? is constant inD. Restricted taD, this is a classical linear ordinary differ-
ential equation. From (3), it is clear that all solutions/lnmonotonically converge
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towards the corresponding equilibriug{ D), which is defined byy¢(D) = fP.
If (D) belongs to the closure dP, all solutions initiated inD converge towards
¢(D); otherwise, all solutions reach the boundarydfn finite time (which means
that they exitD).

Definition 2. Given a regulatory domai®) € D,, the pointg(D) = v~ 1fP € 2
is called the focal point for the flow iP.

Ty

may,

L R ””%ég@ji%
0;

DB

0,

0 0! 0? imal’a

Ka/YVa
e

Fig. 2. lllustration of the focal point(D*?) of a domainD*® in example (1)

In Figure 2, example (1) is used to illustrate this concdp:donsidered regula-
tory domainD is {z, € £2,|0} < z, < 02} x {x, € 2|0} < 2}, < 67}, so that
system (1) becomes

Lo = Ka — YaZla
{jﬁb = Kb — VbTb
and the corresponding focal pointqs;—:, %) In the figure, this focal point is sup-
posed to be outside db: every solution starting irD therefore exits this domain in
finite time.

1.2 Solutions in switching domains

In switching domains, the PL system (2) is not defined, sin@switching domain
of orderk > 1, k variables assume a threshold value. If solutions do notIgigp
through a switching domain, it is necessary to give a definiof what a solution

5
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can be on that domain. Classically, this is done by using atoaction originally
proposed by Filippov [10] and recently applied to PL systerthis form [13, 7].
The method consists of extending the system (3) to a diffedeénclusion,

i € H(z), (4)

where H is a set-valued function (i.é4(x) C IR™). If D is a regulatory domain,
then we defingd simply as

H(zx) = {f” -z}, (5)

forz € D.If D is a switching domain, far € D, we defineH (z) as
H(x) =e({f” e | D' € R(D)}), (6)

whereR(D) = {D’ € D,|D C 9D'} is the set of all regulatory domains with in
their boundary, an@o(X) is the closed convex hull ok. For switching domains,
H (z) is generally multi-valued so we define solutions of the défeial inclusion as
follows.

Definition 3. A solution of (4) on[0, 77 in the sense of Filippovs an absolutely
continuous function (w.r.tt) &:(z¢) such that{y(zo) = xo and&, € H(&), for
almost allt € [0, 7.

In order to more easily define these Filippov solutions, itseful to define a
concept analogous to the focal points defined for reguladomains, extended to
deal with switching domains.

Definition 4. Let D € D, be a switching domain of ordér. Then its focal seb(D)
is
@(D) = supp(D) Neo({¢(D') | D" € R(D)}). (7)

Hence®(D) for D € D, is the convex hull of the focal pointg(D’) of all the
regulatory domaind)’ having D in their boundary, as defined above, intersected
with the threshold hyperplane:pp(D) containing the switching domaib (Figure
3).
We have shown that
H(z) = v(®(D) — z) (8)

which is a compact way of writing thaf (x) = {y € IR" | 3¢ € &(D) such thaty =
~v(¢ — x)}. The Filippov vector field is defined by means of the focal set.

If (D) = { }, with D a switching domain, solutions will simply crods;
otherwise, sliding mode is possible and convergence tdkes fin the direction” of
&(D). If 2(D)ND = { }, solutions eventually leav®. In the case wher@(D)N D
is not empty, it can be assimilated to an equilibrium set inith towards which all
solutions will converge in the following sense
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Dt ¢(D?)

Fig. 3. lllustration of the definition of the focal set on a switchisgrfaceD according to the
Filippov definition of solutions. The convex hull of the pti(D') and¢(D?) is simply the
segment that links them, so that (7) implies théD) is the intersection of this segment with
supp@).

Lemma 1.[3] For every regulatory domairD € D,., all solutions¢; in D monoton-
ically converge towards the focal sé{D). For every switching domai® € D,
the non-switching componeft; ); of the solutior¢; in D monotonically converges
towards the closed interval

mi(P(D)) = {¢; € 2; | ¢ € (D)},

the projection of®(D) onto §2;, if (&); ¢ m:(®(D)). Every switching component
(&) of the solutiort, in D is a constanté,); = m;(®(D)) = 6.

