
HAL Id: tel-01092547
https://hal.inria.fr/tel-01092547

Submitted on 9 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representing and Querying Incomplete Information: a
Data Interoperability Perspective

Cristina Sirangelo

To cite this version:
Cristina Sirangelo. Representing and Querying Incomplete Information: a Data Interoperability Per-
spective. Databases [cs.DB]. Ecole Normale Supérieure de Cachan, 2014. �tel-01092547�

https://hal.inria.fr/tel-01092547
https://hal.archives-ouvertes.fr

Mémoire d’Habilitation à Diriger des Recherches

École Normale Supérieure de Cachan

Representing and Querying

Incomplete Information:

a Data Interoperability Perspective

Cristina Sirangelo

École Normale Supérieure de Cachan

This thesis has been defended on December 5th, 2014 at École Normale Supérieure
de Cachan, before the following jury:

• Nicole Bidoit - Université Paris Sud (reviewer) - absent

• Georg Gottlob - University of Oxford (reviewer)

• Maurizio Lenzerini - Università di Roma, La Sapienza (reviewer)

• Wim Martens - University of Bayreuth

• Nicole Schweikardt - University of Berlin, Humboldt

• Luc Segoufin - INRIA, ENS-Cachan

Abstract

This thesis is intended to be a succinct and rather informal presentation of
some of my most recent work, which has been done in collaboration with several
other people. In particular this thesis concentrates on our contributions to the
study of incomplete information in the context of data interoperability. In this
scenario data is heterogenous and decentralized, needs to be integrated from
several sources and exchanged between different applications.

Incompleteness, i.e. the presence of “missing” or “unknown” portions of
data, is naturally generated in data exchange and integration, due to data het-
erogeneity. The management of incomplete information poses new challenges in
this context.

The focus of our study is the development of models of incomplete infor-
mation suitable to data interoperability tasks, and the study of techniques for
efficiently querying several forms of incompleteness.

The work presented in Chapter 4 is ongoing in the context of Nadime Fran-
cis’s PhD, whom I am co-supervising together with Luc Segoufin.

Acknowledgements

I gratefully thank all the people with whom I co-authored the work presented in
this thesis: Pablo Barceló, Nadime Francis, Amélie Gheerbrant, Leonid Libkin,
Antonella Poggi and Luc Segoufin.

1

Contents

1 Introduction 4
1.1 Data interoperability and incomplete information 5

1.1.1 Schema mappings and incompleteness 6
1.1.2 Incomplete data versus views 7

1.2 Contributions . 10
1.2.1 Representing and querying incomplete data 10
1.2.2 Querying views . 13

2 Representing and querying incomplete data 15
2.1 Incompleteness in relational databases 15
2.2 Incompleteness in relational data exchange: open/closed world

semantics . 17
2.2.1 Representing solutions under annotated mappings 19
2.2.2 Querying the canonical solution 21

2.3 Representing and querying incomplete XML 23
2.3.1 Incomplete tree descriptions 24
2.3.2 Querying incomplete tree descriptions 26

3 Näıve evaluation: a general framework 29
3.1 Näıve evaluation . 29
3.2 Näıve evaluation and syntactic fragments of queries 30

3.2.1 Näıve evaluation and monotonicity 31
3.2.2 Monotonicity and preservation 33
3.2.3 Preservation properties and and syntactic classes of queries 34

3.3 Moving beyond the standard semantics 35
3.3.1 Giving up saturation: minimal semantics 35
3.3.2 Dealing with multiple valuations 37

4 Query rewriting over graph views 38
4.1 Monotone determinacy and rewritings 39
4.2 Datalog rewritings and CSP . 40

5 Conclusions and future research directions 42
5.1 Incomplete graph data . 43
5.2 Tractable query evaluation beyond the relational model of incom-

pleteness . 45
5.3 Query rewriting over views . 48

2

3

Chapter 1

Introduction

Recent years have witnessed the proliferation of communicating applications
generating and manipulating huge volumes of data. The distributed Web envi-
ronment is certainly at the basis of this phenomenon: data on the Web resides
at different sites, in different formats and without centralization.

In this setting data interoperability refers to the ability of different indepen-
dent applications to operate on the same data, e.g. share or exchange data
or integrate data from different sources. What makes these tasks difficult is
the intrinsic syntactic and semantic heterogeneity of data handled by different
applications.

Data translation between heterogeneous formats (often referred to as data
exchange), and data integration from different sources are the basic building
blocks of all data interoperability tasks.

Foundational work on data exchange and integration [Len02, LLR02, Gra02,
HLS11, FKPT11, APR13] has provided evidence that data interoperability tech-
niques have to rely on appropriate models of incomplete information in data.

In fact reconciling, as well as restructuring data, naturally generate missing
information. Intuitively this is due to the fact that interoperability tasks need
to rely on complex schema mappings between concepts and data formats of
different communicating databases. These, in most cases, cannot fully specify
the data translation.

The theory of incomplete information, originally developed in the 80’s for
relational databases [IL84, AKG91, GZ88], provided a solid ground for under-
standing incompleteness. In particular it provided a clean semantics for cor-
rectly querying databases with incomplete information, in contraposition with
the badly designed null-related features of SQL [DD96].

However such a well established theory is no longer sufficient to cope with
data interoperability tasks nowadays, for several reasons. First of all other data
models than the relational one have emerged. The 2000s have seen the spread
of the XML data model on the Web, and today we also deal with more general
graph-structured data, which can be naturally found in central applications such
as social networks and the semantic Web. Incompleteness beyond the relational
data model has received much less attention.

Moreover incompleteness arising from data heterogeneity is often of a par-
ticular form, and may thus raise specific representation needs.

Finally the huge scale of data applications nowadays obliges us to aim at

4

particularly efficient data processing solutions. The possibility of tractable so-
lutions in the presence of incomplete information has not been fully investigated
in the past.

The work presented in this thesis stems from the need to provide suitable
models and query mechanisms for incomplete data in a data interoperability
context – the main application context where incompleteness arises. Specifically
this perspective motivates and guides our study in various respects:

• The models and semantics of incompleteness we consider are mainly mo-
tivated by their applicability in a data exchange and integration context.

• We take into account different data models, such as the relational model,
XML and graph data. On the one hand this brings us to develop specific
solutions for each data model. On the other hand we develop unified
techniques which abstract away the data models, and can be instantiated
on several of them.

• With the objective of finding efficient solutions for managing incomplete
information, our analysis aims at pushing tractability bounds as much as
possible.

In this chapter we introduce our main contributions in the setting outlined
above; these are then presented in more detail in the following chapters. We start
by establishing the main connection between models/semantics of incomplete
information and data interoperability tasks in Section 1.1, and we show how this
connection naturally identifies several problems to investigate. In Section 1.2
we introduce these problems and explain how our results contribute to them.

We emphasize that this thesis does not exhaustively cover all the topics we
have studied. A full list of publications can be found at the end of this document.

1.1 Data interoperability and incomplete infor-
mation

To cope with the fact that the same data may be structured differently in differ-
ent databases, schema mappings are usually adopted to specify the relationship
between concepts of different schemas [BM07, Kol05, Len02].

In very abstract terms a schema mapping can be viewed as a set of assertions
of the form

qσ → qτ

where qσ is a query over a source schema σ an and qτ is a query over a target
schema τ .

Such an assertion intuitively states that data selected by qσ in the first
database “corresponds” to data selected by qτ in the other database. As we will
see in the sequel, the precise adopted meaning of this “correspondence” may
vary depending on several factors such as the particular formalism used, the
data model and the type of application.

Target instances satisfying the schema mapping with a given source are in
general further restricted by the possible presence of constraints at the target
schema. Source instances may be subject to constraints as well.

5

We remark that, although the notion of schema mapping above can in prin-
ciple account for source and target structured according to different data models
(e.g. relational source and XML target), we will always deal with schema map-
pings where both source and target are schemas of the same data model.

Schema mappings play a central role in both data exchange and integration.
Existing implementations [FHH+09, HHH+05] have also been incorporated into
major database products.

In data exchange the objective is to restructure data from a source schema
σ into a target schema τ , in order to allow the transfer of data from a source
application to a target one. Schema mappings between σ and τ are used to
represent the needed data “translation”. The assertions qσ → qτ in this case
are often referred to as souce-to-target dependencies.

In a data integration scenario, the objective is to unify different hetero-
geneous source databases, into a single unified global database (which can be
either materialized or just virtual). In such a setting a schema mapping repre-
sents the correspondence between concepts of the schema σ of the sources and
the corresponding concepts represented in the global schema τ .

As an example of schema mapping consider two relational databases storing
data about travel plans. The first one records flight reservations and night-
stays of customers, as well as flight schedules. The second represents full trips,
combining both flight and hotel reservations, and a possible discount for such
combined reservations. A possible schema mapping is given by the following
dependency:

Flight-res(cust, flight)∧ ∃ hotel, discount(
Flight(flight, dep-city, arr-city, date) → Trip(cust, flight, hotel, date, discount)
∧ Stay(cust, date, arr-city) ∧ Hotel (hotel, arr-city))

The query on the left finds flight reservations with a corresponding night-
stay reservation in the arrival city in the same date. The query on the right
specifies that this data is represented in the target/global database as a single
trip combining both a hotel and a flight reservation, and a possible discount;
the hotel is also associated with the arrival city.

Incomplete information is central when dealing with schema mappings, as
we discuss next.

1.1.1 Schema mappings and incompleteness

Schema mappings usually underspecify the relationship between the source and
the target. In fact in both data integration and exchange scenarios it is com-
mon to have concepts represented in the target/global schema which are not
(directly) modeled in the sources. For instance in the example above the source
does not represent explicitly the hotels, and there is no notion of discount, since
flight and hotel reservations are dealt with independently from one another.

As a consequence several target instances (or instances of the global schema)
may satisfy the schema mapping dependencies with the same source instance
(these target instances are usually called solutions in data exchange [FKMP05],
and legal global databases in data integration [Len02]). In the example above,
among others, any target instance associating a particular hotel and a discount
value to each tuple resulting from the source query is a valid one.

6

In general the semantics of a schema mapping specifies what it means for
a target instance to satisfy the schema mapping with a given source instance
(i.e. it specifies the notion of solution in data exchange, and the notion of legal
global database in data integration). This clearly depends on the particular
chosen formalism for specifying mappings and constraints, but also on the way
one choses to “interpret” the dependencies, as we will discuss later.

The situation where a database is only partially specified, and may thus have
several possible instantiations, can often be modeled as a form of incomplete
information in data. In fact the theory of incomplete information is centered
around a notion of possible worlds [IL84, AKG91]: an incomplete database is
essentially a set of possible databases, one for each possible way of interpreting
the missing information.

Thus the correspondence specified by schema mappings can be viewed as
generating missing or unknown information in the target.

To deal with such incompleteness, and therefore with the multiplicity of
target instances compatible with the source data and the schema mapping,
query answering over the target/global schema is usually based on the notion of
certain answers [AD98, Kol05, Len02]. If Q is a query over the target schema,
given a database S over the source schema, the certain answers to Q over S
under schema mapping Σ are defined as the intersection of Q(D)’s for all target
instances D satisfying the schema mapping with S (according to the adopted
semantics of the schema mapping):

certainΣ(Q,S) =
⋂

{Q(D) | D satisfies Σ with S}.1

I.e. certain answers are computed over all data exchange solutions/legal
global databases.

Certain answers are the main query answering mechanism in data exchange
and integration, as well as other applications of incompleteness such as ontology-
based query answering [CGL+07, CGP12, BtCLW13] and querying inconsistent
data [ABC99, CLR03].

1.1.2 Incomplete data versus views

Data exchange and integration – although based on a similar specification for-
malism – have different objectives.

Problems arising in the two settings are technically close (and indeed tech-
niques for dealing with them are often similar, see [DGLLR07]), however they
offer different angles to look at the problem of dealing with schema mappings.
As we will next explain, these different angles justify that we may concentrate
on slightly different questions in the two settings, and we may deal with different
forms of incompleteness.

In particular, we will see that in data exchange incomplete information about
the target is provided by materialized incomplete target instances. To the con-
trary in common data integration settings we often deal with virtual global

1This definition assumes that Q returns a relation. When moving beyond the relational
data model this is not the only notion of queries we want to deal with. An extension of the
notion of certain answers for queries returning trees or more general objects was given in
[DLM10, Lib11]; a generalized notion of certain answers was also proposed in [Lib14], but will
not be considered in this thesis.

7

databases, and incomplete information about the global database is provided
by a form of views.

Data exchange and incomplete instances In data exchange the goal is to
transfer data from a source to a target. Since source and target are intended
to be independent applications, queries posed to the target should be answered
using local materialized data; source data is not considered available. This raises
the question of building solutions, i.e. constructing suitable target instances
which are general enough to compactly represent the whole space of solutions
(such target instances are often called universal solutions [Kol05] or universal
representatives [BPR13] in the data exchange literature). Incompleteness can
be used to this end. In fact since incomplete instances represent a set of possible
completions, they can be used to materialize the target and “capture” the whole
space of solutions.

One can devise several ways of representing partial information about a
database. The theory of relational incompleteness developed in [IL84] is based
on the notion of nulls (i.e. variables, usually denoted by the symbol ⊥ with
sub/superscripts) to represent unknown data values.

In its simplest form an incomplete relational instance (also referred to as
näıve table [IL84]) is just a database instance whose domain may contain both
constants and nulls. The set of complete instances represented by an incomplete
database I, usually denoted by [[I]], depends on the semantics of incompleteness,
which intuitively asserts the way unknown/missing data should be interpreted.
For example in the simplest case [[I]] contains all valuations of I, i.e. instances
obtained from I by replacing nulls with constants (we will deal with several
other semantics of incompleteness in this thesis).

This model of incompleteness has served as a working ground for the study
of relational data exchange [HLS11, FKPT11, APR13, GO12]. Indeed nulls can
model the form of incompleteness generated by schema mappings in the target.

As an illustration, consider the example given in Section 1.1.1. An incom-
plete instance containing tuples of the form Trip(c, f,⊥, d,⊥′) and Hotel(⊥, a) for
all customers c, flights f , dates d and arrival cities a satisfying the source query,
can represent arbitrary solutions (under suitable semantics of both schema map-
pings and incompleteness).

Queries issued on the target can then be answered based on a single mate-
rialized incomplete target instance (the canonical solution and the core in data
exchange are examples of such instances [Kol05, ABFL04]).

In fact certain answers are one of the main querying mechanisms over incom-
plete data as well. If I is an incomplete instance, certain answers to a query Q,
usually denoted by certain(Q, I), are answers which are true over all instances
belonging to [[I]].

Therefore if one can find for example an incomplete target instance I∗ with
the property that [[I∗]] coincides with the set of data exchange solutions for a
source S, then for a query Q over the target:

certainΣ(Q,S) = certain(Q, I∗)

Techniques for efficiently computing certain answers over incomplete instances
are then of central importance in data exchange.

8

Of course the expressiveness of the model of incompleteness is an essential
point here (in relationship with the constraint and query language). In par-
ticular even in the cases where incomplete instances of a given model cannot
represent the space of data exchange solutions (especially in the presence of
constraints), this may still be true as far as answering given classes of target
queries is concerned [FKMP05, GO12]. Moreover the space of data exchange
solutions depends on the semantics of schema mappings; different semantics of
incompleteness are then needed, as we will discuss later.

Data integration and views Turning to the data integration scenario, the
point of view is slightly different. The global schema is in general only a virtual
reconciled view of the source data, and the global instance is usually not mate-
rialized (although materialized and hybrid data integration settings have been
considered as well [Hul97]).

User queries are issued on the global schema in order to query several sources
in a unified way, but data usually only resides into the sources. The sources
are the only “incomplete” available information about the global database. This
usually raises the problem of reformulating (or rewriting) user queries, originally
formulated on the global schema, as queries over the sources.

This problem may take several forms depending on the type and semantics of
schema mappings. The data integration literature usually distinguishes among
LAV,GAV and GLAV mappings. In LAV relational mappings each dependency
relates a single source atom to a target query, and there is exactly one such
dependency for each source relation; thus the sources can be viewed as defined
by views over the global schema. The situation is reversed with GAV mappings
where relations of the global schema are associated to queries over the source
schema. GLAVmappings are the most general, where dependencies relate source
queries to target queries.

