
HAL Id: hal-01091748
https://hal.inria.fr/hal-01091748

Submitted on 6 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Typing of Resource Deployment
Elena Giachino, Cosimo Laneve

To cite this version:
Elena Giachino, Cosimo Laneve. Towards the Typing of Resource Deployment. Leveraging Appli-
cations of Formal Methods, Verification and Validation. Specialized Techniques and Applications -
6th International Symposium, ISoLA 2014, Oct 2014, Corfu, Greece. pp.88 - 103, �10.1007/978-3-662-
45231-8_7�. �hal-01091748�

https://hal.inria.fr/hal-01091748
https://hal.archives-ouvertes.fr

Towards the typing of resource deployment ⋆

Elena Giachino and Cosimo Laneve

Dept. of Computer Science and Engineering, Università di Bologna – INRIA FOCUS
{giachino,laneve}@cs.unibo.it

Abstract. In cloud computing, resources as files, databases, applica-
tions, and virtual machines may either scale or move from one machine
to another in response to load increases and decreases (resource deploy-

ment). We study a type-based technique for analysing the deployments
of resources in cloud computing. In particular, we design a type system
for a concurrent object-oriented language with dynamic resource cre-
ations and movements. The type of a program is behavioural, namely it
expresses the resource deployments over periods of (logical) time. Our
technique admits the inference of types and may underlie the optimisa-
tion of the costs and consumption of resources.

1 Introduction

One of the prominent features of cloud computing is elasticity, namely the
property of letting (almost infinite) computing resources available on demand,
thereby eliminating the need for up-front commitments by users. This elasticity
may be a convenient opportunity if resources may go and shrink automatically
at a fine-grain when user’s needs change. However, current cloud technologies
do not match this fine-grain requirement. For example, Google AppEngine auto-
matically scales in response to load increases and decreases, but it charges clients
by the cycles (type of operations) used; Amazon Web Service charges clients by
the hour for the number of virtual machines used, even if a machine is idle [2].

Fine-grained resource management is an area where competition between
cloud computing providers may unlock new opportunities by committing to more
precise cost bounds. In turn, such cost bounds should encourage programmers to
pay attention to resource managements (that is, releasing and acquiring resources
only when necessary) and allow more direct measurement of operational and
development inefficiencies.

In order to let resources, such as files or databases or applications or memo-
ries or virtual machines, be deployed in cloud machines, the languages for pro-
gramming the cloud must include explicit operations for creating, deleting, and
moving resources – resource deployment operations – and corresponding software
development kits should include tools for analysing resource usages. It is worth
to observe that the leveraging of resource management to the programming lan-
guage might also open opportunities to implement Service Level Agreements

⋆ Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services.

(SLAs) validation via automated test infrastructure, thus offering the opportu-
nity for third-party validation of SLAs and assessing penalties appropriately.

We study resource deployment (in cloud computing) by extending a sim-
ple concurrent object-oriented model with lightweight primitives for dynamic
resource management. In our model, resources are groups of objects that can
be dynamically created and can be moved from one (virtual) machine to an-
other, called deployment components. We then define a technique for analysing
and displaying resource loads in deployment components that is amenable to be
prototyped.

The object-oriented language is overviewed in Section 2 by discussing in
detail a few examples. In Section 3, we discuss the type system for analysing
the resource deployments. Our technique is based on so-called behavioural types
that abstractly describe systems’ behaviours. In particular, the types we consider
record the creations of resources and their movements among deployment com-
ponents. They are similar to those ranging from languages for session types [7]
to process contracts [17] and to calculi of processes as Milner’s CCS or pi-
calculus [19, 20]. In our mind, behavioural types are intended to represent a
part of SLA that may be validated in a formal way and that support composi-
tional analysis. Therefore they may play a fundamental role in the negotiation
phase of cloud computing tradings.

The behavioural types presented in Section 3 are a simple model that may
be displayed by highlighting the resource load of deployment components using
existing tools. We examine this issue in Section 4. Related works are discussed
in Section 5.

The aim of this contribution is to overview our type system for analysing
resource deployments. Therefore the style is informal and problems and (our)
solutions are discussed by means of examples. The details of the technique, such
as the system for deriving behavioural types automatically and the correctness
results, can be found in the forthcoming full paper.

2 dcABS in a nutshell

Our study targets an ABS-like language. ABS [13] is a basic abstract, executable,
object-oriented modelling language with a formal semantics. In this language,
method invocations are asynchronous: the caller continues after the invocation
and the called code runs on a different task. Tasks are cooperatively scheduled:
every group of objects, called cog, has at most one active task at each time. Tasks
running on different cogs may be evaluated in parallel, while those running on the
same cog must compete for the lock and interleave their evaluation. The active
task of a cog explicitly returns the control in order to let other tasks progress.
Synchronisations between caller and callee is explicitly performed when callee’s
result is strictly necessary by using future variables (see [5] and the references
in there).