Basically, this means that convergence does not take ptaerds®(D), but
towards the smallest hyper-rectangle that cont&ifi@). Indeed, if®(D) is neither
empty, nor a singleton, argg, belongs ta?(D), the Filippov vector field at this point
is defined ad1 (&,) = v(®(D) — &) and there is no guarantee that no element of
H (&) points outside ofp(D) (we know however that a solution stays¢at). Due
to the structure of the differential equations, it is on thileev hand certain that the
transient solution does not leave the smallest hypersng&aontainingd(D). This
phenomenon is illustrated in Figure 4

We then have the following corollary

Corollary 1. [3] All solutions&; in D converge toward$! (D), if & ¢ II(D). For
all solutions¢; in D, II(D) is invariant.
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Fig. 4. lllustration of the non invariance @b(D): solutions with initial condition ord(D)
stay inside the box7 (D) but do not necessarily stay #(D)

Adding the following assumption

Assumption 1 For all domainsD € D,
®(D) N supp(D') = {}, vD' € aD. (9)

it has been possible to develop stability results for thisifaof systems.

2 Stability and qualitative properties of PL models

The stability analysis of the various equilibria is a direshsequence of the analysis
in the previous section. It is easily seen that equilibrjain someD € D, are
asymptotically stable. Indeed, they are the focal pointhefdomains in which they
are contained, so that the convergence that was describibe iprevious section,
leads to asymptotic stability. The more difficult part catsin defining and handling
the stability of Filippov equilibria that lie in switchingusfaces.

In a switching domairD € Dy, recall that solutions are defined by considering
the differential inclusion (z). We say that a poing € 2 is an equilibrium point
for the differential inclusion if

0€ H(y), (10)

whereH is computed using the Filippov construction in (6). In otherds, there is
a solution in the sense of Filippoy,, such that,;(y) = y, ¥t > 0. We call such a
point asingular equilibrium pointlt is easily seen that, fay to be an equilibrium
point insideD, it must belong ta?(D). Also, since Assumption 1 preverdg D)
from intersecting the border dP, we then have thab(D) C D. Every element
of &(D) is then an equilibrium whe#(D) C D so that, for every) € &(D), there
exists a solutior,(¢) = ¢ for all ¢.

One of the interesting results of [3] concerns the link betmine configuration of
the state transition graph and the stability of an equilibri This discrete, qualitative
description of the dynamics of the PL system that undettieguialitative simulation
of genetic regulatory networks was originally due to Glasedicates the passages
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between the different domains making up the phase spacatétsansition graph is

a directed graph whose vertices are the domains of the syatenwvhose edges are
the possible transitions between these domains (easiyrdeted by examining the

PL model [3]). The transition graph of system (1) is illuségin Figure 5.

Tp
D5 Dll) DIB D‘ZO D25
magjb O——=@——=0—=0<="0
D5 DU pB o p» Dt \ D’ \ [y/ D
° o -0___(9-— o
92 pi 9 pld puo pr p¥
b Di Db Dl&, D‘?S
D5 L8 DB LIS D23 OH.HO?.%O
D b
gl D2 [ pl2 piipn ) hy »
b Dz . Diy D
° oD o °
Dl DF DI e p \
D] DZI
O I > @%Q = 0O0<—0=—0
aa H(_l maIa DG Dll Dlﬁ

Fig. 5. Subdivision of the state-space in 25 domains and trangitiaph of system (1)

For a two-dimensional system, we show how this graph indgtie stability of
singular equilibria:

Theorem 1.[3] Let the dimension of the PL model be 2, and fetbe a switching
domain containing a singular equilibrium poig{ D). If for all regulatory domains
D’ € R(D) (that is, adjacent tadD), there exists a transition from’ to D in the
state transition graph, thea(D) is asymptotically stable.

This result is purely qualitative: the actual value of thegmaeters is not needed. It
can be directly applied to show that the singular equilibriw,, z,) = (62, 62), cor-
responding td>'® on Figure 5, is asymptotically stable because there arsitians
to D' from D'3, D5, D23 and D??, the regulatory domains adjacentfd®.

A generalization, but in a weaker form, of this theorem to @fsionn is also
available.

Theorem 2.Assume&? C IR™. Let D € D, be a switching domain of order > 1
containing a singular equilibrium seb(D) that satisfies Assumption 1. If for all
D’ € R(D), there is a transition fronD’ to D in the state transition graph, then
I1(D) is asymptotically stable.

9
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These results are very helpful for the qualitative analgstbe genetic regulatory
networks. However, some stable equilibria cannot be ifledtihrough those criteria.
Some less restrictive criteria are therefore under devetoq.