Under the simplest form of GAV mappings rewriting is a relatively straight-
forward task, since each symbol of the global schema in the query can be re-
placed by its definition in terms of the source schema. Query rewriting is a more
challenging problem under more general GAV mappings (with constraints) and
under LAV mappings. The problem has also been considered in its full general-
ity for GLAV mappings [CDLV12] by reducing it to a combination of LAV and
GAV mappings.

In the LAV setting – which we concentrate on in this thesis – reformulating
queries over the sources amounts to answering queries using views. Specifically,
while queries are posed to the global schema, data only resides in some mate-
rialized views of the virtual global database (i.e. the sources). One then needs
to find a rewriting (often in some desired query language) to be issued on the
view instance, that answers the original query.

Consider for example the case of two data sources, one representing informa-
tion about conference papers with schema Paper(title, authors, year, pages, con-
ference), and another one representing journal articles with schema Article(title,
authors, year, pages, vol#, journal). Assume one wants to integrate these sources
in a virtual global database representing arbitrary scientific publications, Pub-
lication(id, title, authors, year, pages, book id), together with information about
conference proceedings, Proceedings(id, conference, year), and journal volumes,
Volume(id, vol#, journal, year). Let the correspondence be specified by the fol-

9

lowing LAV schema mapping:

Paper(title, authors, year,
pages, conference) → ∃ id, book id (

Publication(id, title, authors, year, pages, book id)
∧ Proceedings(book id, conference, year))

Article(title, authors, year,
pages, vol#, journal) → ∃ id, book id (

Publication(id, title, authors, year, pages, book id)
∧ Volume(book id, vol#, journal, year))

Queries asking about publications in the global schema will be answered
over the sources distinguishing papers and articles, both defined as conjunctive
views over the global schema.

The problem of answering queries using views has been considered in several
variants (see for instance [AD98, Hal00, CGLV07, NSV10]), and is also of inter-
est in other contexts then data integration. In all these variants one of the main
objectives is to study when efficiently computable rewritings can be found.

In all problems mentioned in this section, the core question is to be able to
represent and (efficiently) query a form of incomplete information about data,
provided by either incomplete instances or views. These issues are the main
focus of this thesis, as we will explain next.

1.2 Contributions

We now introduce the particular problems we concentrate on, and briefly outline
our main contributions, which will be presented in more detail in the rest of this
thesis.

1.2.1 Representing and querying incomplete data

Models and semantics of incompleteness As discussed in the previous
section, data interoperability tasks, and in particular data exchange applica-
tions, need models and semantics of incompleteness to compactly represent the
multiplicity of target solutions under schema mappings. The needed expressive-
ness of the model depends on several aspects.

First of all we may deal with different semantics of schema mappings. As
we will argue, this may influence both the needed model and the semantics of
incompleteness for the target.

In relational data exchange schema mappings are usually specified by a set
Σ of first-order source-to-target tuple generating dependencies and target con-
straints [FKMP05]. The original semantics of such mappings introduced in
[FKMP05] was based on the usual notion of FO satisfaction. I.e. under this
notion, D is a target solution for a source instance S if (S,D) |= Σ. This seman-
tics corresponds to a form of Open World Assumption (OWA) since it allows
arbitrary data in the target, besides the data explicitely “imported” from the
source.

10

There is an alternative notion of data exchange solutions, originally proposed
in [Lib06] and later developed in [HLS11]. It is based on the Closed World
Assumption (CWA), which intuitively prevents the addition of data in the target
which is not “justified” by the source and the mapping rules.

A particular target instance, called the canonical solution was introduced in
[FKMP05]. It is obtained by chasing the source instance w.r.t the dependencies
Σ. For example, if Σ consists of the source-to-target dependency ∀xy(S(x, y) →
∃zD(x, z)), then for S = {(a, c1), (a, c2), (b, c3)}, the canonical solution is D∗ =
{(a,⊥1), (a,⊥2), (b,⊥3)}.

The canonical solution is an incomplete instance and one can interpret in-
completeness in several ways. In particular OWA and CWA are two common
semantics of incompleteness as well [IL84] (they will be recalled in Chapter 2).

For schema mappings specified by a set of source-to-target tuple generating
dependencies, it turns out that the canonical solution, interpreted with OWA
(respectively CWA) semantics of incompleteness, represents the space of open
world (respectively closed world) data exchange solutions [FKMP05, Lib06].

This is immediate to see in the example of canonical solution above, un-
der the OWA: notice that in this example a complete instance D is such that
(S,D) |= Σ if and only if D contains a valuation of D∗; the set of such D is
precisely [[D∗]] under the OWA semantics of incompleteness.

In Chapter 2 we describe how we pushed this correspondence further in [5],
by defining more flexible forms of schema mappings. In such mappings the
semantics of data exchange is explicitly specified via a form of open/closed an-
notation of attributes, allowing a mixed open-world/closed-world semantics.

We show that there exists a notion of canonical solution that can represent
the space of all solutions under annotated mappings. In order to do this we adopt
a model of incompleteness based on annotated nulls introduced in [GZ88]. In
Chapter 2 we present our analysis of the complexity of querying such annotated
instances in data exchange. The reader is referred to our full article [5] and
our invited paper [10] for a more comprehensive study of annotated schema
mappings, including their closure properties w.r.t. composition (a basic schema
management task [APRR09]).

We remark that semantics between closed world and open world have been
recognized of particular interest in data exchange. Other data exchange seman-
tics following this principle have been proposed, based on earlier work in the
area of logic programming [Min82], and with them the need for other semantics
of incompleteness. In particular for the so called GCWA∗-semantics of data
exchange [Her11], one can easily find a suitable semantics of incompleteness for
the usual canonical solution, so that it represents the set of GCWA∗-solutions.
It is based on the combination of different possible “minimal” valuations of
nulls. We introduced and studied this semantics of incompleteness for arbitrary
instances in [1]; our results about efficient query answering under this semantics
are briefly presented in Chapter 3.

The semantics of schema mappings is not the only factor that influences
the need of specific models and semantics of incompleteness. As important
is the possible presence of target constraints, or incompleteness in the source.
Although these aspects are not considered in this thesis, representation issues
related to them have been studied in the literature [APR13, GO12]. These
works show that one needs the expressiveness of a more complex form of incom-
pleteness, namely conditional tables [IL84], in order to represent the space of

11

solutions under schema mappings including large classes of target constraints,
and possibly incomplete source instances. Alternatively näıve instances can pro-
vide a “weak” representation, i.e. intuitively a representation which is equivalent
to the space of solutions, when it comes to compute certain answers to given
classes of queries [FKMP05, GO12].

Our contributions are not limited to the relational setting. However while
for relational databases we could rely on existing models and semantics of in-
completeness, the picture is quite different for other data models.

The literature has to some extent addressed the problem of incompleteness
in XML, but often in specific scenarios. For example [ASV06] concentrated on
handling incompleteness arising in a dynamic setting in which the structure of a
tree is revealed by a sequence of queries; graph and tree data models expressed
as description logic theories that could incorporate incompleteness were dealt
with in [CGL98, CGL02]; incompleteness in query results but not inputs was
studied in [KNS02]; and incorporating probabilities into XML was looked at in
[SA07, CKS09].

In the setting we are concerned with, incompleteness arises from schema
mappings. XML schema mappings are usually pattern based, i.e they specify a
correspondence between patterns of the source tree and patterns in the target
tree [ABLM14]. This naturally calls for pattern-based models of incompleteness.

In [6] we followed this idea and developed and analyzed a pattern-based
model of incomplete XML. We provided a classification of incomplete descrip-
tions of XML documents, and we separated features - or groups of features - that
lead to hard computational problems from those that admit efficient algorithms.
Our classification of incomplete information is based on the combination of null
values with partial structural descriptions of documents.

Our model is suitable for data exchange applications, and extends usual tree
patterns used in this context. Fragments of our patterns have been considered
in XML data exchange [AL08, ADLM14] to represent solutions.

There are several key computational problems of interest over incomplete
tree descriptions. In [6] we considered consistency of partial descriptions, rep-
resentability of complete documents by incomplete ones, and query answering.
In [4] we also surveyed results about pattern containment.

In all cases we showed how factors such as schema information, the presence
of node ids, and missing structural information affect the complexity of these
main computational problems.

In Chapter 2 we present our model of incomplete XML and concentrate
on the query answering problem, where our main results find robust classes of
incomplete XML descriptions that permit tractable query evaluation.

Efficient query evaluation over incomplete data The problem of query-
ing incomplete instances has been extensively studied both in foundational work
on incompleteness [Lip79, IL84, AKG91, Lib11] and in the data exchange and
integration literature [Kol05, Len02, Bar09]. As expected the problem is of-
ten hard, since computing certain answers is a form of entailment problem:
it consists in checking whether every model of the incomplete description is
also a model of the query. Computationally the problem usually ranges from
coNP-complete to even undecidable depending on the model and semantics of
incompleteness, as well as the query language.

12

Most of the work presented in Chapter 2 aims at tracing a frontier of
tractability of query answering, under the models of incompleteness we con-
sider for both relational and XML data.

Results in Chapter 2 already show that tractable solutions can often rely
on variants of classical techniques for querying incomplete information. These
techniques originated in [IL84], which not only identified union of conjunctive
queries as a tractable class for querying näıve tables, but also provided a very
natural procedure for computing certain answers to these queries under OWA.
This procedure referred to as näıve evaluation essentially consists in evaluating
the query over the incomplete data as if it were complete.

What makes this procedure particularly attractive is that in the case that
näıve evaluation computes certain answers, query answering over incomplete in-
stances is not only tractable, but can rely on known algorithms and optimization
techniques.

Most of the tractability results we provide for query answering on both
relational and XML incomplete data in Chapters 2 and 3 rely on a form of
näıve evaluation. This shows that näıve evaluation is a versatile technique that
makes sense well beyond the context of näıve tables and open world assumption.
In fact we were able to apply it to more complex data models (e.g. XML data),
under different semantics of incompleteness (e.g. various forms of CWA), and
for non-positive queries as well.

Motivated by this observation, in [1] we embarked on a systematic study of
näıve evaluation, which we present in Chapter 3. We analyzed the intrinsic prop-
erties that make näıve evaluation work, in a very general framework abstracting
away the model, the semantics of incompleteness, and the query language. This
allowed us to show how näıve evaluation depends on these parameters, and to
apply results to several different settings.

1.2.2 Querying views

When partial information about a database is provided by materialized views,
one usually assumes only a view instance S available, but no information about
the original database D. In this sense S is a partial description which represents
all possible databases D yielding it as a view instance.

We saw that this situation arises under LAV schema mappings, when one
assumes only source data available. Queries are usually issued on the original
database D (i.e. the virtual global database, in a data integration setting) but
can only be answered using S (i.e. the available sources).

As with arbitrary schema mappings, one can consider several semantics of
view definitions. The sound view assumption is a form of OWA for the LAV
schema mapping. If V denotes the view definition, under the sound view as-
sumption a view instance S represents all databases D such that V (D) ⊇ S.
Under the the exact view assumption, to the contrary, a database D is compat-
ible with a view instance S if and only if S = V (D). This is a particular form
of CWA for the corresponding LAV schema mapping.

One common approach to querying views is to compute certain answers over
all databases compatible with the view [AD98, CDGLV00a], e.g. under the
sound view assumption one computes certainV (Q,S) =

⋂

{Q(D) | V (D) ⊇ S}.
Note that this coincides with certainΣ(Q,S) under the LAV schema mapping
Σ associating each view symbol to its definition (interpreted under the suitable

13

semantics). However, unlike in the data exchange setting, certainV (Q,S) needs
to be computed by issuing a query on the available view instance S (such a
query is sometimes called a perfect rewriting [CGLV07]).

This approach has been thoroughly investigated both under the sound and
the exact view assumption [AD98, CDGLV00a].

We follow a different approach, considered in the literature both for relational
and semi-structured data [NSV10, CDGLV02, CGLV07]. It consists in studying
conditions on views and queries which guarantee that the query result only
depends on the view extension, and not on the particular database yielding this
view.

This property of a set of view definitions V and a query Q is called deter-
minacy (or losslessness as in [CDGLV02]); it amounts to require that any two
databases having the same view also yield the same query result, i.e.

V (D) = V (D′) ⇒ Q(D) = Q(D′) for all D,D′

Deciding determinacy answers precisely the question of whether the information
provided by the view is always sufficient to answer the query, and is a question
of interest in many application scenarios.

Under determinacy, computing certain answers on a given view instance is
no longer necessary; in fact certain answers coincide with the query evaluated
on any single instance yielding the given view. However this instance may be
hard to compute from the view, and therefore in most cases it is unfeasible to
use directly this approach for query answering.

On the other hand determinacy implies that there exists a function map-
ping view instances (V(D)) to corresponding query results (Q(D)). Therefore
the query result Q(D) can in principle be computed directly by issuing a query
on the view instance V (D), i.e. by only using the partial available informa-
tion. Such query over the view is simply called a rewriting (or sometimes exact
rewriting [CGLV02]). In other words a rewriting of a query Q using views V is
a query R over view instances such that R(V (D)) = Q(D) for all databases D.

Determinacy only implies the existence of a rewriting, but does not imply
that such rewriting is expressible in a particular language, nor that enjoys par-
ticular computational properties. The query rewriting problem in a language L
asks for the existence of a rewriting expressible in L. We are usually interested
in rewritings with efficient (polynomial time) data complexity.

Deciding determinacy and establishing a precise relationship between deter-
minacy and rewriting are usually hard problems, which remain open in many
settings [NSV10, CDGLV02], especially under the exact view assumption. In [2]
we studied these problems under the exact view assumption for queries and views
over graph databases, expressed as Regular Path Queries, a very common query
language in this setting. Our main result shows that under a strong notion of
determinacy, requiring an extra monotonicity assumption, one can always effec-
tively construct rewritings in Datalog, therefore with efficient data complexity.
These results have been obtained during Nadime Francis’s PhD, whom I am
co-supevising, and are presented in Chapter 4.

14

Chapter 2

Representing and querying
incomplete data

In a data interoperability context data often needs to be materialized at the
target as an incomplete instance. This is a particularly strict requirement in
data exchange, since data is assumed to be no longer available at the source,
once it has been transferred to another application. This raises two main issues:
how to represent target data, so that it captures the intended data exchange
semantics, and how to query it efficiently. In this chapter we start presenting
our main contributions on the two aspects.

After recalling in Section 2.1 the basic model of relational incompleteness,
in Section 2.2 we show how flexible models of incomplete information mixing
open and closed world assumption can be used in relational data exchange to
overcome some of the limitations of usual semantics. We establish the connec-
tion between query answering in data exchange and querying such incomplete
data, and study its complexity [5].

In Section 2.3 we move to the XML data model. Motivated by XML schema
mappings based on tree patterns, we develop pattern-based models of incom-
plete XML [6]. We concentrate in particular on separating features that lead
to intractability of query answering from restrictions which allow tractable so-
lutions.

2.1 Incompleteness in relational databases

In this section we review a basic model and some common semantics of incom-
pleteness for relational data.

Incomplete instances As already introduced in Chapter 1, in the relational
setting we consider incomplete instances with nulls, that appear most commonly
in integration and exchange scenarios, and that can very easily be supported by
commercial RDBMSs.

More formally we assume two countably infinite set of possible data values:
Const representing the set of constants, and Null representing nulls. Nulls will
normally be denoted by ⊥, sometimes with sub- or superscripts.

15

An incomplete relational instance I (also referred to as incomplete database,
or näıve table [IL84]) over a given relational schema assigns to each k-ary relation
symbol of the schema a k-ary relation over Const ∪ Null, i.e., a finite subset of
(Const ∪ Null)k. Its active domain is denoted by adom(I). Other models of
incompleteness exist, and most notably conditional tables [IL84, AKG91], but
we will not consider them in this thesis.

A complete database D has no nulls, i.e. its active domain is a subset of
Const.

An incomplete database I represents a set of complete databases, denoted
by [[I]]. The semantics of incompleteness specifies this set. Several semantics
have been considered in the literature starting with [IL84, Rei77]; they are all
homomorphism-based.

Homomorphisms and valuations Given two (possibly incomplete) rela-
tional instances I and I ′ over the same schema, a homomorphism h : I → I ′ is
a map from the active domain of I to the active domain of I ′ so that for every
relation symbol R, if a tuple ū is in relation R in I, then the tuple h(ū) is in
the relation R in I ′.

Given a homomorphism h and a database I, by h(I) we mean the image
of I, i.e., the instance consisting of all tuples R(h(ū)) where R(ū) is in I. If
h : I → I ′ is a homomorphism, then h(I) is a subinstance of I ′.