In our language, which is called dcABS, programmers may define a fixed num-
ber of (virtual) cloud computing machines, called deployment components (de-

2

1 // class C declaration:
2 class C {

3 Bool m (C x) {

4 if (@this != @x) moveto @x else moveto d1;

5 return true; }

6 }

7

8 // available deployment components declaration:
9 data DCData = d0, d1, d2, d3;

10

11 //main statement:
12 C x1 = new cog C(); moveto d1;

13 C x2 = new cog C(); moveto d2;

14 C x3 = new cog C(); moveto d3;

15 Fut<Bool> f1 = x1!m(x2);

16 Fut<Bool> f2 = x2!m(x3);

17 Bool b1 = f1.get;

18 Fut<Bool> f3 = x3!m(x2);

19 Bool b2 = f2.get;

20 Bool b3 = f3.get;

Table 1. A simple dcABS program

ployment component do not scale), and may use a very basic management of
resources that enables cogs movements from one deployment component to an-
other (cogs represents generic resources, such as group of computing entities,
databases, virtual memories and the corresponding management processes). In
dcABS, we also assume that method invocations are synchronised in the same
method body where they occur, except for the main statement. This constraint
largely simplifies the analysis and augment its precision because it reduces the
nondeterminism.

We illustrate the main features of dcABS by means of examples. The details of
the syntax and semantics of dcABS can be found in the (forthcoming) full paper.
Table 1 displays a simple dcABS program. Programs consist of three parts: (i) a
collection of class definitions, (ii) a declaration of the deployment components
that are available, and (iii) a main statement to evaluate. Classes contain field
and method declarations. In the above table, there is one class definition that
covers lines 2–6, the deployment components are declared at line 9, and the main
statement covers lines 12–20. The evaluation of the main statement is performed
in the special cog start that is located on the deployment component that is
declared first; in our example this is d0.

Line 12 contains a definition of dcABS: it creates a new object of class C in
a new cog, locally deployed, and stores a reference to the new object in the
variable x1. The subsequent statement moveto d1 specifies the migration of the

3

21 class D {

22 Bool move () { moveto d1 ; return true ; }

23

24 Bool multi_create (Int n) {

25 if (n<=0) return true ;

26 else { D x = new cog D () ;

27 Fut<Bool> f = x!multi_create(n-1) ;

28 Bool u = f.get ;

29 Fut<Bool> g = x!move() ;

30 Bool v = g.get ;

31 return true ; } }

32 }

Table 2. A dcABS recursive program

current cog, i.e. cog start, from the current deployment component d0 to the
deployment component d1.

Lines 15, 16 and 18 display method invocations. As mentioned above, in
dcABS invocations are asynchronous: the caller continues executing in parallel
with the called method, which runs in a dedicated task within the cog where
the receiver object resides. For example, line 15 corresponds to spawning the
instance of the body of method m in a new task that is going to run in the cog
of the object referred by x1. A future reference to the returned value is stored in
the variable f1 that has type Fut<Bool>. This means that the value is not ready
yet and, when it will be produced (in the future), it will have type Bool. Line 17
enforces the retrieval of such value by accessing to the corresponding future
reference and waiting for its availability, by means of the operation get. Since
method invocations are asynchronous, the two invocations in lines 15 and 16 are
executed concurrently. The invocation at line 15 is then synchronised at line 17,
but the one at line 16 may continue concurrently with the invocation of line 18,
until they are both synchronised.

The invocations in the main statement execute three instances of method
m. Every instance verifies if the receiver object is co-located with the argument
object and, in case, it performs either a deployment to let the corresponding cogs
be co-located or a deployment to the component d1. The expression @x of line 4
points to the deployment component where the (cog of the) object referred by x

resides.

Table 2 shows a class definition D with a recursive method multi_create. This
method creates n new cogs co-located with the caller object and moves them to
the deployment component d1.

Analysing the cog-deployment of the programs in Tables 1 and 2 is not
straightforward. For example, significant questions regarding Table 1 are: (i)
what is the cog-load of the component d1 during the lifetime of the main state-

4

ment? (ii) Can the component d0 be garbage-collected after a while in order to
optimise resource usages? Let the main statement of Table 2 be

33 // available deployment components declaration:
34 data DCData = d0, d1 ;

35

36 //main statement:
37 D x = new cog D() ;

38 Fut<Bool> f = x!multi_create(10) ;

Then, an important question about Table 2 is: (iii) is there an upper bound to the
number of cogs deployed to d0? The technique we study in the following sections
lets us to answer to such kind of questions in a formal way.

3 Behavioural types for resource deployment

Our technique for analysing resource deployments in dcABS programs is mostly
based on our past experience in designing type inference systems for analysing
deadlock-freedom of concurrent (object-oriented) languages [8–10].