Besides this method, we can discover stable equilibriavtioatid not have been
directly identified by our criteria, through a rigorous silifipation of the model.
This can be done through model reduction or identificationegions of the state-
space that cannot be reached by the solutions (maybe afterfazite time). We will
illustrate the kind of things that can be done on an exampilearfollowing section.
In that section, since the resulting models are very sinypéedo not need to go back
to transition graph analysis at the end of the reductiongulace, but we could have
done so, and it will be necessary to do so if the model redngtiocedure does not
yield very small models.

3 Carbon starvation response oE. coli

We will present a specific model reduction and stability gsial for the model in
dimension 6 of the carbon starvation responsé&otoli of Ropers et al. [29]. In
their natural environment, bacteria liEsscherichia colrarely encounter conditions
allowing continuous, balanced growth. While nutrients available,E. coli cells
grow quickly, leading to an exponential increase of theambass, a state callezk-
ponential phaseHowever, upon depletion of an essential nutrient, thedsacare
no longer able to maintain fast growth rates, and the pojpulabnsequently enters
a non-growth state, callestationary phaséFigure 6). During the transition from
exponential to stationary phase, each individtiatoli bacterium undergoes numer-
ous physiological changes, concerning among other thimgsnorphology and the
metabolism of the cell, as well as gene expression [19]. &lobanges enable the
cell to survive prolonged periods of starvation and be taststo multiple stresses.
This carbon starvation responsean be reversed and growth resumed, as soon as
carbon sources become available again.

Exponential phase Stationary phas@

Signal of nutrient
deprivation

Fig. 6. Nutrient-stress response of bacteria during the tramsitimm exponential to stationary
phase.
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On the molecular level, the transition from exponentialgghto stationary phase
is controlled by a complex genetic regulatory network imédigng various environ-
mental signals [18, 24, 32]. The molecular basis of the adtapwt of the growth of
E. coli to carbon starvation conditions has been the focus of eixiistudies for
decades [18]. However, notwithstanding the enormous atafunformation accu-
mulated on the genes, proteins, and other molecules knovae favolved in the
stress adaptation process, there is currently no globatngtehding of how the re-
sponse of the cell emerges from the network of moleculardctéeons. Moreover,
with some exceptions [1, 16, 31], numerical values for thepeeters characterizing
the interactions and the molecular concentrations arengbadich makes it diffi-
cult to apply traditional methods for the dynamical modglof genetic regulatory
networks.

Signal

J J_ ‘ cAMP-CRP|  CRP .
P gmAB Fis cya P2PLP1
1 CRP

3 fis
Supercoiling
j l PLP2 ap

E TopA Stable RNAs

PL topA

———o

P1L P2 I

Legend

Fis Synthesis of protein Fis —— A Directed enzymatic
O from gene fis stimulation of a reactiol
is

——  Activation Abstract description of
o Inhibition a set of interactions

Fig. 7. Network of key genes, proteins, and regulatory interagimvolved in the carbon
starvation network if. coli. The notation follows, in a somewhat simplified form, thegra
ical conventions proposed by Kohn [23]. The contents of thweb labeled ‘Activation’ and
‘Supercoiling’ are detailed in [29].

1

The above circumstances have motivated the qualitativlysieaf the carbon
starvation response network h coli [29]. The objective of the study was to simu-
late the response of & colibacterium to the absence or presence of carbon sources
in the growth medium. To this end, an initial, simple modethad carbon starvation
response network has been built on the basis of literatuee tancludes six genes
that are believed to play a key role in the carbon starvatsponse (Figure 7). More
specifically, the network includes genes encoding proteingse activity depends
on the transduction of the carbon starvation signal (théaloegulatorcrp and the
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adenylate cyclaseya), genes involved in the metabolism (the global regul&g)y
cellular growth (therrn genes coding for stable RNAs), and DNA supercoiling, an
important modulator of gene expression (the topoisomegs®and the gyrasgy-
rAB).

3.1 Model of carbon starvation response

The graphical representation of the network has been atatslinto a PL model
supplemented with parameter inequality constraints. €kalting model consists of
seven variables, one concentration variable for the prodiueach of the six genes
(e, xy, x ¢, 24, x4, ) foOr (crp, cya, fis, gyrAB, topA, rrijand one input variable
u representing the presence or absence of a carbon starsaital [29]. The 38 pa-
rameters are constrained by 54 parameter inequalitieshthiee of which is largely
determined by experimental data.