A homomorphism h from I to I ′ is strong onto if I ′ = h(I); It is onto if
adom(I ′) = h(adom(I)).

A valuation on an incomplete instance I is a mapping assigning a value of
Const to each null in adom(I). It is usually considered defined on the whole
adom(I) by extending it to be the identity on Const. This way a valuation v

can be viewed as a homomorphism from I to v(I).

Semantics of incompleteness We shall see many possible semantics for
incomplete information, but first we review two common ones: open world and
closed world semantics.

The semantics under the closed world assumption (or CWA semantics) is
defined as

[[I]]
cwa

= {v(I) | v is a valuation on I}.

The semantics under the open world assumption (or OWA semantics) is defined
as

[[I]]
owa

= {D | D is complete and D ⊇ v(I) for some valuation v}.

Intuitively the closed world semantics assumes that the incomplete specifi-
cation is “complete” as for tuples present in the database, and only data values
are possibly missing. To the contrary under the open world assumption, an in-
complete database specifies only positive information about the content of the
database, and entire tuples may be possibly missing.

Another somewhat less known semantics was introduced in [Rei77]. We refer
to it as the Weak Closed World Assumption (WCWA) semantics, since it relaxes
the closed world restriction, but not as much as in the OWA. It is defined as
follows:

16

[[I]]
wcwa

=

{

D

∣

∣

∣

∣

D is complete and there is a valuation v such that
D ⊇ v(I) and adom(D) = adom(v(I))

}

.

Certain answers Relational query languages considered in this thesis are
fragments of FO. We will always assume active domain semantics for FO queries.
When FO queries are evaluated over incomplete relational instances, we adopt
the usual semantics of FO, by viewing nulls just as additional (pairwise distinct)
domain elements, other than the constant elements.

Given an incomplete database I, a semantics of incompleteness [[]], and a
query Q, certain answers under the semantics [[]] are

certain(Q, I) =
⋂

{Q(D) | D ∈ [[I]]}

i.e. answers that are true regardless of the interpretation of nulls under the
given semantics.

The complexity of computing certain answers for FO queries over incomplete
relational instances ranges from coNP-complete to even undecidable depending
on the restrictions on the type of incomplete instance, the semantics of incom-
pleteness and the fragment of FO [AKG91]. In one case of particular interest
query answering is tractable: under both open world and closed world seman-
tics, certain answers to union of conjunctive queries (UCQs) can be computed in
polynomial time by simply treating nulls as additional usual domain elements,
i.e. using näıve evaluation that we will study in depth in Chapter 3.

2.2 Incompleteness in relational data exchange:
open/closed world semantics

Theoretical foundations of data exchange first developed in [FKMP05, FKP05]
adopted an implicit OWA semantics of schema mappings. In such original set-
ting schema mappings are specified by a set Σ of source-to-target tuple gener-
ating dependencies (tgds) , i.e. first-order dependencies of the form

∀x̄ ∀ȳ
(

ϕσ(x̄, ȳ) → ∃z̄ ψτ (x̄, z̄)
)

(sometimes abbreviated as ϕσ(x̄, ȳ) → ψτ (x̄, z̄)) where ϕσ is a first-order formula
over a source vocabulary σ, and ψτ is a conjunction of atomic formulae over a
target schema τ [FKMP05, Kol05]. Moreover Σ may possibly contain a set of
FO constraints on the target schema. In [FKMP05] a data exchange solution
for a source instance S is any τ -instance D such that (S,D) |= Σ (according
to the usual notion of FO satisfaction). We refer to such target instances as
OWA-solutions.

Note that according to this notion, a solution is allowed to contain tuples
not explicitly needed to satisfy the dependencies with the source. This is why
this semantics of schema mappings is referred to as OWA semantics.

Recall that the goal of query answering in data exchange is to compute
certain answers

certainΣ(Q,S) =
⋂

{Q(D) | D is a solution for S under Σ}

17

by posing a query against a materialized target instance.
The canonical solution CSolΣ(S), for a mapping Σ and a source S (as well

as universal solutions in general) was shown to play this role [FKMP05].
As in [ABFL04, HLS11], it is computed essentially by applying a chase

procedure to the source instance S using the dependencies Σ. In the absence of
target constraints it consists in the following procedure. For each dependency
ϕ(x̄, ȳ) → ψ(x̄, z̄) in Σ and for each pair of tuples ā, b̄ such that ϕ(ā, b̄) holds in
S, create a fresh tuple of distinct nulls ⊥̄ = ⊥̄(ϕ,ψ,ā,b̄) (so that |⊥̄| = |z̄|) and

put atoms of the conjunction ψ(ā, ⊥̄) as tuples in the target. If the mapping is
understood from the context, we write just CSol(S).

For example, if σ = {E}, τ = {R}, where E and R are binary, and Σ consists
of the tgd E(x, y) → R(x, z), then for E = {(a, c1), (a, c2), (b, c3)}, the canonical
solution has tuples {(a,⊥1), (a,⊥2), (b,⊥3)} in R.

Clearly CSol(S) can be computed in time polynomial in the size of S.
For schema mappings Σ consisting of a set of source-to-target tgds, it turns

out that the canonical solution, interpreted under the OWA semantics of incom-
pleteness, represents precisely the set of OWA data exchange solutions, i.e.

[[CSolΣ(S)]]owa
= {D | D is a complete OWA-solution for S under Σ} (2.1)

and thus target queries can be answered on the canonical solution. This was
implicitly used already in [FKMP05] to find efficient query answering algorithms
for UCQs in data exchange.

However [Lib06] was the first to observe that data exchange semantics other
than OWAmake sense. For instance in a copying data exchange setting one deals
with dependencies of the form R(x̄) → R(x̄). One may want such a dependency
to specify that the target needs to be populated just with the data copied from
the source (while observe that under usual FO semantics, any target instance
containing the source is a solution). [HLS11] introduced the notion of CWA-
solutions, and a notion of certain answers based on valuations of such solutions
(which we call here complete CWA-solutions). Such solutions have “just as
much as needed” to satisfy the conditions imposed by the schema mapping. For
example, for the copying schema mapping above, the only CWA-solution for a
source R would be a copy of R, since instances are no longer open to adding
new tuples. We refer to [HLS11] for a formal definition of CWA data exchange
solutions.

It turns out that the same canonical solution, interpreted this time under the
CWA semantics of incompleteness, captures precisely the set of complete CWA-
solutions. I.e. for schema mappings Σ consisting of a set of source-to-target
tgds we have the analog of (2.1):

[[CSolΣ(S)]]cwa
= {D | D is a complete CWA-solution for S under Σ}.

Thus query answering in CWA data exchange amounts to answering queries
over the canonical solution, under the CWA semantics of incompleteness.

Fully open or fully closed semantics of schema mappings, being two extreme
cases, are bound to have their shortcomings.

The main reason for that is that the most suitable data exchange semantics
depends on the real-world scenario that is modeled by the schema mapping.
There are situations where it is natural to allow in the target other data than the
one explicitly transferred from the source, and situations where this should be

18

avoided. Even within the same schema mapping the most suitable data exchange
semantics may be different on different attributes of relations. For example,
consider a mapping Papers(paper#, title)→ Submissions(paper#, author). Under
the CWA data exchange semantics each paper in the source will be present in
the target with exactly one author. This is a limitation; in fact even though we
may want the target to represent only the papers present in the source, we do
not want to loose the one-to-many relationship between papers and authors.

Motivated by this observations, in [5] we introduced mappings that are not
rigidly controlled by the OWA, as in [FKMP05], or by the CWA, as in [HLS11].
To the contrary, the semantics of data exchange can be explicitly specified at the
level of attributes, and and is part of the mapping formalism. Open attributes
can be instantiated by many values, but for closed, only one value is permitted.

In the rest of Section 2.2 we show that data exchange solutions under the
mixed open/closed world semantics can be represented using a suitable model
of incompleteness for the target. The connection between query answering in
data exchange and querying incomplete data can then be reestablished.

In particular we get the analog of (2.1) by adopting a model of incompleteness
introduced in [GZ88] which permits nulls to be open or closed. This will allow
us to analyze the complexity of query answering by studying the complexity of
querying the incomplete canonical solution.

2.2.1 Representing solutions under annotated mappings

Annotated mappings An annotated mapping consists of a set of source-to-
target tgds with extra annotations op or cl (for open and closed) of variables
in the target atoms. We refer to our full article [5] for the formal syntax and
semantics of such mappings. Here we illustrate them with an example.

Consider a source schema σ with binary relations Papers(paper#, title) and
Assignments(paper#, reviewer). Each instance of σ represents the list of papers
submitted to a given conference and the assignments of papers to reviewers.
The target schema τ consists of two binary relations Reviews(paper#, review)
and Submissions(paper#, author). The mapping between the source and the
target is provided by a set of rules below:

Papers(x, y) → Submissions(xcl, zop)
Assignments(x, y) → Reviews(xcl, zcl)
Papers(x, y) ∧ ¬∃rAssignments(x, r) → Reviews(xcl, zop)

Intuitively, the first rule says that the target instance contains exactly the
submitted papers from the source (enforced by the closed annotation of the
attribute paper#). The open annotation of the author attribute in the first
rule models the one-to-many relationship between papers and their authors.
The second rule says that for each assigned paper and each of its reviewers,
exactly one review is associated to the paper in the target. Completely closed
annotation here prevents the target from having reviews of assigned papers
without a corresponding reviewer in the source. The third rule deals with papers
that have not been assigned, according to the source. In this case, the attribute
review of Reviews is annotated as open, to allow several reviews to be generated
for the same paper.

We remark that atoms of the same relation can be annotated differently in
different rules. Indeed, the annotation of an atom of a given target relation R

19

in a rule describes the way the particular rule allows data to be moved from the
source to relation R in the target, and this may vary from a rule to a rule.

Open/closed annotations could be an easy addition to systems that han-
dle schema mappings [FHH+09, HHH+05] as they essentially state whether we
have a one-to-one or a one-to-many relationship for a correspondence between
attributes in the source and the target, and only require one-bit annotations for
target attributes.

Solutions under annotated mappings In [5] we provide a notion of data
exchange solutions under annotated mappings. These are a form of incomplete
instances, and therefore represent a set of complete instances, which will be
referred to in this thesis as complete solutions under the annotated schema
mapping. Certain answers are defined over all possible complete solutions; these
are therefore the space of solutions that we need to represent.

The precise definition of solutions under annotated mappings is not particu-
larly relevant in this context, and we refer to our full article [5] for details. Here
we concentrate on describing their properties and how they can be represented
using a suitable notion of incompleteness.

In particular in [5] we show that solutions under annotated mappings are a
natural generalization of OWA- and CWA-solutions, and have these as extremes.
Informally this can be stated as follows:

• Complete solutions under annotated schema mappings with fully closed
(respectively fully open) annotation coincide with CWA (respectively OWA)
complete solutions.

• If the annotation is broadened (i.e. some closed annotations are turned
to open) the set of complete solutions to a given source instance can only
augment.

Annotated canonical solution The space of complete solutions under anno-
tated mappings can be described using a form of annotated incomplete instances.

This model introduced in [GZ88] extends näıve tables by simply annotating
each data value (both constants and nulls) by either op or cl.

The semantics [[I]] of an annotated incomplete instance I is given by a
straightforward generalization of the CWA semantics of incompleteness: a com-
plete instance D is [[I]] if D contains a valuation v(I) of I, and moreover every
tuple of D coincides with some tuple of v(I) in all positions annotated by cl.

For example, [[{(acl,⊥op)}]] contains all binary relations whose projection
on the first attribute is {a}, and [[{(acl,⊥cl)}]] contains all one-tuple relations
{(a, b)} with b ∈ Const.

The annotated canonical solution for a source instance S under an annotated
mapping is defined by the same procedure as before for the usual canonical solu-
tion, except that now it is populated with annotated tuples. In our previous ex-
ample with σ = {E}, τ = {R}, let Σ be the annotated tgd E(x, y) → R(xcl, zop).
Then, if the source instance S has E = {(a, c1), (a, c2), (b, c3)}, the canonical
solution CSolΣ(S) has annotated tuples {(acl,⊥op

1), (acl,⊥op
2), (bcl,⊥op

3)} in R.
The annotated canonical solution represents the space of data exchange so-

lutions under annotated mappings, i.e.

20

Proposition 1 for an annotated mapping Σ and a source instance S

[[CSolΣ(S))]] = {D | D is a complete solution for S under Σ}.

Thus queries issued on the target can be answered over the polynomial time
computable annotated canonical solution:

certainΣ(Q,S) = certain(Q,CSolΣ(S)).

2.2.2 Querying the canonical solution

We now analyze the complexity of querying the annotated canonical solution.
We observe that, in the same way as in the usual (unannotated) setting, the
annotated canonical solution is not an arbitrary incomplete instance in its par-
ticular model of incompleteness: the fact that it is obtained by chasing the
source-to-target dependencies gives a particular structure to it. Thus getting
hardness results is in general more difficult for the canonical solution.

We adopt two approaches. First we analyze the complexity of answering
full first-order queries, depending on restrictions on the annotation. Then we
assume arbitrary annotation and we look for restrictions on the query fragment
lowering the complexity.

For the first approach our main result is a trichotomy, classifying the com-
plexity of certain answers in terms of the maximum number k of open attributes
per atom in a rule of the mapping:

Theorem 1 The data complexity of computing certain answers to an FO query
over the annotated canonical solution CSol(S) for an input instance S is:

• coNP-complete over mappings with completely closed annotation;

• coNExpTime-complete over mappings where each target atom has at
most 1 open attribute;

• undecidable over mappings where the maximum number of open attributes
per atom is greater than 1.

We emphasize that in the result above the schema mapping and the query
are considered fixed, and lower-bounds are intended to mean that there exists
mappings and queries that make the the problem hard.

Undecidability for more than 1 open attribute per rule is an easy consequence
of Trakhtenbrot’s theorem, as already noticed in [AD98, FKMP05], and coNP-
completeness under CWA was shown in [HLS11] by an adaptation of results in
[AKG91].

Most of the work goes into the coNExpTime result. Note that this is an
unusual result since most commonly computing certain answers tends to fall in
the polynomial hierarchy. In fact the coNExpTime upper bound requires new
ideas and techniques which are uncommon for this kind of result. The key idea
is proving that if there exists an instance witnessing that a tuple is not in the
certain answers, then one can construct another witness instance from it, by
keeping only an exponential number of values instantiating open attributes. We
show that the two instances are equivalent for the query by an Ehrenfeucht-
Fräıssé argument. Intuitively the exponential bound is justified by the fact that

21

we can bound the number of extra values instantiating an open attribute, based
on the subset of tuples they occur with, and there are exponentially many such
subsets.

The proof crucially relies on the fact that each tuple of the annotated in-
stance contains a single open attribute. To the contrary it does not rely on the
structure of the canonical solution, and holds for arbitrary annotated instances
with at most one open attribute per tuple.

The lower bound is obtained by an encoding of the tiling problem. Open
attributes here are used to encode subsets of an input set, thus representing the
coordinates of an exponential size grid.

As a second approach, we show how lower complexity can be achieved by
putting restrictions on queries (but leaving the annotation arbitrary).

One easy observation is that monotone queries do not distinguish between
OWA, CWA, or any semantics in-between. Starting from this observation we
could get a picture of the data complexity of answering monotone queries. More-
over by relying on techniques similar to the decidability of the Schönfinkel-
Bernays class, we could also show that, even beyond monotone queries, the
complexity of query answering can go down to coNP for arbitrary annotations.
Our results can be summarized as follows:

Proposition 2 For arbitrary annotated mappings, the data complexity of com-
puting certain answers to a query over the canonical solution CSol(S) for an
input instance S is:

• coNP if the query is monotone and polynomial time computable over com-
plete instances. And in particular it is

– PTIME if the query is an existential positive FO query (i.e. a union
of conjunctive queries); in this case certain answers are computed by
näıve evaluation;

– coNP-complete already for conjunctive queries with two inequalities;

• coNP if the query is in the ∀∗∃∗ fragment of FO.

Several extensions of our results can be obtained. First the trichotomy the-
orem is true for any query language of PTIME data complexity that contains
FO. Second, if we allow 1-to-m relationships in place of 1-to-many relationships
and define such limited open nulls (i.e. each such null can be replicated at most
m times), then all the complexity results about CWA mappings apply to this
case.