A basic ingredient of every type system is the definition of the association
of types with language constructs. The type system of dcABS associates an ab-
stract deployment behaviour to every statement and expression. Formally, the
association is defined by the typing judgment

Γ;n ⊢c s : ❜ ⊲ Γ ′;n′ (1)

to be read as: in an environment Γ and at a timestamp n, the statement s of an
object whose cog is c has a type ❜ and has effects Γ ′ and n′. The pair Γ ′ and n′

is used to type the continuation. To explain (1), consider the line 12 of Table 1:

12 C x1 = new cog C(); moveto d1;

The statement C x1 = new cog C(); has two effects: (i) creating a new co-
located cog (with a fresh name, say c1) , and (ii) populating this new cog with a
new object whose value is stored in x1. As regards (i), there is a deployment of
the new cog at the deployment component where the current cog c resides. We
define this behaviour by means of the type

c1 7→ c

As regards (ii), we record (in the typing judgment) the name of the cog of x1.
In particular, variable assignment may propagate cog names throughout the
program and this may affect the behavioural types. That is, our type system
includes the analysis of aliases (c.f. Γ ′ in (1) is an update of Γ). In particular,
in order to trace propagations of names, we associate to each variable a so-called
future record, ranged over by r and defined in Table 3. A future record may
be either (i) a dummy value -- that models primitive types, or (ii) a record

5

r ::= -- | X | [cog :c, x:r] | fut(r) future record

❜ ::= 0 | 〈c 7→ c′〉n÷n | 〈c 7→ d〉n÷n | 〈C!m(r) → r
′〉m÷n behavioural type

| ❜+ ❜ | ❜ 8 ❜ | 〈❜〉m÷n

Table 3. Future records and behavioural types of dcABS

name X that represents a place-holder for a value and can be instantiated by
substitutions, or (iii) [cog :c, x :r], which defines an object with its cog name c and
the values for fields of the object, or (iv) fut(r), which is associated to method
invocations returning a value with record r. As regards Line 12, since C has no
field, we record in the environment Γ ′ of (1) the binding x1: [cog : c1], where c1
is a fresh cog name.

The statement moveto d1 corresponds to migrating the current cog (i.e. c) to
the deployment component d1. This is specified by the type

c 7→ d1.

The above ones are the basic deployment informations of our type system. We
next discuss the management of method invocations, which is the major difficulty
in the design of the type system. In fact, the execution of methods’ bodies
may change deployment informations and these changes, because invocations
are asynchronous, are the main source of imprecision of our analysis. Consider,
for example, line 15 of Table 1

15 Fut<Bool> f1 = x1!m(x2);

and assume that the environment Γ (and Γ ′) in (1) binds method m as follows

Γ (C.m) = ([cog : c], [cog : c′]) → --

where

– [cog : c] and [cog : c′] are the future records of the receiver and of the
argument of the method invocation, respectively,

– -- is the future record of the returned value (it is -- because returned values
have primitive type Bool).

(This association is defined during the typing of the method body – see below.)
The behavioural type of the invocation x1!m(x2) is therefore C!m([cog : c1], [cog :
c2]) → -- where Γ (x1) = [cog : c1] and Γ (x2) = [cog : c2].

There is a relevant feature that is not expressed by the type C!m([cog :
c1], [cog : c2]) → --. The task corresponding to the invocation x1!m(x2) must
be assumed to start when the invocation is evaluated and to terminate when
the operation get on the corresponding future is performed – cf. line 17. During
this interval, the statements of x1!m(x2) may interleave with those of the caller

6

and those of the other method invocations therein – cf. line 16. To have a more
precise analysis, we label the type of line 15 with the (logical) time interval in
which it has an effect on the computation. Namely we write 〈❜〉m÷n, where m

and n are the starting and the ending interval points, respectively. Our type
system increments logical timestamps in correspondence of

1. cog creations,
2. cog migrations,
3. and synchronisation points (get operations).

For example, the lines 15–20 of the code in Table 1 have associated timestamps

15 Fut<Bool> f1 = x1!m(x2); // timestamp: n
16 Fut<Bool> f2 = x2!m(x3); // timestamp: n
17 Bool b1 = f1.get; // timestamp: n
18 Fut<Bool> f3 = x3!m(x2); // timestamp: n+ 1
19 Bool b2 = f2.get; // timestamp: n+ 1
20 Bool b3 = f3.get; // timestamp: n+ 2

As a consequence, the behavioural type of the above code is

〈C!m(r1, r2) → --〉
n÷n 8 〈C!m(r2, r3) → --〉

n÷n+1 8 〈C!m(r3, r2) → --〉
n+1÷n+2

where r1, r2 and r3 are the record types of the objects x1, x2, and x3, respectively.
As we will see in Section 4, this will impact on the analysis by letting us to
consider all the possible computations.

The syntax of behavioural types ❜ is defined in Table 3. Apart those types
that have been already discussed, ❜+❜

′ defines the abstract behaviour of condi-
tionals, ❜ 8 ❜′ corresponds to a juxtaposition of behavioural types, and 〈❜〉m÷n

defines a behavioural type ❜ to be executed in the interval m÷n. It is worth to
notice that it is the combination of intervals that models the sequential and the
parallel composition: two disjoint intervals specify two subsequent actions, while
two overlapping intervals specify two (possibly) parallel actions. This complies
with dcABS semantics where parallelism is not explicit in the syntax, but it is
generated by the (asynchronous) invocations of methods.