The model of Ropers et al. is:

Ge = kg A K25 (v, 07)8T (2, 00)sF (g, 05) 57 (us, 05)
+rgs™(xf,0F) = vete
By = iy + ko (1= s (e, 02)sT (g, 05)sT (us, 05)) — vy
Ty = (/ﬁ} + K?S*(xg, 05)s™ (24, 9?))
(1 — 5T (., 01)sT (y, 921/)8+(us, 93)) s (zy, 9?) — Yrxf
dg = kg (1— st (2g,07)s™ (2¢,07)) s~ (ay, 9?) — Yg%g
T /its+(xg,9§)s_(xt,Htl)s+(xf,9;%) — YTy

Ty = ﬁ71"8+(xf7 0?) + "{g = VrZr

with u, = 0 in the presence of carbon sources and= 1 in a depleted environment
(andf, = 0.5). In order to uniquely determine the situation of the vasidacal
points in the state-space, the following constraints orpirameters are needed:

K

b 1 2
O<0§<9§<9;§<maxc,9§<I<92,9§<(“¢7%’C)<02,
93<(Ki+"‘2)
C

c

1
e

< max.
(rythy)
i Yy

1 2 3 4 5 1 Ky 2
0<9f<9f<9f<9f<0f<maxf,9f< 5 < 0%,

1
1 2 3 1_ K 2 p3
O<9y<0y<9y<maxy,0y<,y—z<9y,0y< < maxy

0‘;}<M<maxf
vr
1 2 2 _ Kg
0 <0, <0 <mazg, 09<% < maxg
0<9,}<9t2<maxt,9t2<%<maxt
2 ’ 1 2
0<9r<maxr,0<%<97,,9T<(K’T7%’T)<max,,

A qualitative analysis of this model has been carried ou2Bj py using GNA Ge-
netic Network Analyzd6]), a computer tool that automatically generates theestat
transition graph and possible trajectories in that grapét is, qualitative solutions
that are possible for this system. The following simulasiare produced for the tran-
sition to the stationary phase (Figure 8) and to the expdalgrtiase (Figure 9). In
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the first case, we see that the solution converges towarahgke segion of the state
space, where we can guess that convergence towards arbdquiliakes place. In
the second case, the behavior of the solution is not as dsaillations can be de-
tected between various regions but it is impossible to saget on the transition
graph alone, if those oscillations are damped or not. Toeeeft is useful to try and
analyze the model further to check what kind of oscillatitalee place (and in the
same time if convergence actually takes place towards aitilegum in the case of
the entry in stationary phase).

3.2 Asymptotic dynamics

Since the 6-dimensional model, with all its constraintstois complex to handle
directly, we first check if some kind of simplifications can idade. Independently
of the case that we will study (stationary phase or expoakpiiase conditions), we
notice that

e 1z, is a variable whose evolution depends on, but does not irdkiéme rest of
the system. As a consequence, it can be removed from thesiaBnce the
analysis of the remaining 5-dimensional system is comg|ete will be able
to easily identify the consequence of its behavior on thecentration of stable
RNASs (z,.).

e There exists a finite time after which (t) < 6} since, as long as; > 0}, thex,
dynamics reduces to

j?t = —YtT¢.

Oncez; reached);, we cannot a priori rule out a sliding mode along= 6.
Sinced} < 62, this indicates that we can replage(z;, 67) with 1 for the pur-
pose of our analysis. We simply consider that the aforeroaat finite time has
already occurred.

e Similar studies show that.(t) > 6} andz,(t) > 6, after some finite time. We
can then replace’ (z., 6}) ands™ (z,,0,) with 1 in our analysis.

The system that we need to analyze has now become
Ge = K+ K25 (g, 03)sT (us, 05) + w2s™ (x5, 0F) — yere
Ty = Ky + ng (1 — 5T (e, 03)sT (2, 9§)s+(us, 05)) — Yyxy
Ky + w3t (zg, 9517)) s (us, 0s)s™ (w5, 07) — vpay

g = tig (1 — sT(2g,02)s (1,0})) s~ (2, 93%) — YgZg
= kst (g, 05)8 (21,01 )sT (5, 07) — e

5.
~
|

The next simplification step consists in seeing thatloes not influence the rest of
the model, so that it can be removed, and thatloes not influence the rest of the

model either (except,) so that it can also be removed. These actions are in the same

line of thought as the removal af.. As a consequence of these simplifications, we
are able to see that the core of the long term dynamics is atlyiefluenced byz,.,
z, andz.. We now have the three-dimensional system:



14 Frédéric Grognard, Hidde de Jong, and Jean-Luc Gouzé

T mars —
Ug

0 + Signal
O

I
ngg‘ QSGT‘ QSGS‘ QS'SS‘ 62533‘ QS:M‘

st ‘ QST ‘QS“‘ QS,’I

T MAT ey —

Terp H‘:rp |
2
0oy L CRP

crp T

st ‘ QST ‘QS“‘ QS,’I‘

I I
ngg ‘ QSm ‘ (2565 ‘ QS'SS ‘ stiis ‘ QS:M ‘

T MATeyq —
Teya 6:5

cya T

[z Cya

cya

ﬁl

cya T

0

T maz s
Tis %, 1
0f 4

9?” -+ Fis
92

fis +

| | | | | | |
st ‘ QST ‘ Qsal:i‘ QS”‘ Qsﬁfi‘ Qs(j." (2565‘ Qsijs‘ stiii‘ QS(‘M‘

Ohs &
0 i
st QST Q543 QS,’I

I I
st‘s‘ st'?‘ Qsﬁs‘ Qs'ss‘ QSSB‘ QS:M‘

MALgyrAB —

wrAB a1 —— GyrAB
eéyrAB *4

0

|
st ‘ QS7 ‘ QS%‘ Qsﬂ‘ Qsﬁg‘ Qs(ﬂ‘ QSGB‘ QS,‘is Qsiiii‘ stﬂ

MAT4opa
TtopA 6120,;‘4 -+ TopA
Opopa 1

0

T MAT
Lrrn Orrn

T Stable RNAs

| | | | | | |
st QST

| | | |
Qsﬁ ‘ QS7 ‘QS“‘ Qsﬂ‘ Qsﬁg‘ Qslﬂ‘ QSGB‘ QS,‘is‘ Qsiiii‘ (2531‘

| | |
‘ Qs4:$ ‘ QS” ‘ Qsh'!i‘ Qsm ‘ st‘B ‘ Qsijs ‘ stiii‘ Qsii-'i‘

Fig. 8. Entry into stationary phase: qualitative temporal evalutof the proteins and stable
RNA concentration in a depleted environment with the orgnsi being at the equilibrium of

the exponential phase at the initial time. Convergence &domain is detected (the domain
wherez. > 02,z = 0y, x5 < 0}, x4 = 05, < 0} andz, < 6,)



Piecewise-linear models of genetic regulatory networks 15

Qualitative cycle

T Ts Mmats - Signal
b |

Qsz } QS; }QSuT} Qs'r' }QS’ZBS}QSIOT} QSIOO} Qsﬁﬁ }Qsﬂ QSJ‘) }Qsﬁvl 1(2530 } Qsll QS“ } QSSS } Qsﬂs }Qslllf»}
T Mterp 7 CRP
Terp

‘QSm} Q5" 105255105107} QSIOO} Q5% }QSTI

Q52 } QSM QSM }QSSI 1QS39 }QSJI 0543 } QSSX 10595 }QSU\S}

T MAeya
Teya 3 Cya
[ — ye

2
Oeya +
01

cya

0 Q52 } QS"K }QSUT} QST }QSZSS}QSUW} QSHN} Qsao }QS“ }QSN } QSOI 1QS:N } QS“ }QS“ } QSQS } QSOS }QS‘“}

T mazcyis
Lfis 6% Fis
0%,
0
.
O}

‘QS”T}QST }QSZ‘%}QS]OT}QS]DO}QS&}QSH QSJQ QSSL}QSGQ}QSH

QSZ } ng QSJE}QSSH}QSQS}QSIUS}

T MazgyrAB GyrAB
TgyrAB g !

gyrAB-
1
Ogyrant

0 QSZ } QSK ‘QS-UT} QST }QSZSS}QSUJT} Qslnf)} Qsﬁs» }QS” ‘QSW } QS“ 10539 } QS’“ } QS“ } Qscx } QSUE }QSUJI:}

MATtopA— TopA
TtopA 9
‘qmpA =+

1
Oropa +

0

QS'z } QS‘A ‘QS”‘J QS‘- }Qsz%}QSwT} QSUNJ} QS(;O }QSH Qsm } QS‘“ 1QS:H} } qu }erm } QSBS } QS% }Qsloa}

MATrrn —
T Zrrm Stable

Bprn | \ RNAs

| | |
08 Q8

Qslz.'} QST QSQZB}QSIOT} 05109} QSG9 }QS“ QSJSJ }QSSL }Qsm }QS“ }QSJS }QSSK } ngs }Qsma}

Fig. 9. Entry into exponential phase: qualitative temporal evolubf the proteins and stable
RNA concentration in a rich environment with the organisregg at the equilibrium of the
stationary phase at the initial time. Oscillations of #heandz, States is detected.