The complexity analysis we have presented can also be refined in several
ways. In fact remark that we have looked at how the complexity of query
answering can be lowered either by restricting the annotation, for all FO queries,
or by restricting the query fragment, for all annotations. However the two
restrictions could be combined, and tractable cases can in principle be found for
different query fragments depending on restriction on the annotation.

This is the type of analysis we conduct in Chapter 3 for general models of
incompleteness. Our analysis will provide general tools to study how tractable
query fragments depend on the semantics of incompleteness. From results pre-
sented in Chapter 3 we can immediately derive for instance that the tractability

22

case of Proposition 2 can be extended to a larger fragment allowing universal
quantification and a limited form of negation, if annotations are all cl.

Although we did not instantiate the general framework presented in Chap-
ter 3 on the annotated model of incompleteness, this is in principle possible.

2.3 Representing and querying incomplete
XML

XML data exchange and integration applications have brought the attention to
tree patterns as a form of incomplete description of trees [AL08, ALM09].

A tree pattern presents a partial description of a tree, along with some
variables that can be assigned values as a pattern is matched to a complete
document. For instance, a pattern a(x)[b(x), c(y)] describes a tree with the root
labeled a and two children labeled b and c; these carry data values, so that those
in the a-node and the b-node are the same. This pattern matches for example
a tree with root a and children b and c with all of them having data value 1;
not only that, such a match produces the tuple (1, 1) of data values for (x, y)
witnessing the match. A tree pattern can also specify more general relationships
between tree nodes, for instance only requiring that the b node is a descendant
of the a node in the tree.

In a typical XML schema mapping [AL08] we are given two automata As

and At, describing source and target schemas respectively. The correspondence
between them is provided by a set of dependencies πs(x̄, ȳ) → πt(x̄, z̄), where
πs and πt are tree patterns. Whenever the source pattern can be matched into
the source tree with values (ā, b̄), the target solution needs to match πt with
values (ā, c̄) for some c̄.

From this scenario is is easy to see that incompleteness in the target can occur
at two levels: missing data values (corresponding to existentially quantified
variables in the schema mapping) and missing information about the structure of
the target tree. The latter is due to the fact that target patterns are incomplete
descriptions themselves, and moreover schema mappings provide no information
on how different tree portions satisfying the dependencies are connected among
them in the target (remark that this is not a source of incompleteness relational
data exchange).

Remark also that patterns we deal with in data exchange are naturally tree-
shaped. This is in contrast with some of the patterns appearing in the literature
[BMS08, BMS11] that can take the shape of arbitrary graphs (for instance, such
a pattern can say that we have an a-node, that has b and c descendants, that
in turn have the same d-descendant: this describes a directed acyclic graph
rather than a tree). It is also natural to use such patterns for defining queries
[Dav08, AYCLS02, MS04].

In the rest of this section we informally present the pattern-based model
of incomplete XML we have proposed in [6]. It is based on a combination of
nulls and missing structural information. First in Section 2.3.1 we review the
main features that allow us to classify incomplete tree descriptions. Then in
Section 2.3.2 we study how these features influence the complexity of query
answering. As mentioned in Chapter 1, we have studied other computational
problems of interest, such as consistency of incomplete tree descriptions and

23

membership in the semantics, which we do not review here. We refer to our full
article [6] and to our survey [4] for a detailed comprehensive study of several
computational problems over incomplete tree descriptions.

2.3.1 Incomplete tree descriptions

Complete XML trees are for us node-labelled ordered trees, where each node
has associated: 1) a unique id and 2) a set of attributes, each with a data value
associated.

To model incompleteness in XML, we start with complete trees and see
how missing information can be incorporated into them. A first thing that
can be missing is attribute values, i.e. we can have nulls (i.e. data variables)
replacing constant attribute values. In addition to them, the following structural
information can be missing too:

(a) node ids (they can be replaced by node variables);

(b) node labels (they can be replaced by wildcards which match any label);

(c) precise vertical relationship between nodes (we can use descendant edges
↓∗ instead of child edges ↓);

(d) precise horizontal relationship between nodes (using younger-sibling edges
→∗, or no edges at all, instead of next-sibling →).

In both (c) and (d), we may allow partial information to be recovered: the
incomplete description can in addition specify that a node is a leaf (by adding
a leaf marking to the node), or the root (root marking) or that it is a first child
(fc marking) or a last child (lc marking).

Incomplete tree descriptions will be graphically represented as trees using
the type of edges mentioned above; we refer to our full article [6] for a precise
syntax. Two examples of incomplete tree descriptions are given in Figure 2.1,
where each leaf has a single attribute value. In Figure 2.1(a) node ids are
all constants, shown in parentheses as (ik). In Figure 2.1(b), node ids are all
pairwise distinct variables and are omitted in the picture.

Each of the documents in the picture may represent many complete trees.
For instance both documents may either represent the single “Foundations of
databases” book with authors “Abiteboul”,“Hull” and “Vianu” or two distinct
books: the first one being the “Foundations of databases” book, and the second
one having only “’Vianu” as an author. Observe that we implicitly assume the
OWA and allow addition of nodes; in particular the incomplete documents in
the picture do not bring any information about the author “Hull”.

Semantics More precisely the semantics of incomplete tree descriptions is
based on homomorphisms on trees. A homomorphism from a (possibly incom-
plete) tree π1 to another one π2 is a mapping from nodes of π1 to nodes of π2
and from data values of π1 to data values of π2 which

- is the identity on constant ids and constant data values;

- preserves node labels, attribute values, markings and tree edges (where
edges of π2 are assumed augmented with the reflexive-transitive closure of
↓ ∪ ↓∗ and of → ∪ →∗).

Given an incomplete tree description π, a complete tree T is in the semantics
[[π]] iff there exists a homomorphism from π to T .

24

book

(i1)

r (i0)

title author year author

x“Foundations

of Databases”

“Abiteboul” “Vianu”

∗

(i3)
(i4) (i5) (i7)

(a)

book fc —

r

title author year title author year

xx y“Foundations

of Databases”

“Abiteboul” “Vianu”

(b)

Figure 2.1: Two incomplete tree descriptions

25

Classification Incomplete descriptions where node ids are all constants (as in
Figure 2.1(a)) correspond to the XML DOM interface [DOM04], where we can
access each node in a document by its id; they will be referred to as incomplete
DOM trees. On the other hand tree descriptions where node ids are all pairwise
distinct variables (as in Figure 2.1(b)) will be referred to as incomplete trees.

The assumption on constant vs. variable node ids has a big impact on
the semantics of incomplete tree descriptions. For example in the document
of Figure 2.1(b), if node ids were all distinct constants it would no longer be
possible that the document represents a single book, as before. Indeed, we know
that the two children of the root are different, since their ids are distinct.

There are other parameters that influence the semantics and computational
properties of incomplete descriptions. In our analysis we consider:

- node ids (i.e. the distinction incomplete trees/incomplete DOM trees);

- whether or not attribute values are allowed;

- structural parameters, that is: the set of axes used in tree descriptions,
possible markings on nodes, and possible missing information about the
sibling order (i.e. whether the absence of horizontal edges is allowed);

- the possible presence of schema information such as DTDs, restricting the
allowed structure of trees.

2.3.2 Querying incomplete tree descriptions

We look for classes of queries and incomplete representations that admit
tractable query evaluation for computing certain answers. To this end we deal
with conjunctive queries over trees and their unions, motivated by the fact that
at least in the relational setting they can be efficiently evaluated using näıve
evaluation. We consider a version of them that outputs tuples of values (this,
of course, includes Boolean queries). Queries outputting trees have been later
considered in [DLM10].

Over trees conjunctive queries are essentially standard (see, e.g., [BMS11,
GKS06]). In the same way as in the relational setting – where there is a duality
between incomplete relations and conjunctive queries, via their tableau represen-
tation – we can express conjunctive queries in our syntax for incomplete trees: a
conjunctive query over trees is just an incomplete tree with some distinguished
(data) variables (the other variables for data values as well as the node ids are
all implicitly considered existentially quantified). Over a complete tree T such a
conjunctive query Q produces the tuples of values of its free variables in the ho-
momorphisms from Q to T . This query result is denoted by Q(T). We consider
unions of such conjunctive queries.

A fragment of the language, namely union of conjunctive queries using only
downward axes, was considered in the study of query answering in XML data
exchange [AL08].

Certain answers for conjunctive queries and their unions over an incomplete
tree description π are defined as usual:

certain(Q, π) =
⋂

{Q(T) | T ∈ [[π]]}

Although both conjunctive queries and incomplete tree descriptions have a
natural relational representation, computing certain answers is not a special case

26

of querying näıve tables, since we have the additional constraint that structures
need to be trees. We can prove the following upper bound:

Theorem 2 The data complexity of computing certain answers of unions of
conjunctive queries over incomplete tree descriptions is coNP. This also holds
under the presence of DTDs constraining the semantics of incomplete descrip-
tions.

This result is proved by using a “cutting technique” which eliminates por-
tions of a witnessing tree which are not needed to violate the query, to satisfy the
incomplete representation, and possibly the DTD. (Note that this upper bound
was extended to boolean combinations of conjunctive queries in [GLT12], which
also provided a Πp2 upper bound for combined complexity.)

However in contrast with the relational case, answering union of conjunctive
queries over incomplete tree descriptions is not always tractable.

We could easily rule out some features which immediately lead to intractabil-
ity. These are essentially of two natures. First we proved that the presence
of schema information (DTDs) and markings lead easily to coNP-hardness of
query answering, already for syntactically trivial conjunctive queries, and for
both incomplete trees ad incomplete DOM-trees.

This is intuitively due to the fact that both DTDs and markings allow us to
express constraints on the set of possible worlds which force different nodes of
the tree description to collapse.

When we rule out these features, query answering may remain hard, if one
allows any form of missing structural information (note that below we say that
data complexity of a class of queries is coNP-hard if there exists a query from
that class whose data complexity is coNP-hard):

Theorem 3 The data complexity of computing certain answers of unions of
conjunctive queries over incomplete trees is coNP-complete if, besides child
and next-sibling axes, one allows any of the following structural features in in-
complete trees:

1. descendant axis ↓∗

2. younger sibling axis →∗

3. possibly missing sibling order

The first two hardness results also hold for incomplete DOM-trees.

When excluding all these features we get a robust tractable class of incom-
plete trees with respect to query answering. That is, in order to have tractability
we restrict ourselves to incomplete trees where the order of siblings is completely
specified, with no transitive closures of axes nor markings. We call them rigid
incomplete trees.

We showed that unions of conjunctive queries can be evaluated näıvely over
rigid incomplete trees. Näıve evaluation is defined as follows: each disjunct Q of
the query is evaluated directly on the incomplete tree π, as if π were complete
(i.e. one takes the value of the free variables of Q in all homomorphisms from Q

to π, where as usual π is suitably extended with the reflexive-transitive closures
of its downward and forward edges). Then only null-free tuples are kept in the
result.

27

Theorem 4 Let π be a rigid incomplete tree, and Q a union of conjunctive
queries over trees that does not use markings. Then the näıve evaluation of
Q over π computes certain(Q, π). In particular, evaluating no-marking queries
over rigid incomplete trees has DLogSpace data complexity.

We remark that it was later proved in [DLM10] that this result still holds
over incomplete trees which are just downward rigid, provided that the query
does not mention horizontal axes.

For boolean combinations of conjunctive queries näıve evaluation no longer
works. Nonetheless, a more complex tractable algorithm over rigid incomplete
trees was devised in [GLT12].

Rigid incomplete trees are then a robust class for answering union of con-
junctive queries (and boolean combinations as well). The case of incomplete
DOM trees is quite different.

While Theorem 4 also holds for rigid incomplete DOM trees, remark that
in Theorem 3 missing sibling order information does not immediately bring to
intractability for incomplete DOM trees.

Indeed we were able to push tractability boundaries further, and show that
conjunctive queries given by a form of word patterns can be answered in poly-
nomial time over incomplete DOM trees which are not completely rigid (i.e.
they extend rigid trees by admitting missing sibling information). However this
is done at the expense of algorithms which are significantly more complicated
than näıve evaluation.

The term word patterns below refers to conjunctive queries given by depth-1
attribute-free incomplete trees whose structure only allows child and next-sibling
axes, and possibly missing sibling order.

Theorem 5 Certain answers to word patterns can be computed in polynomial
time data complexity over incomplete DOM trees whose structure allows only
child, next-sibling axes, and possibly missing sibling order.

Observe that to the contrary word patterns are already coNP-hard to eval-
uate over the same class of incomplete trees (i.e. when dropping the DOM
assumption).

This result suggests that incomplete DOM trees can be be queried more
efficiently than incomplete trees, however the tractability frontier for incomplete
DOM trees is not completely clear yet.

Theorem 5 is also of independent interest in the theory of string pattern
matching. In [7] we deal with the problem of deciding whether a given set of
string patterns implies the presence of a fixed pattern. While checking whether a
set of patterns occurs in a string is solvable in polynomial time, this implication
problem is well known to be intractable. In [7] we consider a version of the
problem where patterns in the set are required to be disjoint (the analog of the
DOM assumption). We show that for such a version of the problem the situation
is reversed: checking whether a set of patterns occurs in a string is NP-complete,
but a special case of Theorem 5 shows that the implication problem is solvable
in polynomial time.

28

Chapter 3

Näıve evaluation: a general
framework

Query answering solutions over incomplete data depend on several aspects: the
adopted model of incompleteness (such as näıve tables, annotated instances,
different fragments of incomplete tree descriptions, etc.) as well as the semantics
of incompleteness, i.e. the way missing information is interpreted, and the query
language. In the previous chapter we have found ad-hoc tractable solutions for
different combinations of those. However one can find many commonalities to
all these scenarios, both in the objects one deals with and in the underlying
techniques. In particular tractable solutions are often based on a form of näıve
evaluation, which consists in evaluating the query directly on the incomplete
data, by “ignoring” in a way its incompleteness. In this chapter we embark on
the development of a general framework for studying query answering solutions
based on näıve evaluation. Our framework, developed in [1], encompasses many
data models and semantics, and can be instantiated to a variety of them.

3.1 Näıve evaluation

Tractable solutions for querying incomplete data have been studied in the liter-
ature particularly in connection with representation systems ([IL84, AKG91]).
In this setting, if Q is a query and I an incomplete instance, the problem is
finding a compact representation of all possible answers {Q(D) | D ∈ [[I]]}.
One possible approach is to find another incomplete instance U which repre-
sents exactly this set, i.e. [[U]] = {Q(D) | D ∈ [[I]]}. When this is always
possible the model of incompleteness and the query language are said to form a
strong representation system. This is a very strong requirement and often not
needed. In data exchange for instance one usually does not need to represent
the set of all query answers but often only compute the certain information
in this set, i.e.

⋂

D∈[[I]]Q(D) which coincides with certain(Q, I). The require-
ment can then be relaxed : one needs to find an incomplete instance U such
that [[U]] ≈ {Q(D) | D ∈ [[I]]}, where equivalence is intended to mean that
the two sets have the same certain information. If this is the case the cer-
tain information in [[U]] provides precisely certain(Q, I). (Note that, in order
for guaranteeing compositionality of the query language, this requirement is

29

strengthened in [IL84] by requiring that [[U]] and {Q(D) | D ∈ [[I]]} not only
contain the same certain information, but are equivalent for computing certain
answers to all queries of the language. When such a U can be found for all I
and all Q, the model of incompleteness and the query language are said to form
a weak representation system.)

It turns out that for simple models of incomplete information such as näıve
tables and union of conjunctive queries, under the OWA, such U can always be
found and most importantly:

1) U can be computed with the usual query answering algorithms, since it
coincides with Q(I), i.e. the result of evaluating the query directly over the
incomplete instance I, by considering nulls just as extra domain elements;

2) the certain information in [[U]] can be efficiently computed : it just consists
of the tuples of U containing no nulls.

The two-step procedure consisting in computing Q(I) first and then remov-
ing tuples with nulls has been referred to as näıve evaluation of the query Q on
the incomplete instance I.

To give an example, consider the following two incomplete relational in-
stances:

R:

A B

1 ⊥1

⊥2 ⊥3

E:

B C

⊥1 4
⊥3 5

Suppose we have a conjunctive query πAC(R 1 E) or, equivalently, ϕ(x, y) =
∃z

(

R(x, z) ∧ E(z, y)
)

. Näıve evaluation says: evaluate the query directly on
R and E, proceed as if nulls were usual values; they are equal only if they are
syntactically the same (for instance ⊥1 = ⊥1 but ⊥1 6= ⊥2, and ⊥1 6= c for
every c ∈ Const). Thus evaluating the above query results in two tuples: (1, 4),
and (⊥2, 5). Then tuples with nulls are eliminated from the result, so we only
keep the tuple (1, 4). Note that if Q is a Boolean query, the second step is
unnecessary.