We next discuss the association of a method behavioural type to a method
declaration. To this aim, let us consider lines 3-5 of the code in Table 1:

3 Bool m (C x) {

4 if (@this != @x) moveto @x else moveto d1;

5 return true; }

The behaviour of m in C is given by (r, r′) {❜m} → --, where r and r
′ are the

future records of the receiver of the method and of the argument, respectively,
❜m is the type of the body and -- is the future record of the returned boolean
value. The records r and r

′ are formal parameters of m. Therefore, it is always
the case that cog and record names in r and r

′ do occur linearly and bind the
occurrences of names in ❜m. It is worth to notice that cog names occurring in ❜m

may be not bound. These free names correspond to new cog instructions.

7

In the case of m in C, its type is:

([cog : c], [cog : c′]){〈c 7→ c′〉1÷1 + 〈c 7→ d1〉1÷1} → -- .

The behavioural type for the the main statement of Table 1 is:

〈c1 7→ start〉1÷1 8 〈start 7→ d1〉2÷2

8 〈c2 7→ start〉3÷3 8 〈start 7→ d2〉4÷4

8 〈c3 7→ start〉5÷5 8 〈start 7→ d3〉6÷6

8 〈C!m([cog : c1], [cog : c2]) → --〉
7÷7

8 〈C!m([cog : c2], [cog : c3]) → --〉
7÷8

8 〈C!m([cog : c3], [cog : c2]) → --〉
8÷9.

We conclude this section with the typing of the code in Table 2. Method move

in D has type:

([cog : c]) {〈c 7→ d1〉1÷1} → --

Method multi_create in D has type:

([cog : c], --) { (2)

0 +

〈c′ 7→ c〉1÷1 8 〈D!multi create([cog : c′], --) → --〉
2÷2

8〈D!move([cog : c′]) → --〉
3÷3

} → --

We notice that the then-branch is typed with 0. In fact, it does not affect the
method behaviour since it does not contain any deployment information nor
method invocation.

4 Analysis of behavioural types

The analysis of behavioural types defined in Section 3 highlights the trend of cog
numbers running in each deployment component over a period of (logical) time.
More specifically, behavioural types are used to compute the abstract states of
a system that record the deployment of cogs with respect to components. The
component load is then obtained by projecting out the number of cogs in a state,
which can be visualised by means of a standard graphic plotter program.

A primary item of this programme is the definition of the semantics of
behavioural types. To this aim we use deployment environments Σ that map
cog names to sets of deployment components. For example [start 7→ {d0}] is
the initial deployment environment. Behavioural types’ semantics is defined by
means of a transition system where states are triples

(

Σ, ❜, n
)

and transitions
(

Σ, ❜, n
) m÷m′

−→
(

Σ′, ❜′, n′
)

are defined inductively according to the structure

8

of ❜. The basic rules of the transition relation are

(MoveTo-c)
(

Σ, 〈c 7→ c′〉m÷m, n
)

m÷m

−→
(

Σ[c 7→ Σ(c′)], 0, max (m,n)
)

(MoveTo-d)
(

Σ, 〈c 7→ d〉m÷m, n
)

m÷m

−→
(

Σ[c 7→ {d}], 0, max (m,n)
)

(Invk)

C.m = (r){❜m}r
′ var(❜m) \ var(r, r

′) = c c′ are fresh

❜m[c
′
/c][s, s

′

/r, r′] = ❜
′

(

Σ, 〈C!m(s) → s
′〉m÷m

′

, n
)

m÷m
′

−→
(

Σ, 〈❜′〉m÷m
′

, max (m,n)
)

The rules (MoveTo-c) and (MoveTo-d) update the deployment environment
and return a null behavioural type. Rule (Invk) deals with method invocations
and, apart from instantiating the formal parameters with the actual ones, it cre-
ates fresh cog names that correspond to the new cog operations in the method
body. The inductive rules (that are omitted in this paper) lift the above tran-
sitions to structured behavioural types. In particular, let m ÷ n � m′ ÷ n′ if
and only if n < m′ (� is a partial order). The rule for ❜1 8 · · · 8 ❜k enables a

transition
m÷n
−→ provided m÷ n is �-minimal in the set of transitions of ❜1, · · · ,

❜k.
In order to illustrate the operational semantics of behavioural types we dis-

cuss the transitions of the type of the main statement in Table 1:

❜0 = 〈c1 7→ start〉1÷1 8 〈start 7→ d1〉2÷2

8 〈c2 7→ start〉3÷3 8 〈start 7→ d2〉4÷4

8 〈c3 7→ start〉5÷5 8 〈start 7→ d3〉6÷6

8 〈C!m([cog : c1], [cog : c2]) → --〉
7÷7

8 〈C!m([cog : c2], [cog : c3]) → --〉
7÷8

8 〈C!m([cog : c3], [cog : c2]) → --〉
8÷9.