16 Frédéric Grognard, Hidde de Jong, and Jean-Luc Gouzé

i = (n} + H?s"‘(xg,ﬂé)) 57 (us, 0s)s™ (x5,0%) —vpay
g = kg (1= sT(24,00)5 (21,0})) s (x5,07) — 1924 (11)
ir = kest(wg,00)s (24,01)sT (x5,07) — e

Once we have analyzed the behavior of the solutions of thidetave will be able
to reconstruct what happens with, =, andx,.. For this analysis, we still suppose
thatz; < Htl

3.3 Asymptotic dynamics in the absence of carbon sources

The analysis of the casg, = 1, the stationary phase solution in a depleted environ-
ment, is very straightforward. System (11) becomes

Ty ==y , ) \
iy = kg (1—sT(2g,02)s (1,0})) s™(xf,0%) — vg2g
i = kst (2g,05)8 (1,0))sT (w5, 07) — e

so thatr ; goes td). Itis then directly seen that, after a finite time (the timiestafor
xy to fall belowd}), we have
Ty = =Vt

so thatz, also goes to zero. The, dynamics then reduce to
Eg = Kgs (24, 93) — Ygg

so thatz, reaches9§ in finite time. The three dimensional system thus has a very
simple behavior: the state goes(tey, =4, z;) = (0, 93, 0).

Since the solutions of the 6-dimensional system are bouridedbehavior of the
other three states can be deduced from the analysis of thespanding equations
with (z ¢, z4, z) approaching their equilibrium (so thay < 6%, z; < 6} andz, >

6,). We then have:

Fe = KL+ K2+ K2 — yem,
&y = /4311/ + “Z (1 — s (@, 02)sT (2, 92)) — Yy Ty
jjr =Ry — VrZr
It is then directly seen that, onde, x4, x;) is close to its equilibrium, the vari-
1 2 3 2
ables(x., z,) exponentially converge towarcﬁ%, =) while z, reached);

in finite time. !
3.4 Asymptotic dynamics in the presence of carbon sources

The casea:, = 0, the behavior of the model in an environmentrich in carbamrses,
is more intricate to analyze. System (11) becomes
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iy = (n} + n?s‘*‘(xg,%)) s (g, 0%) —vpxs
iy = kg (1= sT(2g,02)s™ (21,0})) s (zy, 0F) — Vgg
Ty = /ftSJr(xg’ 9527)87(1'% etl)s+ (wf’ 9;‘1) — el

As stated earlier, we know that < 0} after some finite time; this does not help us
for further simplifications of this model. In the followingye will show that, after
some finite-time, we have; < 6}, which will help us eliminate the; equation. In
order to do that, we first show that, after some finite time< 67.

Indeed, if we suppose thay, > 93 for all times, system (11) would become

i = (Fv} + fo) s~ (xf,0%) —vprp
jjg ’{g5+(xt;9t1)87(xf79;%) — VYgZg
Ty = lﬁtS_(It,Hg)8+($f,9}1) — VtTt

which shows that ; reache®); in finite time so that:, becomes equal to
Tg = —YgTg

This leads to the convergence:f to 0 and thus to below?, which is a contradic-
tion. This shows that, should react#? in finite time whenz,, (0) > 62.

An ensuing case-by-case analysis shows that the regiorewpet 9; is invari-
ant [2].

We will now show thatz, is decreasing almost all of the time whep < 62 and
x; < 0}, that is in a region which we have shown to be reached in fifite and
invariant. Detailing three cases, we have:

g < 0_(2] orxy < 0;%: Ty = —VTt.

zg = 07 andzy > 07 We haver, = —y,z, < 0 atsuch a pointand in a neighbor-
hood surrounding each such point so that any solution djreaters the region
wherez, < 93 (and consequently; = —~,x;, as we have seen).

zy = 07 andzy = 0} We havei; = (/s} + /sfc) —vsxy > 0 at this pointand in a
neighborhood surrounding it, so that any solution diregtigs in one of the two
previously described regions, where we have seenithistdecreasing.

For any solution of (11)g; could only increase if: stayed in the second or third
region, which we have shown not to be possible. We then higve: —~;x; for
almost all times in the region of interest. After eliminatiof =,, we have to analyze
the following system:

iy = (Ii}c + H?«s*’(@,, 9;)) s~ (zy, 9?) —YfTf (12)
Ty = kgs (24,02)s (x5,0%) — Yy
g g g:Yg frY5) =Ygty
At first sight, this analysis is not straightforward becatlsg is a second order piece-
wise linear system with two thresholds in each directionicivliheoretically gives

rise to 9 regions. However, as is illustrated on Figure 1eof the regions have
the same dynamics and can be grouped together, giving rige tegions.
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Fig. 10. lllustration of the vector field and the various regions fgstem (12). The thick black
lines indicate where sliding modes can occur.