We say that näıve evaluation works for Q (under semantics [[]]) if its result
coincides with certain(Q, I) under [[]], for every incomplete instance I.

Näıve evaluation is in general efficient (polynomial time in data complexity
for all FO queries over relational instances). It follows that, whenever näıve
evaluation works, certain answers can be efficiently computed. Moreover it
could be in principle directly implemented and benefit from the whole set of
classical optimization techniques already in use in database systems.

3.2 Näıve evaluation and syntactic fragments of
queries

In general näıve evaluation need not compute certain answers. For the query
above, the tuple (1, 4) is however the certain answer, under the common open
world semantics. This is true because, as mentioned in Section 3.1, [IL84]
showed that if Q is a union of conjunctive queries, then näıve evaluation works
for it, under the OWA. It is natural to ask how much the language of UCQs
can be extended by retaining this property. It turns out that in some cases
this is not possible: [Lib11] showed that under the OWA, if näıve evaluation

30

works for a Boolean first-order query Q, then Q must be equivalent to a union
of conjunctive queries. That result crucially relied on a preservation theorem
from mathematical logic [CK90], and in particular on its version over finite
structures [Ros08].

Fact 1 ([IL84, Lib11]) Let Q be a union of conjunctive queries. Then näıve
evaluation works for Q under both OWA and CWA. Moreover, if Q is a Boolean
FO query and näıve evaluation works for Q under OWA, then Q is equivalent
to a union of conjunctive queries.

The last equivalence result only works under the OWA semantics. Consider
the instance R = {(⊥,⊥′), (⊥′,⊥)} and a query ∃x, y (R(x, y) ∧ R(y, x)). The
certain answer to this query is true under both OWA and CWA, and indeed
it evaluates to true näıvely over R. On the other hand, a query Q given by
∀x∃y R(x, y) (not equivalent to a union of conjunctive queries) evaluated näıvely,
returns true on R, but under OWA its certain answer is false. However, under
CWA, its certain answer is true. This is not an isolated phenomenon: we will
later see that Q belongs to a class, extending unions of conjunctive queries, for
which näıve evaluation works under CWA on all databases.

In [1] we formally investigated the applicability of näıve evaluation to query-
ing incomplete data in a very general framework. This allowed us to reveal the
most general properties underlying this procedure.

Roughly, our results can be seen as establishing the following equivalences

Näıve evaluation works for a query Q
|||

Q is monotone w.r.t. a notion of semantic ordering
|||

Q is preserved under a class of homomorphisms

together with finding syntactic classes of queries guaranteeing preservation
under homomorphisms (and therefore näıve evaluation). In fact preservation
theorems characterize syntactically preservation properties of queries. The
scheme above can therefore be used to find syntactic query fragments where
näıve evaluation is possible.

We applied our framework to several concrete semantics of incompleteness
on relational databases, coming from different application scenarios such as de-
ductive databases, data exchange and integration, programming semantics etc.
The framework is general enough to be applied to other models of incomplete
data such as incomplete trees or graphs, which we leave as future work.

We now explain our main results and the key ideas behind them. We present
them for Boolean queries; in [1] we show that these still hold for arbitrary k-ary
queries, and queries with constants as well.

3.2.1 Näıve evaluation and monotonicity

We show that näıve evaluation is often related to some “monotonicity” proper-
ties of queries. We deal with a very abstract setting, where databases are just
objects of a domain equipped with a notion of semantics. This is formalized as
follows:

31

Definition 1 (Database domain) A database domain is a structure D =
〈D, C, [[]],≈〉, where D is a set, C is a subset of D, the function [[]] is from
D to nonempty subsets of C, and ≈ is an equivalence relation on D.

The interpretation is as follows:

• D is a set of database objects;

• C is the set of complete objects in D;

• [[x]] ⊆ C is the semantics of an incomplete database object x, i.e., the set
of all complete objects that x can represent;

• ≈ is the structural equivalence relation, that we need to describe the notion
of generic queries.

For instance in the relational setting, D represents the set of all incomplete
relational instances, C the ones without nulls, the semantics [[]] is a relational in-
completeness semantics (for instance [[]]

owa
or [[]]

cwa
), and ≈ is the isomorphism

relation of relational instances. These will be referred to as relational database
domains in the sequel.

Of course there could be many non-relational database domains of interest,
for instance, all XML documents of a given schema or all graph databases over
a fixed labeling alphabet.

A query over D is a mapping Q : D → {0, 1}. We use 0 to represent false
and 1 to represent true, as usual. A query is generic if Q(x) = Q(y) whenever
x ≈ y.

For each x ∈ D, the certain answer is

certain(Q, x) =
∧

{Q(c) | c ∈ [[x]]}

We can now reformulate the notion of näıve evaluation in this abstract set-
ting:

Definition 2 Over a database domain D = 〈D, C, [[]],≈〉 näıve evaluation works
for a query Q if Q(x) = certain(Q, x) for every x ∈ D.

We remark that for a relational database domain and a Boolean relational
query the above definition specifying when näıve evaluation works goes back to
the corresponding notion introduced in Section 3.1 for relational instances.

We will need to impose an additional property on database domains saying,
essentially, that there are enough complete objects. A database domain D =
〈D, C, [[]],≈〉 is saturated if every object has a complete object in its semantics
which is isomorphic to it: that is, for each x ∈ D there is y ∈ [[x]] such that
x ≈ y.

For most common data models and semantics (such as OWA and CWA over
näıve tables) this condition holds.

We say that a query Q over D is monotone w.r.t [[]] if

y ∈ [[x]] ⇒ Q(x) ≤ Q(y).

Remark that, even over relational database domains, this property defines
different monotonicity notions depending on the semantics, and should not be
confused with usual monotonicity of queries w.r.t the sub-instance relation.

We are now ready to state the promised connection, which easily derives
from the saturation property and the genericity of queries:

32

Theorem 6 Let D be a saturated database domain, and Q a generic Boolean
query over D. Then näıve evaluation works for Q iff Q is monotone w.r.t [[]].

3.2.2 Monotonicity and preservation

We next connect monotonicity with preservation. To do this we restrict to the
relational setting and use a notion of relational homomorphisms.

By inspecting several relational semantics (see Chapter 2, Section 2.1) it is
easy to realize that they are all instances of the following scheme. If R is a
reflexive binary relation between complete relational instances, the semantics
[[]]

R
is defined as follows:

for all databases I,D

D ∈ [[I]]
R

⇔ there is a valuation v such that (v(I), D) ∈ R.

It is in fact straightforward to verify that [[]]
R

coincides with [[]]
owa

if R is ⊆,
with [[]]

cwa
if R is =, and with [[]]

wcwa
if R = {(D,D′) | D ⊆ D′ and adom(D) =

adom(D′)}.
We now show that monotonicity of a query Q corresponds to preservation

under homomorphisms that respect relation R:

Definition 3 (R-homomorphism and preservation) For complete
databases D and D′, a mapping h defined on the active domain of D is
an R-homomorphism from D to D′ if (h(D), D′) ∈ R.

Remark that directly by definition, R-homomorphisms are: usual homomor-
phisms if R is ⊆, strong onto homomorphisms if R is =, and onto homomor-
phisms if R is the relation {(D,D′) | D ⊆ D′ and adom(D) = adom(D′)}.

Clearly R-homomorphisms “mimic” the semantic mapping between in-
stances I and D ∈ [[I]]

R
. However valuations used in this mapping are not

as general as homomorphisms, since they are bound to be the identity on some
domain elements (the constants). On the other hand our queries are generic;
this implies that they cannot distinguish constants from nulls.

Based on this idea we can prove the desired correspondence between mono-
tonicity of queries and preservation properties:

Proposition 3 If Q is a generic Boolean relational query, then Q is monotone
w.r.t [[]]

R
iff it is preserved under R-homomorphisms.

This immediately gives a corollary relating näıve evaluation and preservation
for general and specific relational semantics.

Corollary 1 If Q is a generic Boolean relational query, näıve evaluation works
for Q under [[]]

R
if and only if Q is preserved under R-homomorphisms.

In particular näıve evaluation works for Q under:

• OWA iff Q is preserved under homomorphisms.

• CWA iff Q is preserved under strong onto homomorphisms.

• WCWA iff Q is preserved under onto homomorphisms.

33

3.2.3 Preservation properties and and syntactic classes of
queries

We have so far established that näıve evaluation is captured by preservation
under a class of homomorphisms. Such preservation results are classical in
mathematical logic [CK90], and thus we would like to use them, at least as suf-
ficient conditions, to find syntactic classes of queries for which näıve evaluation
works.

Positive and existential positive formulae Recall that positive formulae
use all the FO connectives except negation (i.e., ∧,∨, ∀, ∃). Formally, the class
Pos of positive formulae is defined inductively as follows:

• true and false and every positive atomic formula (i.e., R(x̄) or x = y) are
in Pos;

• if ϕ, ψ ∈ Pos, then ϕ ∨ ψ, ϕ ∧ ψ, ∃xϕ and ∀xϕ are in Pos.

If ∀xϕ formulae are further excluded from the class, we obtain the class ∃Pos of
existential positive formulae, i.e. unions of conjunctive queries.

Rossman’s theorem [Ros08] says that an FO sentence ϕ is preserved under
homomorphisms over finite structures iff ϕ is equivalent to a sentence from ∃Pos.
Lyndon’s theorem [CK90] says that an FO sentence ϕ is preserved under onto
homomorphisms (over arbitrary structures) iff ϕ is equivalent to a sentence from
Pos. Lyndon’s theorem fails in the finite [AG87, Sto95], but the implication from
being positive to preservation is still valid.

A characterization of preservation under strong onto homomorphisms was
stated in [Kei65a, Kei65b], but the syntactic class had a rather complex defini-
tion and was limited to a single binary relation. Even worse, we discovered a gap
in one of the key lemmas in [Kei65b]. So instead we propose a simple extension
of positive formulae that gives preservation under strong onto homomorphisms.

Extensions with universal guards The fragment Pos+∀G, whose definition
is inspired by [Com83], extends Pos with the following formation rule based on
universal guards:

• if ϕ(x̄, ȳ) is in Pos + ∀G, and R is an n-ary relation symbol, then the
formula ∀x1, . . . , xn

(

R(x1, . . . , xn) → ϕ(x1, . . . , xn, ȳ)
)

is in Pos+ ∀G if
x1, . . . , xn are pairwise distinct variables; (R can be the equality predicate
if n = 2).

Note also that the first two rules are the same as for Pos, so we have ∃Pos (
Pos (Pos+ ∀G.

The difference between Pos and Pos + ∀G is emphasized in the following
example, which also witnesses the strict inclusion Pos (Pos+ ∀G.

Consider a sentence ϕ = ∀x, y (R(x, y) → E(x)). Clearly ϕ is in Pos+ ∀G.
However ϕ is not in Pos since it is not preserved under onto homomorphisms
(while all formulae of Pos are).

In fact consider databases D and D′ so that R is interpreted as {(1, 2)} in
D, as {(1, 2), (2, 1)} in D′, and E is interpreted as {(1)} in both. Clearly D has
an onto homomorphism h to D′ (which is the identity) and D |= ϕ. However
D′ |= ¬ϕ because E(2) does not hold in D′. Intuitively this is due to the fact

34

that an onto homomorphism from D to D′ “preserves” the domain of D but not
its facts. New facts (such as R(2, 1)) can be present in D′. Thus if the guard
is satisfied in D′, it need not be satisfied in D, and this is why satisfaction of
ϕ may fail in D′. Indeed observe that if the fact R(2, 1) were in D, then E(2)
would hold in D as well (by satisfaction of ϕ), and therefore in D′ (because the
formula E(x) is clearly preserved under (onto) homomorphisms).

In view of this example, the fact that strong onto homomorphisms disallow
new facts in the target instance intuitively explains the following proposition,
which is proved by structural induction.

Proposition 4 Sentences in Pos+ ∀G are preserved under strong onto homo-
morphisms.

We now combine all the previous implications (preservation → monotonicity
→ näıve evaluation) to show that näıve evaluation can work beyond unions of
conjunctive queries under realistic semantic assumptions.

Theorem 7 Let Q be a Boolean FO query. Then:

• If Q is in ∃Pos, then näıve evaluation works for Q under OWA.

• If Q is in Pos, then näıve evaluation works for Q under WCWA.

• If Q is in Pos+ ∀G, then näıve evaluation works for Q under CWA.

3.3 Moving beyond the standard semantics

In the previous section we have developed our approach to näıve evaluation
for standard relational semantics. We show now that there are other possible
semantics for which the approach works. These, in general, are obtained by
using (separately, or together) two ideas.

The first idea is giving up saturation, i.e., the condition that every object x
must have an isomorphic object y in its semantics. The second idea is giving
up uniqueness of valuation of nulls.

3.3.1 Giving up saturation: minimal semantics

Recall that Theorem 6 relates näıve evaluation and monotonicity by relying
on the saturation property. Over arbitrary non-saturated database domain we
can recover a connection between näıve evaluation and monotonicity by only
requiring the existence of a saturated sub-domain of a particular type.

If D = 〈D, C, [[]],≈〉 is a database domain, and C ⊆ S ⊆ D then 〈S, C, [[]],≈〉
is a subdomain of D. As usual it is saturated if every object in S has a complete
object in its semantics that is isomorphic to it. Moreover the subdomain is
representative if for each x ∈ D there exists an object in y ∈ S (called its
representative) having [[y]] = [[x]].

In all the examples encountered so far we had S = D, but this need not
always be the case. However, we have the following generalization of Theorem 6.

Theorem 8 Let D be a database domain with a representative saturated subdo-
main, and Q a generic Boolean query over D. Then näıve evaluation works for
Q iff Q is monotone w.r.t the semantics and does not distinguish an objet of D
from its representative.

35

We shall next see a concrete non-saturated relational semantics where rep-
resentative instances are a well known object, namely cores of structures
(cf. [HN92]).

On an incomplete relational instance I this semantics only allows valuations
v that are minimal, i.e. there exists no valuation v′ such that v′(I) (v(I).

Consider, for instance, an incomplete database I = {(⊥,⊥), (⊥,⊥′)} and a
valuation v(⊥) = 1, v(⊥′) = 2. The result v(I) is not the smallest possible:
take for instance v′(⊥) = v′(⊥′) = 1 and we have v′(I) (v(I). The set v′(I) is
minimal, i.e., not a proper subset of any other valuation.

Thus the semantics we deal with now is

[[I]]
min
cwa

= {v(I) | v is a minimal valuation}.

(We can actually also introduce an arbitrary semantic relation R following
the valuation, as with usual relational semantics, and all our results continue to
hold.)

This can be viewed as a very strong form of the closed world assumption.
Alternatively, it can be viewed as a building block of a more relaxed notion of
closed world, originating in the field of logic programming [Min82] and used in
the data exchange scenario [Her11].

The following lemma implies that Theorem 8 can be applied to minimal
semantics.

Lemma 1 For the semantics [[]]
min
cwa

, the set of cores is a representative saturated
subdomain, where the representative of each instance is its core.

To prove Lemma 1 we investigated the non-obvious relationship between
minimal valuations and cores. It turns out that images of minimal valuations
cannot be directly described in terms of cores. In fact, by strengthening results
of [Her11], we can show that not all valuations of a core are minimal. This

shows that the exist instances I such that [[I]]
min
cwa

6= [[Core(I)]]
cwa

. However
we proved that valuations of cores which are isomorphisms must be minimal,
and an instance and its core have the same images of minimal valuations. This
easily implies Lemma 1.

Thanks to this lemma, Theorem 8 implies that for minimal semantics, näıve
evaluation corresponds to monotonicity, provided that the query does not dis-
tinguish instances from their cores.

Moreover monotonicity can be shown to correspond to preservation under a
suitable notion of minimal homomorphisms, which turn out to be a special case
of strong onto homomorphisms. Putting results together we then have:

Corollary 2 Let Q be a Boolean Pos+∀G query such that Q(D) = Q(Core(D))

for all D. Then näıve evaluation works for Q under the [[]]
min
cwa

semantics.

We do not know how to check for this condition in relevant FO fragments;
however note that if we restrict to cores the condition is not necessary. Then
näıve evaluation works for Boolean Pos+ ∀G queries over cores under [[]]

min
cwa

.