Let Σ0 = [start 7→ d0]. According to the semantics of behavioural types, we have

(

Σ0 , ❜0, 0
) 1÷1
−→

(

Σ1 , ❜1, 1
) 2÷2
−→

(

Σ2 , ❜2, 2
) 3÷3
−→

(

Σ3 , ❜3, 3
) 4÷4
−→

(

Σ4 , ❜4, 4
)

5÷5
−→

(

Σ5 , ❜5, 5
) 6÷6
−→

(

Σ6 , ❜6, 6
)

where, at each step 1 ≤ i ≤ 6, the type that is evaluated is the one with
interval i÷ i, the deployment environment Σ6 is [start 7→ {d3}, c1 7→ {d0}, c2 7→
{d1}, c3 7→ {d2}], and the type ❜6 is 〈C!m([cog : c1], [cog : c2]) → --〉

7÷7 8
〈C!m([cog : c2], [cog : c3]) → --〉

7÷8 8 〈C!m([cog : c3], [cog : c2]) → --〉
8÷9.

In Figure 1 we have drawn the computations starting at
(

Σ6, ❜6, 6
)

. Here we

discuss the rightmost computation. In
(

Σ6, ❜6, 6
)

, the two transitions that are
possible are the method invocations with intervals 7÷ 7 and 7÷ 8. We perform
the one with interval 7 ÷ 8 and, by rule (Invk), we get

(

Σ6, ❜8, 7
)

, where

❜8 = 〈C!m([cog : c1], [cog : c2]) → --〉
7÷7 8 〈〈c2 7→ c3〉

1÷1 + 〈c2 7→ d1〉1÷1〉7÷8 8
〈C!m([cog : c3], [cog : c2]) → --〉

8÷9.

9

(

Σ6 , ❜6, 6
)

(

Σ6, ❜7, 7
) (

Σ6, ❜8, 7
)

(

Σ7, ❜9, 7
) (

Σ6, ❜10, 7
) (

Σ6, ❜11, 7
) (

Σ8, ❜11, 7
)

(

Σ7, ❜13, 8
) (

Σ7, ❜12, 7
) (

Σ6, ❜14, 7
) (

Σ8, ❜14, 7
)

(

Σ9, ❜16, 8
) (

Σ7, ❜15, 8
) (

Σ7, ❜17, 7
) (

Σ10, ❜17, 7
) (

Σ11, ❜17, 7
)

(

Σ9, ❜18, 8
) (

Σ7, ❜19, 8
) (

Σ10, ❜19, 8
) (

Σ11, ❜19, 8
)

(

Σ9, 0, 8
) (

Σ10, 0, 8
) (

Σ12, 0, 8
) (

Σ11, 0, 8
) (

Σ13, 0, 8
)

7÷
7 7÷

8

7÷
7 7÷

8 7÷
7 7

÷
8

7÷
8

8÷
9 7÷

8 7÷
7 7

÷
8

7÷
8

7÷
7

7÷
7

8
÷

9

7÷
8 8÷

9 7
÷

8

7÷
8

7÷
7

7÷
7 7÷

7

7
÷

8

8÷
9 7

÷
8

7÷
8

8÷
9

8÷
9 8

÷
9

7
÷

8

8÷
9

8÷
9 8÷

9 8÷
9 8

÷
9

Fig. 1. An example of transition system of behavioural types

At this point there are three options: the method invocation with interval
7÷7 or the evaluation of either 〈c2 7→ c3〉

1÷1 or 〈c2 7→ d1〉1÷1, both with interval
7÷ 8 because underneath a 〈·〉7÷8 context.

By evaluating 〈c2 7→ c3〉
1÷1, one obtains

(

Σ8, ❜11, 7
)

, where Σ8 is [start 7→
{d3}, c1 7→ {d0}, c2 7→ {d2}, c3 7→ {d2}]. and ❜11 is 〈C!m([cog : c1], [cog : c2]) →

--〉
6÷6 8 〈C!m([cog : c3], [cog : c2]) → --〉

7÷8.

In
(

Σ8, ❜11, 7
)

only one transition is possible: the method invocation with

interval 7÷7. Therefore one has
(

Σ8, ❜14, 7
)

, where ❜14 = 〈〈c1 7→ c2〉
1÷1+〈c1 7→

d1〉1÷1〉7÷7 8 〈C!m([cog : c3], [cog : c2]) → --〉
8÷9.

In the state
(

Σ8, ❜14, 7
)

the possible transitions are those of the type

〈〈c1 7→ c2〉
1÷1 + 〈c1 7→ d1〉1÷1〉7÷7. By letting 〈c1 7→ d1〉1÷1 move, one has

(

Σ11, ❜17, 7
)

, where Σ11 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→

{d2}] and ❜17 = 〈C!m([cog : c3], [cog : c2]) → --〉
8÷9. Finally, by performing

two transitions labelled 8÷ 9, one first unfolds the method invocation and then
evaluates the corresponding body 〈〈c3 7→ c2〉

1÷1 + 〈c3 7→ d1〉1÷1〉8÷9. By letting
〈c3 7→ d1〉1÷1 move, the computation terminates with a deployment environment
Σ13 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→ {d1}].