The behavior of the solutions along the thick black linesemhsliding modes
are present, can be directly inferred from the Filippov ¢argdion. However, simple
observations indicate what actually happens: along tieedinerer, = 93 andz; <
0%, we have

Eg = Kgs (24, 93) — Ygg
with .
g 2
— >0
Vg g
so that the line is attractive (black wall). Moreover,

if = (kj+K}) —ypzy >0

so thatz; is increasing and all solutions reach the end-pgint z,) = (6,67) in
finite time. In some sense, each time the solution reachebthck wall, there is a
resettaking place that sends the system to the end-méfnw_g)

Along the line wherer; = 6% andz, > 6, we have

iy = (K} +KF) s (xf,0%) — yray
. . . . . . 1 Ii2 [ e

so that this line also is a black wall (bearing in mind tﬁéwﬂ > 93:). In addition,

Tg = —TVglyg

so thatz, is decreasing and all solutions reach the end-p@iptz,) = (6%,6,) in
finite time.
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The observation of Figure 10 (as well as a detailed analyfsikenlinear sys-
tems in each of the regions) indicate that, eventually, theti®ns oscillate around
(z,x4) = (0},6;). Whether this oscillation is damped, neutrally stable cstan
ble is still unclear. It is clear, though, that the osciltattis bounded, as it cannot go
beyond the black walls.

In order to analyze the oscillations, we will compute thetfiegurn map from
and to the segment that linké?, 6;) to (6,6>). We will therefore consider some
(6%, z) as initial condition and compute the functigt) such that#4, f(z)) is the
image of(¢}, z) on the segment after one cycle aroyAig, 6; ). The computation of
this first-return map can be handled in four steps, corredipgnto the passages in
the four regions surroundin@?, 6, ).

The first step consists in computing the imagé&#f, x), belonging to the initial
segment, on the horizontal segment that IirQR%, 6;) to (9?,9;). The transition
takes place in the regian® so that (12) becomes

{a::f:/f}-i-/ﬁ?—’yfxf (13)
Lg = —Tg Zg
whose solution is
. — gL et rythd —5t
:Lf(t)— v e +T(1—€ ) (14)
Ty(t) = x e ot

In a first computation, we will suppose the absence of thdocarblack wall, and
use the dynamics (13) for both region§) and A®): it is then straightforward
to see that the solution impacts the target segment vuhét) = 9;, that is, at

—Iln 1
t=t1(x) = M so that

_ " Kitr2 _ "
xy(ti(z)) = 9}1 e vrt(z) 4 —fw L (1-e Wftl(”))

1 ﬁ 1 2 1 ﬁ
4 9_( g KytKT . 0_ g
~op(9)F o (1- (49)7)

However, we must account for the black-wall and it is posstibat the actual solution
hits this wall before reaching the target segment, so thafptieviously computed
zy(t1(xz)) > 6. In that case, the actual solution stays on the verticalkoveall
until it reaches the _poin¢9?,9_}l). Therefore the target of the poif€}, z) on the
horizontal segment is

of of
' 91 Vg /il +I<L2 91 g .
(fi(@),05) = | min [ 0 (—) Sl Rl Gl B RS R

Similarly we can defing6}, f2(x)) as the image ofz, ;) (with = € [07,63]) on
the vertical segment below the equilibriuif; (), 6;) as the image of¢}, ) (with
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z € [0,6;]) on the horizontal segment on the left of the equilibrium & f4(x))
as the image ofz, ;) (with = € [0,6%]) on the initial segment.
This yields

f1(z) = min <9}1 (%)j’_ﬁ + H}'y—tn? (1 B (ﬁ)%> ,9?>

g
2 1 2
elfl_re}ﬂrwf 9;%—Kf+nf Vf
— i 1 vf kg f 2
z) =min | 0 + 1 0
f4( ) g R K}_+,.;,§_ Vg wi,{,}__*_,i?_ » Vg

vy

andf(z) = fa(f3(f2(f1(x)))) which hasz = 6} as a fixed point. It was then shown
in [2] that f’(z) < 1 whenz > 6%, so that the sequencs,;; = f(x,), which
represents the successive impacts on the initial segmenemges tar = 9;%. We
can then conclude that the cyclic solutions that surro@ﬂ?d@é) are damped. This
point is therefore a globally attractive equilibrium of (1¢f. [9] that gives more
general results im dimensions for a negative feedback loop).