36

3.3.2 Dealing with multiple valuations

Semantics based on multiple valuations were used for instance in the data ex-
change scenario [Her11], based on earlier work in the area of logic program-
ming [Min82]. In data exchange, they appeared in the context of searching for
the right balance between open and closed world assumptions, so as to avoid
anomalies that the OWA may lead to, without restricting the setting too much.

For example, the GCWA∗-semantics from [Her11] combines several minimal
valuations as follows:

(

|I|
)min

cwa
= {v1(I) ∪ . . . ∪ vn(I) | v1, . . . , vn are minimal valuations, n ≥ 1}.

That is, not one, but multiple valuations can be applied to a database, and
then the results are combined, in this case by the union operation.

If we do not restrict valuations to be minimal, we obtain the following se-
mantics:

(

|I|
)

cwa
= {v1(I) ∪ . . . ∪ vn(I) | v1, . . . , vn are valuations, n ≥ 1}.

Our framework can be easily transferred to these semantics, which we refer
to as powerset semantics (and even to generalizations of those where the union
is replaced by a more general operator).

In particular we identified a fragment of Pos+ ∀G guaranteeing the suitable
preservation properties. The class is denoted by ∃Pos+∀Gbool and is defined as
the class of existential positive queries extended with Boolean universal guards,
i.e., universally guarded formulae of Pos+ ∀G which are sentences.

Using this class we obtain the analog of Theorem 7 and Corollary 2 for
powerset semantics as well :

Corollary 3 Let Q be a Boolean query in ∃Pos+ ∀Gbool.

• Näıve evaluation works for Q under the
(

| |
)

cwa
semantics.

• If Q(D) = Q(Core(D)) for all D, then näıve evaluation works for Q

under the
(

| |
)min

cwa
semantics.

• Näıve evaluation works for Q over cores under the
(

| |
)min

cwa
semantics.

37

Chapter 4

Query rewriting over graph
views

In the previous chapters we mostly concentrated on the problems of compactly
representing partially specified data, and querying such representations, mo-
tivated in particular by data exchange applications. In this chapter we move
to a virtual data integration perspective where partial information about the
database is usually available in the form of views. In this context queries posed
to the virtual global schema need to be rewritten over the data sources, which
can be specified as views over the global database.

We concentrate on the problem of query answering using views which is
central in this context. It also finds other interesting applications beyond data
integration (such as cache and bandwidth optimization in query processing,
data-centric security and privacy), and has indeed received considerable atten-
tion (see [LMSS95, AD98, CDGLV00a, NSV10, Afr11] among others).

As in the series of works initiated by [CDGLV00a], we concentrate on a
graph-based data model, originally at the basis of semi-structured data [AG08].
Its flexibility makes it particularly suitable for data integration applications,
where data comes from heterogenous sources.

Graph databases are relational databases where all relation symbols are bi-
nary. In other words a graph database can be viewed as an edge-labeled di-
rected graph. This model is witnessing a renewed interest nowadays since many
large scale applications, such as social networks [RS09], the semantic Web and
RDF [GHM04], regularly deal with graph-structured data.

Graph data differs conceptually from relational databases in that the topol-
ogy of the underlying graph is as important as the data it contains. Queries will
usually extract data based on connectivity properties of graph nodes [Bae13].

In the literature typical graph queries have at least the expressive power of
Regular Path Queries (RPQ), defined in [CMW87] (see also the survey [Bae13]).
An RPQ selects pairs of nodes connected by a path whose sequence of edge labels
satisfies a given regular expression.

A view for us, denoted by V , is then specified using a finite set of RPQs.
When evaluated over a graph database D, the view V yields a new graph
database V (D) where each Vi ∈ V is a new edge relation symbol.

Recall from Chapter 1 that determinacy of a query Q by a set of views

38

V states that there exists a rewriting of Q using V , i.e. a query R such that
R(V (D)) = Q(D) for all databasesD. On the other hand the rewriting problem
asks for the existence of a rewriting in a particular language. It is then natural
to ask which rewriting language L is sufficiently powerful so that determinacy
is equivalent to the existence of a rewriting definable in L. This clearly depends
on the language used for defining the query and the view. For instance in the
case of relational views and queries defined by conjunctive queries (CQs) it is
still an open problem to know whether first-order logic is a sufficiently powerful
rewriting language. Indeed it is not even known whether there always exists
a rewriting that can be evaluated in time polynomial in the size of the view
instance [NSV10]. A similar situation arises over graph-databases and RPQ
views and queries [CDGLV02].

We investigate the relationship between determinacy and rewriting for RPQ
queries and views, under the exact view assumption. Our main contribution
in [2], which we briefly describe next, establishes this relationship under an
additional monotonicity restriction on the notion of determinacy.

The decidability of the determinacy and rewriting problems is in general
strictly related to the question we are interested in. Indeed when proving de-
cidability of determinacy one may produce an explicit rewriting to show that
determinacy holds; in these cases one shows at the same time that determinacy
is equivalent to the existence of a rewriting in a particular language.

A corollary of our results in [2] also shows that the existence of a Datalog
rewriting for RPQ views and queries is decidable. We remark that the ex-
istence of an RPQ rewriting for RPQ views and queries was proved decidable
in [CGLV02], while the decidability status of determinacy is open [CDGLV02] (it
is also open for conjunctive views and queries over relational databases [NSV10]).
Determinacy has been shown to be decidable in a scenario where views and
queries can only test whether there is a path of distance k between the two
nodes, for some given k [Afr11]. This scenario lies at the intersection of CQ and
RPQ.

4.1 Monotone determinacy and rewritings

If views and queries are defined in a language L, the first natural question is
to ask whether L itself is enough to express all the rewritings of queries of L
using views of L. If L is the language of RPQs this is not the case. One can
immediately infer it from the following example from [Afr11].

The view Path3 and Path4, giving respectively the pairs of nodes connected
by a path of length 3 and 4, determines the query Path5 asking for the pairs of
nodes connected by a path of length 5. In fact it can be easily checked that the
following FO query over the view schema is a rewriting [Afr11]:

R(x, y) = ∃u (Path4(x, u) ∧ ∀v (Path3(v, u) → Path4(v, y)))

However one can show that there can exist no RPQ rewriting. In fact the
mapping from view instances to query results defined by R is non-monotone.
As a consequence this mapping cannot be expressed in any monotone language,
such as RPQs.

Monotone query languages such as CQ, Datalog, RPQ and their extensions
are of crucial importance in many database applications. It is then natural to

39

ask whether the non-monotonicity of the rewriting mapping is the only obstacle
for the existence of a rewriting in such languages.

This is why we consider a stronger notion of determinacy, referred to as
monotone determinacy. It further requires that the mapping from view instances
to query results is monotone.

Definition 4 (Monotone determinacy) We say that a view V determines a
query Q in a monotone way if

∀D,D′, V (D) ⊆ V (D′) ⇒ Q(D) ⊆ Q(D′)

This turns out to coincide with the notion of losslessness under the sound
view assumption defined in [CDGLV02], that was shown to be decidable, actu-
ally ExpSpace-complete, for RPQs.

In the case of CQ views and queries, monotone determinacy can be shown to
be equivalent to the existence of a CQ query rewriting [NSV10]. As the latter
is decidable [LMSS95], monotone determinacy for CQs is decidable.

In the case of RPQ views and queries the situation is quite different. It
is decidable whether a rewriting definable in RPQ exists [CGLV02], and we
know that there exist cases of monotone rewritings that are not expressible in
RPQ [CDGLV02] (in [2] we also give a concrete example). We thus need a more
powerful language in order to express all monotone rewritings.

In [2] we show that, besides RPQs, even their conjunctions (known as CR-
PQs) are not expressive enough as a rewriting language under monotone de-
terminacy for RPQ queries and views. However our main result states that a
rewriting in Datalog, and therefore with PTIME data complexity, can always
be found:

Theorem 9 If V and Q are RPQs and V determines Q in a monotone way
then there exists a Datalog rewriting of Q using V .

This implies that the monotone determinacy problem for RPQs coincides
with the problem of the existence of a Datalog rewriting. The latter is therefore
decidable by results of [CDGLV02]:

Corollary 4 Let V and Q be RPQs. It is decidable, ExpSpace-complete,
whether there exists a Datalog rewriting of Q using V .

Our proof being constructive, the Datalog rewriting can be computed from
V and Q.

4.2 Datalog rewritings and CSP

The starting point for proving Theorem 9 is the relationship between rewriting
and certain answers under monotone determinacy. One can easily show that
if the view determines the query in a monotone way then the certain answer
query, mapping view instances S to certainV (Q,S) =

⋂

{Q(D) | V (D) ⊇ S}, is
a rewriting.

However certain answers for RPQ views and queries have coNP-hard data
complexity [CDGLV00a]. Here we show that there exists another rewriting that
is expressible in Datalog. This rewriting can be thought of an “approximation”

40

of certain answers, which of course coincides with certain answers on view images
(i.e. on instances S of the form V (D) for some D), but may in general differ
from them on arbitrary S.

This approximation is obtained by exploiting the relationship between cer-
tain answers under the sound view assumption and Constraint Satisfaction Prob-
lems (CSP) [FV98]. Each CSP is defined by a relational structure T , called
the template; its solutions, denoted by CSP(T), are all the structures map-
ping homomorphically into the template. Its complement is usually denoted by
¬CSP(T).

[CDGLV00b] showed that, for RPQs V and Q, certain answers under the
sound view assumption can be expressed as (the complement of) a CSP whose
template TQ,V depends only on Q and V . It is known from [FV98] that for
every integer l and k with l ≤ k, and every template T , there exists a Datalogl,k
query approximating ¬CSP(T) (where for Boolean queries, Datalogl,k is the
fragment of Datalog allowing at most k variables in each rule and l variables in
each head).

The Datalogl,k approximation of ¬CSP(TQ,V) (i.e. of the certain answers)
has been considered in [CDGLV00b], where building on results of [FV98] it is
was shown to be in a sense maximally contained in certain answers to Q given
V , for each l and k.

The crucial point we make in our proof is that even if its Datalogl,k “approx-
imation” does not compute precisely ¬CSP(TQ,V), if it is exact on view images,
then it is a rewriting, because it coincides with certain answers.

To prove Theorem 9 we show that if the view determines the query in a
monotone way then there is an l and a k, depending only on V and Q, such that
the Datalogl,k approximation is exact on view images. This proves the existence
of a Datalog rewriting.

41

Chapter 5

Conclusions and future
research directions

The work presented in this thesis provides several contributions to the problems
of representing and efficiently querying incomplete information, motivated by
data interoperability applications.

We concentrated on incompleteness arising from schema mappings relating
similar concepts of different database schemas. This made us focus on two
forms of incompleteness: incomplete instances incorporating missing/unknown
information and views. The former is mostly used for materializing restructured
data, while the latter is most common in virtual data integration.

We have seen that the particular adopted semantics of schema mappings in-
fluences the needed model and semantics of incompleteness. This has brought us
to adopt or develop (when not available) models of incompleteness suited to the
data interoperability scenario (such as annotated relational instances or incom-
plete XML tree descriptions), and to analyze the cost of querying incomplete
information under different semantics.

Both in the relational setting and for XML trees this analysis has provided
several ad-hoc query answering solutions.

In order to understand the principles inherent in these techniques, we have
investigated, in a very abstract setting, the relationship between tractable query
answering and the semantics of incompleteness. We have shown that efficient
solutions based on näıve evaluation can work beyond previously known cases,
under reasonable semantic assumptions.

We have then investigated the tractability of query answering over views,
where this is often related to the possibility of finding efficiently computable
query rewritings. Our analysis has related the existence of Datalog rewritings
to a well known (decidable) determinacy property of RPQ views and queries.
The semantic assumption has a big impact in this case as well, being many
relevant problems still open under the exact view assumption.

The work presented in this thesis raises many other questions and opens new
research directions. In what follows we discuss the main directions we intend
to investigate in our forthcoming research. Although we can identify several
different objectives, they share a main common thread: moving beyond the
relational (and XML) models of incompleteness.

42

We have already started embarking on this with Nadime Francis’s PhD,
where we began looking at the graph database model (see Chapter 4), which is
raising nowadays much interest in research [AG08, CME11, Bae13].

5.1 Incomplete graph data

A well established theory of incomplete information is missing for data mod-
els such as graph databases and RDF, but some initial work in understanding
incompleteness has been done [CGL98, KNS02, NK13, BLR14]. Models of in-
completeness are particularly needed in graph data exchange and integration ap-
plications which are witnessing a renewed interest [BPR13, CDLV12, CDLV13].

Over graph data, incompleteness is much more complex than its relational
counterpart; essentially because of possibly missing information about the graph
structure. This aspect is in common with models of incomplete XML (such
as [ASV06] and [6]). However structural incompleteness in XML is constraint
by the hierarchical structure of data.

In [KNS02] incompleteness is not modeled at the level of the graph data, but
it is incorporated in the query answering semantics: queries are issued on the
graph database by allowing a possible partial match between query variables
and data nodes, i.e. possibly missing nodes are allowed to complete the query
matching.

In [CGL98] incompleteness is introduced at the level of graph edges: edge
labels are possibly replaced by unary formulae of a given vocabulary, including
a given domain of constants (moreover constraints may be present in the form
of formulae associated to nodes). The knowledge about domain elements is
represented by a theory in the given vocabulary which is assumed incomplete. A
graph, whose edges are labelled with domain elements, and a model of the theory
conform to the incomplete representation if there is a suitable “simulation”
between the graph and the incomplete representation. This is a sort of mapping,
where data elements carried by the graph edges must satisfy, in the given model,
the unary formulae they are mapped into.

In [BLR14] a model of incomplete graphs is presented, based on three basic
incompleteness features: node variables to represent missing nodes, label vari-
ables to represent missing information about the relationship between nodes,
and regular expressions which represent missing paths conforming to the given
expression. Simple forms of the latter model have also been introduced in graph
data exchange [BPR13].

Several aspects still remain to be investigated, especially in relationship with
the use of incomplete information to model data heterogeneity in data exchange
and integration applications. We next discuss some of them.

Graph constraints As discussed in Chapter 1, suitable models of incom-
plete information for data exchange applications need to take constraints into
account. (However so far solutions in graph data exchange are built using a
straightforward adaptation of the relational chase procedure, and do not con-
sider constraints [BPR13].)

Constraints considered so far on graph databases essentially enforce the ex-
istence of reachability patterns and/or properties of graph nodes [AV99, GT03,
BFW00, CGL98, ACD+07].

43

Few examples of models integrating constraints and incompleteness exist
for graph data (a form of node constraints on top of graph schemas has been
considered in [CGL98], and a limited form of conditions were modeled over
incomplete XML in [ASV06]), while several attempts have been done in the
relational case [AM84, LL98].

In a data exchange scenario, in analogy with the relational case [APR13,
GO12], we can expect that enforcing constraints would need a model of in-
completeness based on a mechanism constraining the presence of data items
to conditions on data and structure (along the lines of conditional tables or
world-set decompositions [OKA08]).

It is expected that in the most general form, computational problems on
incomplete data (such that query answering and consistency analysis) will be
undecidable in the presence of constraints (cf. [AFL08, CLR03]) but one should
expect to find reasonable restrictions for decidability and tractability.

Incompleteness in the source It has been recently advocated that data in-
teroperability tasks cannot ignore the presence of incompleteness in the source
data [ALP09, FKPT11, GO12, APR13]. In classical approaches to data ex-
change and integration, including the ones dealing with graph data [BPR13,
CDLV13], source data is considered complete, and incompleteness is only gen-
erated by data transformation and integration. However in many scenarios,
restructured data has, in turn, to undergo other restructuring and integration
steps. This is typical in most metadata management tasks where several basic
data transformation steps are composed. Here transformed (incomplete) data
undergoes subsequent transformations (see [BM07, APRR09]).

When source data is already incomplete, incomplete information is also
“translated” into the target database. However mapping rules can transform
the original incomplete features into new ones that could be in principle of a
different nature than the original ones. This raises the need to develop a model
of incomplete information which is closed under typical schema mappings. I.e.
if incompleteness in the source can be represented in a given class of incomplete
instances, it is desirable that the restructured target data can be represented
in the same class. It has been shown in [APR13, GO12] that conditional tables
enjoy these closure property in the context of relational data exchange, even in
the presence of a certain form of target constraints. This confirms the intuition
that the presence of conditional data is essential to be able to capture the in-
completeness introduced by the the schema mappings. Such closure properties
are unexplored for incomplete graph data.