Given a transition system T as the one illustrated in Figure 1, it is possible
to compute the abstract trace, i.e. the sequence Σ(0) ·Σ(1) ·Σ(2) · · · where Σ(i)
is the deployment environment

Σ(i) : c 7→ ∪{Σ(c) | there is ❜ such that
(

Σ, ❜, i
)

∈ T } .

10

For example, letting the deployment environments of Figure 1 be

Σ6 = [start 7→ {d3}, c1 7→ {d0}, c2 7→ {d1}, c3 7→ {d2}]
Σ7 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d1}, c3 7→ {d2}]
Σ8 = [start 7→ {d3}, c1 7→ {d0}, c2 7→ {d2}, c3 7→ {d2}]
Σ9 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d1}, c3 7→ {d1}]
Σ10 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→ {d2}]
Σ11 = [start 7→ {d3}, c1 7→ {d2}, c2 7→ {d2}, c3 7→ {d2}]
Σ12 = [start 7→ {d3}, c1 7→ {d1}, c2 7→ {d2}, c3 7→ {d1}]
Σ13 = [start 7→ {d3}, c1 7→ {d2}, c2 7→ {d2}, c3 7→ {d1}]

we can compute the cog trend for each deployment component. Let Σ(i)|d
def
=

{c | d ∈ Σ(i)(c)}. Then

Σ(i)|d d0 d1 d2 d3

Σ(0) start ∅ ∅ ∅

Σ(1) c1, start ∅ ∅ ∅

Σ(2) c1 start ∅ ∅

Σ(3) c1 c2, start ∅ ∅

Σ(4) c1 c2 start ∅

Σ(5) c1 c2 c3, start ∅

Σ(6) c1 c2 c3 start
Σ(7) c1 c1, c2 c1, c2, c3 start
Σ(8) ∅ c1, c2, c3 c1, c2, c3 start

Graphically (note that d0 starts at level 1, since at the beginning it contains the
“start” cog):

0 2 4 6 8
0

1

2

3

4

time

c
o
g
n
u
m
b
e
r

d0

0 2 4 6 8
0

1

2

3

4

time

c
o
g
n
u
m
b
e
r

d1

0 2 4 6 8
0

1

2

3

4

time

c
o
g
n
u
m
b
e
r

d2

0 2 4 6 8
0

1

2

3

4

time

c
o
g
n
u
m
b
e
r

d3

11

We conclude our overview by discussing the issue of recursive invocation. To
this aim, consider the type (2) of the method multi_create in Table 2 and the
main statement

D x = new cog D(); Fut<Bool> f = x!multi_create(4); Bool b = f.get;

whose type is:

❜
r
0 = 〈cr1 7→ start〉1÷1 8 〈D!multi create([cog : cr1], --) → --〉

2÷2

Being d0 and d1 the two declared deployment components, we obtain the fol-
lowing computation:
(

[start 7→ {d0}] , ❜r
0, 0

)

1÷1
−→

(

[start 7→ {d0}, cr1 7→ {d0}] , ❜r
1, 1

)

2÷2
−→

2÷2
−→

(

[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d0}] , ❜r
3, 2

)

2÷2
−→ · · ·

2÷2
−→

(

[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d0}, · · · , crn−2 7→ {d0}] , ❜r
n, 2

)

2÷2
−→

2÷2
−→

(

[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d0}, · · · , crn−2 7→ {d1}] , ❜r
n+2, 2

)

2÷2
−→ · · ·

2÷2
−→

(

[start 7→ {d0}, cr1 7→ {d0}, cr2 7→ {d1}, · · · , crn−2 7→ {d1}] , 0, 2
)

where

❜
r
1 = 〈D!multi create([cog : cr1], --) → --〉

2÷2

❜
r
2 = 〈 〈cr2 7→ cr1〉

1÷1 8 〈D!multi create([cog : cr2], --) → --〉
2÷2

8〈D!move([cog : cr2]) → --〉
3÷3 〉2÷2

❜
r
3 = 〈 〈D!multi create([cog : cr2], --) → --〉

2÷2 8 〈D!move([cog : cr2]) → --〉
3÷3

〉2÷2

· · ·
❜
r
n = 〈 〈〈· · · 〈〈D!move([cog : cr(n−2)]) → --〉

3÷3〉2÷2

8〈〈D!move([cog : cr(n−3)]) → --〉
3÷3 · · · 〉2÷2

8〈D!move([cog : cr3]) → --〉
3÷3〉2÷2 8 〈D!move([cog : cr2]) → --〉

3÷3

〉2÷2

❜
r
n+2 = 〈 〈〈· · · 〈D!move([cog : cr(n−3)]) → --〉

3÷3 · · · 〉2÷2

8〈D!move([cog : cr3]) → --〉
3÷3〉2÷2 8 〈D!move([cog : cr2]) → --〉

3÷3

〉2÷2

We observe the following two facts: first, every transition, except the initial one,
is at logical timestamp 2, because only the outermost interval is observable, while
the nested intervals are only relevant to specify the order of events at the same
level of nesting; second, in case of recursion the specified behaviour is potentially
infinite and parameterised by the number n of transitions, which depends on the
number of recursive invocations.