Having elucidated the dynamical behavior of ther, z,) subsystem, we can
now deduce the behavior of all other states. From the morhanite haver, < 62,
it comes from (11) that

&y = =Y

so thatr; goes ta). Once those three states are close to their equilibriuneyahe
remaining three equations become

j:c - Hi — YeZe

U | 2

Ty = Ky + Ky — YyTy

{, 3

Ty = Ky + K2 — Y Tp

1 2 1 2
Ky+"£y K7‘+K’r
Y

1
so that convergence 6f., z,, z,) towards(%, - -
( < Y r

) takes place.

3.5 Comparison of the equilibria

Itis interesting to compare both equilibria: we have

T Ty |TplTg|Ti| T
T 2 3 2
_ 1| BetrotrRe 3 2 Ky
us = 1|=——=¢ 191,2 AN

1 1 2

_ Ke Ry tRy [pa | pl Kptkg
us =0 Ve Yy gf 9§ 0 Vr
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We see that most genes settle at different levels dependitigeaabsence or pres-
ence of carbon sources. The most illustrative of the diffeesbetween the two states
(carbon starved or not) is., which represents the concentration of stable RNAs and
is a good indicator of the cellular growth. As expected, wharbon sources are de-
pleted, the equilibrium level of,. is smaller than when carbon sources are abundant:

when carbon shortage occuts, stays at a "house-keeping"-level Wheréééﬁ,

the equilibrium value in the presence of carbon sourceswalfor fast cell growth.
Also to be noted is the fact that = 0 in both cases; this does not mean ttogtA

the gene corresponding 19, is useless. Indeed, when the carbon sources are either
continuously present or absent, the effectapfAeventually dies down. However, in

a time-varying environment, where nutrients are alteugdyipresent and absent, an
increase of ther;, concentration can occur whenevey > 67 andxz; > 6%. TopA

thus influences the transients.

3.6 Abstraction of the reduction method

We have seen that the preliminary model reduction has afldaea simplification
of the model analysis. Indeed, a global stability analyses& order model is no easy
task, whereas there are various methods for the analysixofsl order models. The
reduction of the dimension of dynamical models is criticathe further develop-
ment of the mathematical methods for genetic regulatoryords analysis because
the networks typically are very large, so that it is rarelysgible to study them di-
rectly. Classically, it has been attempted to apply timalesseparation methods, but
these are mainly efficient for eliminating the fast metabobmponents from mixed
metabolic-genetic networks. Also balanced truncatiorhm@s have been introduced
for genetic regulatory networks where inputs signals ¢arctin the network) and out-
put signals (measurements) are clearly identified ([15). 24}his example, we have
exploited thehierarchicaltriangular structure of the model arising after a finite time
(this finite time allowed us to get rid of some of the interans interfering with the
triangular structure). We notice from graph theory that ithentification of such a
structure in the graph corresponding to the network is eajait to the search for
the strongly connected components of the graph. There &ogeat algorithms to
do so on large graphs, so that this model reduction methadégsable for the huge
graphs that represent genetic regulatory networks (pneding work on that subject
has been done in [4] with links to GNA). Combining this appioavith thresholds
elimination allows for a progressive simplification of theaghs.

4 Challenges in PL models analysis

One of the major challenges in the analysis of models of gemegulatory net-

works lies in the difficulty of obtaining accurate paramstérherefore, one has to
develop methods to identify the qualitative behavior ofshistem: when the param-
eters are linked together through inequalities (instedukaig fixed at given values),
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we would like to be able to say something about the stabifithe equilibria. Some
interesting results have been obtained on that subject,ia$3vas shown in Section
2, and we would like to identify other cases where stabilgyults can be deduced.

As we have seen in the analysiskfcoli, we are able to mathematically analyze
PL models that are not trivial (dimension 6). However, abfigaetic regulatory net-
works are much larger than that. It is therefore of paramaupbrtance to develop
methods that will help analyzing such large systems. Twanrajsearch directions
are explored for that purpose: the model reduction appr@tacbugh balancing or
through singular perturbations, in the linear case) ands#paration of the original
model into smaller, interconnected pieces that can beyeasdlyzed, as we have
shown here.

Moreover, experimental techniques (e.g. gene deletiom)nawv available and
allow to modify the production or degradation terms of soreaag of the networks.
This leads to problems of mathematical control of piecewffiae genetic networks,
similar to more general problems for hybrid affine systen#.[The global problem
is to control the trajectories through some prescribedseqe of rectangular regions.
Some preliminary results have been obtained in [8]. For ptamve have shown that
a simple two-gene inhibitor system with a single equilibmigan be controlled to a
bistable switch. We believe that interesting and origirmadteol problems are still to
be solved in this domain.
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