Supporting multiple semantics of incompleteness Existing models of
incomplete graph data mostly consider the OWA, and do not seem to be easily
adaptable to the CWA. Indeed, in the same way as with XML incomplete infor-
mation, the main difficulty comes from structural incompleteness, i.e. missing
information about the precise graph topology.

Semantics between CWA and OWA, which are interesting in the data ex-
change scenario (see Chapter 2), have not been considered either.

OWA semantics for incomplete graph data is often homomorphism (or simu-
lation) based [BLR14, CGL98]: an incomplete graph represents, roughly speak-
ing, all complete graph databases where it “embeds” into. Any notion of CWA,

44

or semantics between CWA and OWA, needs to avoid arbitrary embeddings.
This corresponds to avoid an arbitrary amount of missing information.

The closed world assumption could be in principle captured by a suitable
notion of onto homomorphism. However the question is how this requirement
should be interpreted in the presence of graph structural incompleteness. Along
the lines of the notion of CWA for incomplete trees introduced in [GLT12], we
can interpret the requirement that the homomorphism be “onto” at two levels:
either at the level of nodes or at the level of paths, yielding a stronger or weaker
notion of CWA.

Both notions are reasonable and deserve investigation. The additional dif-
ficulty w.r.t the case of incomplete trees is the more general form of structural
incompleteness. Structurally incomplete portions of the graph can be for in-
stance represented by arbitrary regular expression edges as in [BLR14], and are
not constraint by the hierarchical structure of trees.

For defining semantics which are between the open world and the closed
world assumption, we could in principle adapt two approaches considered for
relational data.

One possibility is to exploit an explicit annotation on portions of incomplete
data, along the lines of [GZ88] and [5] (see Chapter 2). These annotations
specify whether several completions are allowed or not for that portion. In this
case a suitable notion of annotation is needed that can be associated to both
the data and the structure of a graph.

Another approach would be to adapt the valuation/extension step presented
in Chapter 3 for relational data. In the first valuation step placeholders for
missing information are instantiated with actual data (in one or several possible
ways) and in the extension step the resulting instance is possibly augmented.
The second step defines how much the semantics is “open”, by allowing different
degrees of extension.

Of course suitable notions of “valuation” and “extension” need to be found
for graph data.

5.2 Tractable query evaluation beyond the rela-
tional model of incompleteness

Our general analysis of tractable solutions for querying incomplete data in Chap-
ter 3 has been developed either in a very general setting, which can subsume
practically every data model, or in connection with the simplest model of incom-
pleteness in relational databases. Moreover we only concentrated on FO queries.
However the generality of our framework suggests that it can be instantiated to
other database domains as well, and possibly other query languages.

In particular in Chapter 2 we have developed some näıve evaluation tech-
niques for the XML data model. We showed that näıve evaluation works for
unions of conjunctive tree queries over rigid incomplete trees [6]. This result
was shown to hold also in the case that incomplete trees are “rigid” only w.r.t
the axes used in queries [DLM10].

These results can also be viewed as instances of the general setting presented
in Chapter 3. It suffices to consider a database domain D = 〈D, C, [[]],≈〉, where
D is the set of (possibly) incomplete trees, C is the set of complete trees, [[]] is

45

the usual homomorphism-based semantics of incomplete tree descriptions, and
≈ is isomorphism of (relational representations of) trees.

Using the machinery developed in Chapter 3 we can explain why rigid incom-
plete trees are well behaved w.r.t to näıve evaluation: they enjoy the saturation
property. In fact since rigidity completely specifies the tree structure (in the
axes concerned by the query) every rigid incomplete tree has an isomorphic
complete tree in its semantics. Union of conjunctive tree queries are easily seen
to be preserved under homomorphisms of tree descriptions, and therefore under
the semantic mapping. Näıve evaluation is then guaranteed for such queries.

The connection between näıve evaluation and certain answers over incom-
plete tree descriptions has not been considered beyond positive queries. This
would make sense especially for semantics other than OWA, which usually allow
näıve evaluation over larger classes of queries. Our approach could then give
new insights in this setting.

Our approach can in principle be instantiated to other data models, such
as graph databases and RDF [BLR14, NK13], where much less is known about
tractability restrictions.

However, to make it suitable to XML or graph incomplete data, our approach
needs to be extended to take into account a form of structural incompleteness,
and query languages possibly beyond FO. For this we need to look at different
questions, as we discuss next.

Relaxing the notion of näıve evaluation In the presence of structural
incompleteness the usual notion of näıve evaluation is likely not to be applicable
in most of the cases. The saturation property immediately fails: in most cases
no complete instance can be isomorphic to a structurally incomplete one. As a
consequence very strong restrictions are usually needed. Rigidity of incomplete
trees is an example of such restrictions. A similar situation arises over graph
patterns considered in [BLR14]: näıve evaluation is used only for very simple
patterns without structural incompleteness, in cases when it is possible to reduce
query answering to the relational case.

On the other hand there are several examples of tractable query answering
solutions over incomplete data which are not based on näıve evaluation. To
mention a few, in [GLT12] it is shown that a form of Boolean combinations of
conjunctive queries can be evaluated in polynomial time over rigid incomplete
trees, although näıve evaluation is known not to work in general. Similarly the
polynomial time algorithm we provide for word patterns over a class of incom-
plete DOM trees, as well as tractable cases of query answering over structurally
incomplete graph patterns in [BLR14], are not based on näıve evaluation.

It would be interesting to find a sufficiently general notion of tractable so-
lution that could subsume these ad-hoc approaches. While this is an ambitious
objective, one can start with generalizing näıve evaluation-based solutions.

In fact there are several possible extensions of näıve evaluation that can be
considered, which may still retain its nice properties, and in particular compu-
tational efficiency.

The usual notion of näıve evaluation requires that certain answers over an
incomplete instance I can be computed by evaluating the query directly over I.
However the same desirable properties of näıve evaluation would hold if certain
answers over I could be computed by evaluating the query over another instance

46

I ′, easily computable from I.
We know at least one instance of such an approach. As discussed in Chap-

ter 3, in [1] we have shown that when the saturation property does not hold
on the whole database domain, certain answers to queries monotone w.r.t. the
semantics are indeed computed by näıve evaluation on another instance: in
particular any semantically equivalent instance which belongs to a saturated
subdomain. The problem is that in most cases this new instance is hard to
compute from the available one. For example in the relational case, under
semantics based on minimal valuations, such new instance is the core of the
original instance, which is in general hard to compute [CM77, HN92]. However
in some cases, such as large classes of data exchange settings, the core of the
canonical solution can be computed in polynomial time [GN08]. This makes
näıve evaluation over the core a feasible solution to query answering in data
exchange for Pos+ ∀G queries, under minimal semantics. One could in princi-
ple also combine this approach with query rewriting, by requiring that certain
answers to a query Q can be computed by näıvely evaluating another query Q′.
We can push the extension even further and require that certain answers can
be computed by efficiently combining the query results over a finite, efficiently
computable, set of other instances.

These ideas follow a very popular approach in the field of ontology-based data
access, where query rewriting is the main mechanism to query ontology-based
intensional data [GOP11]. In particular solutions along the lines of the combined
approach [KLT+10] and the chase of Datalog-based constraints [CGL12] are
based on a modification of the original database, sometimes combined with
query rewriting.

We expect that all this approaches would have to be necessarily combined
with structural restrictions on incomplete instances.

Tractability in specific applications We saw that over complex models of
incompleteness finding tractable query answering solutions becomes more diffi-
cult. However incomplete data generated in specific applications, such as data
interoperability tasks, is often of a very particular form. This is already true
in the relational setting. For instance the canonical solution in data exchange
can be partitioned into blocks having an independent and bounded set of nulls.
This kind of property has been effectively used to devise polynomial time al-
gorithms for tasks which are computationally hard over arbitrary incomplete
relational instances [FKP05, GN08, Her11]. This suggests that query answering
in data interoperability applications can be in principle computationally easier
than the general problem of query answering over incomplete data.

It would be interesting to analyze the peculiarities of incomplete trees or
incomplete graphs arising in these applications, and see whether they can be
used to obtain that tractable solutions – such as näıve evaluation or its gener-
alizations – work over larger classes of queries. To the best of our knowledge,
there has been no study of näıve evaluation over restricted classes of instances.

Preservation theorems Moving beyond the relational model and query lan-
guages raises two main points about the use of preservation theorems in con-
nection with näıve evaluation techniques. First of all we may deal with query
languages beyond FO, and second, we usually deal with restricted classes of

47

structures.
Query languages beyond FO. Preservation theorems have not received much

attention beyond FO, even over arbitrary relational structures, with a few excep-
tions. For instance preservation theorems in the finite for existential fragments
of several non-first-order logics have been proved in [FV03]; some infinitary
logics have also been considered [Kei71].

Of course Datalog is preserved under homomorphisms, and in fact our ap-
proach for näıve evaluation under OWA presented in Chapter 3 applies to Dat-
alog queries as well. However although Datalog is the existential positive frag-
ment of Least Fixed-Point Logic (LFP), it does not coincide with the LFP
fragment preserved under homomorphism, over both arbitrary and finite struc-
tures [DK08], and no analog of Rossman’s theorem is known for LFP.

So for LFP queries näıve evaluation could work outside Datalog under the
OWA, but natural fragments guaranteeing this property beyond Datalog are not
known. Precise characterization of preservation properties of queries are also
missing for second-order logics; and restricted forms of homomorphisms have
not been considered at all for these logics, to the best of our knowledge.

While proving preservation theorems is usually a very difficult task, espe-
cially in the finite, finding classes of queries preserved under various notions of
homomorphism is already interesting to our purposes. One possible approach is
to start with syntactic fragments of FO which we introduced in [1] (see Chap-
ter 3), and see which higher order features can be introduced without altering
the preservation property.

Restricted classes of structures. Although some forms of graph and tree
patterns have a relational representation, they are not arbitrary instances of
their schema. Preservation theorems for such instances need to be relativized
to restricted classes of structures.

This problem has been investigated for several natural classes of finite re-
lational structures, and the classical homomorphism preservation theorem has
been shown to relativize to classes of bounded degree, of bounded treewidth,
classes excluding a minor [ADK06], and more generally to the so called quasi-
wide classes [Daw10], encompassing those.

However structures we are interested in, such as XML with data, fall in
none of these classes, as data values generate relational structures of arbitrary
treewidth, and can be shown even outside the larger classes.

By possibly combining restricted classes of structures and higher-order lan-
guages, this naturally identifies preservation properties which have not been
investigated yet.

5.3 Query rewriting over views

When considering partial information provided by views, many problems have
not been fully understood or not addressed at all, especially for specific data
models, such as graph databases. We discuss some of them next.

Languages for monotone rewritings We have not yet fully understood
the properties of rewritings of RPQ queries w.r.t. RPQ views, even under the
monotonicity assumption. In particular it is not yet clear which language is
really needed to express such rewritings.

48

In Chapter 4 we have presented our result showing that Datalog can express
all monotone rewritings of RPQ queries w.r.t. RPQ views. However there is no
evidence that the full expressive power of Datalog is needed, and an interesting
line of research could be to look for tighter upper bounds. There are two main
reasons for this.

The first reason is the objective to identify a well behaved query and view
language with closure properties w.r.t. rewritings. I.e. one would like to have a
monotone view and query language guaranteeing that monotone rewritings can
be expressed in the language itself. Full Datalog may be too powerful to enjoy
this closure properties, while these are more likely for Datalog fragments. All
examples we are aware of use only the transitive closure of binary CRPQs as
monotone rewritings.

The second reason is related to the complexity of evaluating the rewriting.
Datalog rewritings obtained in our proof use a number of variables exponential
in the number of states of query and view automata. This has of course a big
impact on the complexity of evaluating the rewriting, that although polynomial
in data complexity, depends exponentially on the number of variables in rules
of the program. Especially when dealing with graph data, given their possible
huge size, arbitrary polynomial time solutions may not be satisfactory, and fixed
parameter tractability is a more desirable property.

Recent results on CSP have fully characterized CSP problems (whose com-
plement is) expressible in Datalog [BK09], and in doing so they have shown that
Datalog2,3 is enough in the case of binary relational structures as ours.

Of course this result does not apply immediately to the CSP associated with
certain answers in our case, since it is in general not expressible in Datalog on
all instances, but only on view images. However it would be interesting to see
whether techniques of [BK09] can be adapted directly to our case to obtain
Datalog rewritings using a constant number of variables.

Determinacy and rewriting beyond monotonicity Without the mono-
tonicity assumption the relationship between determinacy and rewriting is
largely unexplored (under the exact view assumption).

Towards solving this problem, in [2] we proved that if an RPQ view deter-
mines an RPQ query then one can easily find both a rewriting with NP data
complexity and one with coNP data complexity. This easily follows from the
property that one can always find a polynomial size counter-image of a view
instance.

If this counter-image could be constructed in polynomial time this would im-
mediately give a rewriting with PTIME data complexity, in the case that the
view determines the query: in fact to evaluate the query over a view instance
it would suffice to construct a counter-image and evaluate the query over it.
However in [2] we showed that a counter-image cannot be constructed in poly-
nomial time (unless P=NP) and it is open whether a rewriting with PTIME

data complexity exists.
Deciding determinacy without the monotonicity assumption is a related

question. As discussed in Chapter 4 it is open in many cases (under the ex-
act view assumption), in particular for RPQ views and queries, and is of course
an interesting question to look at.

Deciding determinacy may come with a constructive procedure that natu-

49

rally identifies rewriting languages, as in [Afr11]. We also remark that [Afr11]
considers a restricted form of queries and views over relational data: conjunc-
tive path queries. These can be viewed as a form of path queries over graphs
without recursion. Therefore the extension of techniques developed in [Afr11]
can be a starting point of our investigation. This is ongoing work in the context
of Nadime Francis’s PhD.

50

Bibliography

[ABC99] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consis-
tent query answers in inconsistent databases. In ACM Symp. on
Principles of Database Systems (PODS), pages 68–79, 1999.

[ABFL04] Marcelo Arenas, Pablo Barceló, Ronald Fagin, and Leonid Libkin.
Locally Consistent Transformations and Query Answering in Data
Exchange. In ACM Symp. on Principles of Database Systems
(PODS), pages 229–240, 2004.

[ABLM14] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak.
Foundations of Data Exchange. Cambridge University Press,
2014.

[ACD+07] Yves André, Anne-Cécile Caron, Denis Debarbieux, Yves Roos,
and Sophie Tison. Path constraints in semistructured data. The-
oretical Computer Science, 385(13):11 – 33, 2007.

[AD98] Serge Abiteboul and Oliver M. Duschka. Complexity of answering
queries using materialized views. In ACM Symp. on Principles of
Database Systems (PODS), pages 254–263, 1998.

[ADK06] Albert Atserias, Anuj Dawar, and Phokion Kolaitis. On preser-
vation under homomorphisms and unions of conjunctive queries.
Journal of the ACM, 53(2):208–237, 2006.

[ADLM14] Shun’ichi Amano, Claire David, Leonid Libkin, and Filip Murlak.
Xml schema mappings: Data exchange and metadata manage-
ment. Journal of the ACM, 61(2):12:1–12:48, April 2014.

[AFL08] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On the complex-
ity of verifying consistency of XML specifications. SIAM Journal
on Computing, 38(3):841–880, 2008.

[Afr11] Foto Afrati. Determinacy and query rewriting for conjunctive
queries and views. Theoretical Computer Science, 412(11):1005–
1021, 2011.

[AG87] Miklós Ajtai and Yuri Gurevich. Monotone versus positive. Jour-
nal of the ACM, 34(4):1004–1015, 1987.

[AG08] Renzo Angles and Claudio Gutiérrez. Survey of graph database
models. ACM Computing Surveys, 40(1), 2008.

51

[AKG91] Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. On the
representation and querying of sets of possible worlds. Theoretical
Computer Science, 78(1):158–187, 1991.

[AL08] Marcelo Arenas and Leonid Libkin. XML data exchange: Consis-
tency and query answering. Journal of the ACM, 55(2), 2008.

[ALM09] Shun’ichi Amano, Leonid Libkin, and Filip Murlak. XML schema
mappings. In ACM Symp. on Principles of Database Systems
(PODS), pages 33–42, 2009.

[ALP09] Foto Afrati, Chen Li, and Vassia Pavlaki. Data Exchange: Query
Answering for Incomplete Data Sources. In 3rd International Con-
ference on Scalable Information Systems, 2009.