In visualising the results of the analysis, these two aspects pose some ques-
tions: the first one may lead us to flatten all the events at timestamp 2 as they
happened in parallel, while if observing carefully the computation we notice the
events follow a strict sequence; the second one may make it difficult to graph-
ically represent the unbounded behaviour. To address the first point, we don’t

12

simply rely on the label of the transition to recognise the state of the computa-
tion, but at each interval the visualiser performs a sort of zoom in, so to magnify
the nested behaviour. The result is the sequentialised behaviour depicted below.
To address the second one, we just approximate the behaviour by letting at most
n nested recursive invocations. The corresponding graphs are as follows, fixing
n = 8, (note that d0 starts at level 1, since at the beginning it contains the
“start” cog):

0 0.5 1 1.5 2 2.5

0
1
2
3
4
5
6

time

c
o
g
n
u
m
b
e
r

d0

0 0.5 1 1.5 2 2.5

0
1
2
3
4
5
6

time
c
o
g
n
u
m
b
e
r

d1

In this case, the recursive behaviour corresponds to a pick of deployed cogs in
the interval 2 ÷ 3. This pick grows according to the value of n. The interesting
property we may grasp from the graphs for d0 is that, the upward pick in the
interval 1÷ 2 corresponds to a downward pick in the same interval of the same
length. This is due to the property that, for each increment in that interval,
there is a decrement, thus leaving unchanged the number of cogs in d0 (which is
2). A different behaviour is manifested by the graph of the component d1. In this
case, there is a growing increment of deployed cogs according to the increasing
of n. The rightmost function lets us derive that the deployment component d1
may become critical as the computation progresses.

5 Related work

Resource analysis has been extensively studied in the literature and several meth-
ods have been proposed, ranging from static analyses (data-flow analysis and
type systems) to model checking. We discuss in this section a number of related
techniques and the differences with the one proposed in this paper.

A well-known technique is the so-called resource-aware programming [21] that
allows users to monitor the resources consumed by their programs and to express
policies for the management of such resources in the programs. Resource-aware
programming is also available for mainstream languages, such as Java [4]. Our
typing system may integrate resource-aware programming by providing static-
time feedbacks about the correctness of the management, such as full-coverage
of cases, correctness of the policies, etc.

Other techniques address resource management in embedded systems and
mostly use performance analysis on models that are either process algebra [18], or
Petri Nets [23], or various types of automata [24]. It is also worth to remind that
similar techniques have been defined for web services and business processes [6,

13

22]. Usually, all these approaches are invasive because they oblige programmers
to declare the cost of transitions in terms of time or in terms of a single resource.
On the contrary, our technique does not assign any commitment to programmers,
which may be completely unaware of resources and their management.

In [1] a quantified analysis targets ABS programs and returns informations
about the different kinds of nodes that compose the system, how many instances
of each kind exist, and node interactions. A resource analysis infers upper bounds
to the number of concrete instances that the nodes and arcs represent. (The anal-
ysis in [1] does not explicitly support deployment components and cog migration;
however we believe that this integration is possible.) An important difference of
this analysis with respect to our contribution is that our behavioural types are
intended to represent a part of SLA that may be validated in a formal way and
that support compositional analysis. It is not clear if these correspondence with
SLA is also possible for the models of [1].

A type inference technique for resource analysis has been developed in [11,12].
They study the problem of worst-case heap usage in functional and (sequential)
object-oriented languages and their tool returns functions on the size of inputs
of every method that highlight the heap consumption. On the contrary, our
technique returns upper bounds disregarding input sizes. However, we think it
is possible to extend our types to enable a transition system model that support
the expressivity of [12] (our current analysis of behavioural types is preliminary
and must be considered as a proof-of-concept). In these regards, we plan to
explore the adoption of behavioural types that depends [3] on the input data of
conditions in if-statements. We observe, anyway, that the generalisation of the
results in [11, 12] to a concurrent setting has not been investigated.

Kobayashi, Suenaga and Wischik develop a technique that is very close to
the one in this paper [16]. In particular, they extend pi-calculus with primi-
tives for creating and using resources and verify whether a program conforms
with resource usage declarations (that may be also automatically inferred). A
difference between their technique and the one in this paper is that here the re-
source analysis is performed ex-post by resorting to abstract transition systems
of behavioural types, while in [16] the analysis is done during the type check-
ing(/inference). As discussed in [9], our technique is in principle more powerful
than those verifying resource usage during the checking/inference of types.

6 Conclusions

This work is a preliminary theoretical study about the analysis of resource de-
ployments by means of type systems. Our types are lightweight abstract descrip-
tions of behaviours that retain resource informations and admit type inference.

The analysis of behavioural types that has been discussed in Section 4 is
very preliminary. In fact, in Example 2, the resource analysis depends on the
input value of the method multi_create. In these cases, a reasonable output of
the analysis is a formula that defines the cog-load of deployment components
according to the actual value in input. As discussed in Section 5, we intend to

14

investigate more convenient behavioural type analyses, possibly by using more
expressive types, such as dependent ones [3].

One obvious research direction is to apply our technique for defining an in-
ference system for resource deployment in programming languages, such as ABS
or core ABS, and prototyping it with a tool for displaying the load of deployment
components. The programme is similar to the one developed for deadlock analy-
sis [10]. The next step is then the experiment of the prototype on real programs
in order to have assessments about its performance and precision.

We also intend to study the range of application of type system techniques
when resources are either cloud virtual machines, or CPU, or memory, or band-
width. The intent is to replace/complement the simulation techniques used
in [14,15] with static analysis techniques based on types.

References

[1] E. Albert, J. Correas, G. Puebla, and G. Román-Dı́ez. Quantified abstrac-
tions of distributed systems. In iFM’13, volume 7940 of LNCS, pages 285–
300. Springer-Verlag, 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, 2010.

[3] A. Bove and P. Dybjer. Dependent types at work. In LerNet ALFA Summer
School, volume 5520 of Lecture Notes in Computer Science, pages 57–99.
Springer, 2008.

[4] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface
for Java. In Proceedings of OOPSLA, pages 21–35, 1998.

[5] F. de Boer, D. Clarke, and E. Johnsen. A complete guide to the future. In
Progr. Lang. and Systems, volume 4421 of LNCS, pages 316–330. Springer,
2007.

[6] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. S. Rosenblum, and
S. Uchitel. Model checking service compositions under resource constraints.
In Proc. 6th of the European Software Engineering Conf. and the Sympo-
sium on Foundations of Software Engineering, pages 225–234. ACM, 2007.

[7] S. Gay and M. Hole. Subtyping for session types in the π-calculus. Acta
Informatica, 42(2-3):191–225, 2005.

[8] E. Giachino, C. A. Grazia, C. Laneve, M. Lienhardt, and P. Y. H. Wong.
Deadlock analysis of concurrent objects: Theory and practice. In iFM’13,
volume 7940 of LNCS, pages 394–411. Springer-Verlag, 2013.

[9] E. Giachino, N. Kobayashi, and C. Laneve. Deadlock analysis of unbounded
process networks. In Proceedings of Concur’2014, LNCS. Springer-Verlag,
2014.

[10] E. Giachino, C. Laneve, and M. Lienhardt. A Framework for Deadlock
Detection in ABS. Software and Systems Modeling., 2014. To Appear.

[11] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource
analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

15

[12] M. Hofmann and D. Rodriguez. Automatic type inference for amortised
heap-space analysis. In 22nd European Symposium on Programming, ESOP
2013, volume 7792 of Lecture Notes in Computer Science, pages 593–613.
Springer, 2013.

[13] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS:
A core language for abstract behavioral specification. In Proc. of FMCO
2010, volume 6957 of LNCS, pages 142–164. Springer-Verlag, 2011.

[14] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Dy-
namic resource reallocation between deployment components. In Proc. of
ICFEM’10, volume 6447 of Lecture Notes in Computer Science, pages 646–
661. Springer-Verlag, 2010.

[15] E. B. Johnsen, O. Owe, R. Schlatte, and S. L. Tapia Tarifa. Validating
timed models of deployment components with parametric concurrency. In
Proc. of FoVeOOS’10, volume 6528 of Lecture Notes in Computer Science,
pages 46–60. Springer-Verlag, 2011.

[16] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the
pi-calculus. Logical Methods in Computer Science, 2(3), 2006.

[17] C. Laneve and L. Padovani. Themust preorder revisited. In Proc. CONCUR
2007, volume 4703 of LNCS, pages 212–225. Springer, 2007.

[18] G. Lüttgen and W. Vogler. Bisimulation on speed: A unified approach.
Theoretical Computer Science, 360(1–3):209–227, 2006.

[19] R. Milner. A Calculus of Communicating Systems. Springer, 1982.
[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, ii. Inf.

and Comput., 100:41–77, 1992.
[21] L. Moreau and C. Queinnec. Resource aware programming. ACM Trans.

Program. Lang. Syst., 27(3):441–476, 2005.
[22] M. Netjes, W. M. van der Aalst, and H. A. Reijers. Analysis of resource-

constrained processes with Colored Petri Nets. In Proceedings of the Sixth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN
2005), volume 576 of DAIMI. University of Aarhus, 2005.

[23] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Syn-
thesis of embedded software using free-choice Petri nets. In Proc. 36th
ACM/IEEE Design Automation Conference (DAC’99), pages 805–810.
ACM, 1999.

[24] A. Vulgarakis and C. C. Seceleanu. Embedded systems resources: Views on
modeling and analysis. In Proc. 32nd IEEE Intl. Computer Software and
Applications Conference (COMPSAC’08), pages 1321–1328. IEEE Com-
puter Society, 2008.

16