[AM84] Paolo Atzeni and Nicola M. Morfuni. Functional dependencies
in relations with null values. Information Processing Letters,
18(4):233–238, 1984.

[APR13] Marcelo Arenas, Jorge Pérez, and Juan L. Reutter. Data exchange
beyond complete data. Journal of the ACM, 60(4):28, 2013.

[APRR09] Marcelo Arenas, Jorge Pérez, Juan L. Reutter, and Cristian
Riveros. Composition and inversion of schema mappings. SIG-
MOD Record, 38(3):17–28, 2009.

[ASV06] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing
and querying XML with incomplete information. ACM Transac-
tions on Database Systems, 31(1):208–254, 2006.

[AV99] Serge Abiteboul and Victor Vianu. Regular path queries with
constraints. Journal of Computer and System Sciences, 58(3):428
– 452, 1999.

[AYCLS02] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and
Divesh Srivastava. Tree pattern query minimization. VLDB Jour-
nal, 11(4):315–331, 2002.

[Bae13] Pablo Barceló Baeza. Querying graph databases. In ACM Symp.
on Principles of Database Systems (PODS), pages 175–188, 2013.

[Bar09] Pablo Barceló. Logical foundations of relational data exchange.
SIGMOD Record, 38(1):49–58, 2009.

[BFW00] Peter Buneman, Wenfei Fan, and Scott Weinstein. Path con-
straints in semistructured databases. Journal of Computer and
System Sciences, 61(2):146–193, 2000.

[BK09] Libor Barto and Marcin Kozik. Constraint satisfaction problems
of bounded width. In Annual Symposium on Foundations of Com-
puter Science, pages 595–603, 2009.

[BLPS10] Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sir-
angelo. XML with incomplete information. Journal of the ACM,
58(1), 2010.

52

[BLR14] Pablo Barceló, Leonid Libkin, and Juan Reutter. Querying regu-
lar graph patterns. Journal of the ACM, 61(1), 2014.

[BM07] Philip A. Bernstein and Sergey Melnik. Model management 2.0:
manipulating richer mappings. In SIGMOD Conference, pages
1–12, 2007.

[BMS08] Henrik Björklund, Wim Martens, and Thomas Schwentick. Opti-
mizing Conjunctive Queries over Trees Using Schema Information.
In Intl. Symp. on Mathematical Foundations of Computer Science
(MFCS), pages 132–143, 2008.

[BMS11] Henrik Björklund, Wim Martens, and Thomas Schwentick. Con-
junctive query containment over trees. Journal of Computer and
System Sciences, 77(3):450–472, 2011.

[BPR13] Pablo Barceló, Jorge Pérez, and Juan L. Reutter. Schema map-
pings and data exchange for graph databases. In Intl. Conf. on
Database Theory (ICDT), pages 189–200, 2013.

[BtCLW13] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank
Wolter. Ontology-based data access: a study through disjunc-
tive datalog, CSP, and MMSNP. In ACM Symp. on Principles of
Database Systems (PODS), pages 213–224, 2013.

[CDGLV00a] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Answering regular path queries using views. In
Intl. Conf. on Data Engineering (ICDE), pages 389–398. IEEE,
2000.

[CDGLV00b] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. View-based query processing and constraint sat-
isfaction. In ACM/IEEE Symp. on Logic in Computer Science
(LICS), pages 361–371. IEEE, 2000.

[CDGLV02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Lossless regular views. In ACM Symp. on Prin-
ciples of Database Systems (PODS), pages 247–258. ACM, 2002.

[CDLV12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Query processing under glav mappings for rela-
tional and graph databases. PVLDB, 6(2):61–72, 2012.

[CDLV13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. On simplification of schema mappings. Journal
of Computer and System Sciences, 79(6):816–834, 2013.

[CGL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Semi-structured data with constraints and incomplete informa-
tion. In Description Logics, 1998.

[CGL02] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Representing and reasoning on XML documents: a description
logic approach. Journal of Logic and Computation, 9(3):295–318,
2002.

53

[CGL+07] Diego Calvanese, Giuseppe Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient
query answering in description logics: The dl-lite family. Journal
of Automated Reasoning, 39(3):385–429, October 2007.

[CGL12] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A gen-
eral datalog-based framework for tractable query answering over
ontologies. J. Web Sem., 14:57–83, 2012.

[CGLV02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. Rewriting of regular expressions and regular path
queries. Journal of Computer and System Sciences, 64(3):443–
465, 2002.

[CGLV07] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. View-based query processing: On the relation-
ship between rewriting, answering and losslessness. Theoretical
Computer Science, 371(3):169–182, 2007.

[CGP12] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Towards more
expressive ontology languages: The query answering problem. Ar-
tificial Intelligence, 193:87–128, 2012.

[CK90] C.C. Chang and H.Jerome Keisler. Model Theory. North Holland,
1990.

[CKS09] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Incorporating
constraints in probabilistic xml. ACM Transactions on Database
Systems, 34(3), 2009.

[CLR03] Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. On the de-
cidability and complexity of query answering over inconsistent and
incomplete databases. In ACM Symp. on Principles of Database
Systems (PODS), pages 260–271, 2003.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implemen-
tation of conjunctive queries in relational data bases. In ACM
Symposium on the Theory of Computing (STOC), pages 77–90,
1977.

[CME11] Philippe Cudré-Mauroux and Sameh Elnikety. Graph data
management systems for new application domains. PVLDB,
4(12):1510–1511, 2011.

[CMW87] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A
graphical query language supporting recursion. SIGMOD Record,
16(3):323–330, December 1987.

[Com83] Kevin Compton. Some useful preservation theorems. Journal of
Symbolic Logic, 48(2):427–440, 1983.

[Dav08] Claire David. Complexity of Data Tree Patterns over XML Docu-
ments. In Intl. Symp. on Mathematical Foundations of Computer
Science (MFCS), pages 278–289, 2008.

54

[Daw10] Anuj Dawar. Homomorphism preservation on quasi-wide classes.
Journal of Computer and System Sciences, 76(5):324–332, 2010.

[DD96] C.J. Date and Hugh Darwen. A Guide to the SQL Standard.
Addison-Wesley, 1996.

[DGLLR07] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. On reconciling data exchange, data integration,
and peer data management. In ACM Symp. on Principles of
Database Systems (PODS), pages 133–142, 2007.

[DK08] Anuj Dawar and Stephan Kreutzer. On datalog vs. lfp. In Inter-
national Colloquium on Automata, Languages and Programming
(ICALP), pages 160–171, 2008.

[DLM10] Claire David, Leonid Libkin, and Filip Murlak. Certain answers
for XML queries. In ACM Symp. on Principles of Database Sys-
tems (PODS), pages 191–202, 2010.

[DOM04] DOM. Document object model (dom). w3c recommendation.
http://www.w3.org/TR/DOM-Level-3-Core/, April 2004.

[FHH+09] Ronald Fagin, Laura M. Haas, Mauricio A. Hernandez, Renée J.
Miller, Lucian Popa, and Yannis Velegrakis. Clio: Schema map-
ping creation and data exchange. In Conceptual Modeling: Foun-
dations and Applications, Essays in Honor of J. Mylopoulos,
pages 198–236. Springer-Verlag, 2009.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian
Popa. Data exchange: Semantics and query answering. Theoret-
ical Computer Science, 336:89–124, 2005.

[FKP05] Ronald Fagin, Phokion Kolaitis, and Lucian Popa. Data ex-
change: getting to the core. ACM Transactions on Database
Systems, 30(1):174–210, 2005.

[FKPT11] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and
Wang Chiew Tan. Reverse data exchange: coping with nulls.
ACM Transactions on Database Systems, 36(2):11:1–11:42, June
2011.

[FV98] Tomás Feder and Moshe Y. Vardi. The computational structure
of monotone monadic snp and constraint satisfaction: A study
through datalog and group theory. SIAM Journal on Computing,
28(1):57–104, 1998.

[FV03] Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs.
existential positive. In ACM/IEEE Symp. on Logic in Computer
Science (LICS), pages 311–, Washington, DC, USA, 2003.

[GHM04] Claudio Gutierrez, Carlos Hurtado, and Alberto O. Mendelzon.
Foundations of semantic web databases. In ACM Symp. on Prin-
ciples of Database Systems (PODS), pages 95–106, 2004.

55

[GKS06] Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conjunc-
tive queries over trees. Journal of the ACM, 53(2):238–272, 2006.

[GLT12] Amélie Gheerbrant, Leonid Libkin, and Tony Tan. On the com-
plexity of query answering over incomplete XML documents. In
Intl. Conf. on Database Theory (ICDT), pages 169–181, 2012.

[GN08] Georg Gottlob and Alan Nash. Efficient Core Computation in
Data Exchange. Journal of the ACM, 55(2), 2008.

[GO12] Gösta Grahne and Adrian Onet. Representation systems for data
exchange. In Intl. Conf. on Database Theory (ICDT), pages 208–
221, 2012.

[GOP11] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological
query answering via rewriting. In Advances in Databases and
Information Systems, volume 6909 of Lecture Notes in Computer
Science, pages 1–18. Springer Berlin Heidelberg, 2011.

[Gra02] Gösta Grahne. Information integration and incomplete informa-
tion. IEEE Data Eng. Bull., 25(3):46–52, 2002.

[GT03] Gösta Grahne and Alex Thomo. Query containment and rewriting
using views for regular path queries under constraints. In ACM
Symp. on Principles of Database Systems (PODS), pages 111–122,
2003.

[GZ88] Georg Gottlob and Roberto Zicari. Closed world databases
opened through null values. In International Conference on Very
Large Data Bases (VLDB), pages 50–61, 1988.

[Hal00] Alon Halevy. Theory of answering queries using views. SIGMOD
Record, 29(1):40–47, 2000.

[Her11] André Hernich. Answering non-monotonic queries in relational
data exchange. Logical Methods in Computer Science, 7(3), 2011.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian
Popa, and Mary Roth. Clio grows up: from research prototype
to industrial tool. In ACM Intl. Conference on Management of
Data (SIGMOD), pages 805–810, 2005.

[HLS11] André Hernich, Leonid Libkin, and Nicole Schweikardt. Closed
world data exchange. ACM Transactions on Database Systems,
36(2):14:1–14:40, 2011.

[HN92] Pavol Hell and Jaroslav Nes̆etr̆il. The core of a graph. Discrete
Mathematics, 109(1-3):127–126, 1992.

[Hul97] Richard Hull. Managing semantic heterogeneity in databases: A
theoretical prospective. In ACM Symp. on Principles of Database
Systems (PODS), pages 51–61, 1997.

[IL84] Tomasz Imielinski and Witold Lipski. Incomplete information in
relational databases. Journal of the ACM, 31(4):761–791, 1984.

56

[Kei65a] H. Jerome Keisler. Finite approximations of infinitely long for-
mulas. In Symposium on the Theory of Models, pages 158–169.
North Holland, 1965.

[Kei65b] H. Jerome Keisler. Some applications of infinitely long formulas.
Journal of Symbolic Logic, 30(3):339–349, 1965.

[Kei71] H. Jerome Keisler. Model theory for infinitary logic: Logic with
countable conjunctions and finite quantifiers. Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co.,
1971.

[KLT+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter,
and Michael Zakharyaschev. The combined approach to query
answering in DL-Lite. In Principles of Knowledge Representation
and Reasoning (KR), 2010.

[KNS02] Yaron Kanza, Werner Nutt, and Yehoshua Sagiv. Querying in-
complete information in semistructured data. Journal of Com-
puter and System Sciences, 64(3):655–693, 2002.

[Kol05] Phokion G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. In ACM Symp. on Principles of Database
Systems (PODS), pages 61–75, 2005.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective.
In ACM Symp. on Principles of Database Systems (PODS), pages
233–246, 2002.

[Lib06] Leonid Libkin. Data exchange and incomplete information. In
ACM Symp. on Principles of Database Systems (PODS), pages
60–69, 2006.

[Lib11] Leonid Libkin. Incomplete information and certain answers in
general data models. In ACM Symp. on Principles of Database
Systems (PODS), pages 59–70, 2011.

[Lib14] Leonid Libkin. Certain answers as objects and knowledge. In
Principles of Knowledge Representation and Reasoning (KR),
2014.

[Lip79] Witold Lipski. On semantic issues connected with incomplete
information databases. ACM Transactions on Database Systems,
4(3):262–296, 1979.

[LL98] Mark Levene and George Loizou. Axiomatisation of functional
dependencies in incomplete relations. Theoretical Computer Sci-
ence, 206(1-2):283–300, 1998.

[LLR02] Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Source inconsistency and incompleteness in data integration. In
Description Logics, 2002.

57

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh
Srivastava. Answering queries using views. In ACM Symp. on
Principles of Database Systems (PODS), pages 95–104, 1995.

[Min82] Jack Minker. On indefinite databases and the closed world as-
sumption. In CADE, pages 292–308, 1982.

[MS04] Gerome Miklau and Dan Suciu. Containment and equivalence for
a fragment of XPath. Journal of the ACM, 51(1):2–45, 2004.

[NK13] Charalampos Nikolaou and Manolis Koubarakis. Incomplete in-
formation in rdf. In Intl. Conf. on Web Reasoning and Rule Sys-
tems (RR), pages 138–152, 2013.

[NSV10] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries:
Determinacy and rewriting. ACM Transactions on Database Sys-
tems, 35(3), 2010.

[OKA08] Dan Olteanu, Christoph Koch, and Lyublena Antova. World-set
decompositions: expressiveness and efficient algorithms. Theoret-
ical Computer Science, 403(2-3):265–284, 2008.

[Rei77] Raymond Reiter. On closed world data bases. In Logic and Data
Bases, pages 55–76, 1977.

[Ros08] Benjamin Rossman. Homomorphism preservation theorems.
Journal of the ACM, 55(3), 2008.

[RS09] Royi Ronen and Oded Shmueli. Soql: A language for querying
and creating data in social networks. In Intl. Conf. on Data En-
gineering (ICDE), pages 1595–1602, 2009.

[SA07] Pierre Senellart and Serge Abiteboul. On the complexity of man-
aging probabilistic XML data. In ACM Symp. on Principles of
Database Systems (PODS), pages 283–292, 2007.

[Sto95] Alexei P. Stolboushkin. Finitely monotone properties. In
ACM/IEEE Symp. on Logic in Computer Science (LICS), pages
324–330, 1995.

58

Publications

[1] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. Näıve evalua-
tion of queries over incomplete databases. ACM Transactions on Database
Systems, 2014, to appear.

[2] Nadime Francis, Luc Segoufin, and Cristina Sirangelo. Datalog rewritings
of regular path queries using views. In Intl. Conf. on Database Theory
(ICDT), pages 107–118, 2014.

[3] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. When is näıve
evaluation possible? In ACM Symp. on Principles of Database Systems
(PODS), pages 75–86, 2013.

[4] Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. Reasoning
about pattern-based xml queries. In Intl. Conf. on Web Reasoning and
Rule Systems (RR), pages 4–18, 2013.

[5] Leonid Libkin and Cristina Sirangelo. Data exchange and schema mappings
in open and closed worlds. Journal of Computer and System Sciences,
77(3):542–571, 2011.

[6] Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo.
XML with incomplete information. Journal of the ACM, 58(1), 2010.

[7] Leonid Libkin and Cristina Sirangelo. Disjoint pattern matching and im-
plication in strings. Information Processing Letters, 110(4):143–147, 2010.

[8] Leonid Libkin and Cristina Sirangelo. Reasoning about XML with temporal
logics and automata. Journal of Applied Logic, 8(2):210–232, June 2010.

[9] Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo.
XML with incomplete information: models, properties, and query answer-
ing. In ACM Symp. on Principles of Database Systems (PODS), pages
237–246, 2009.

[10] Leonid Libkin and Cristina Sirangelo. Open and closed world assumptions
in data exchange. In Description Logics, 2009.

[11] Cristina Sirangelo. Relational algebra operators. In Encyclopedia of
Database Systems. Springer, 2009.

[12] Leonid Libkin and Cristina Sirangelo. Data exchange and schema map-
pings in open and closed worlds. In ACM Symp. on Principles of Database
Systems (PODS), pages 139–148, 2008.

59

[13] Leonid Libkin and Cristina Sirangelo. Reasoning about xml with temporal
logics and automata. In Intl. Conf. on Logic for Programming Artificial
Intelligence and Reasoning (LPAR), pages 97–112, 2008.

[14] Luc Segoufin and Cristina Sirangelo. Constant-memory validation of
streaming xml documents against dtds. In Intl. Conf. on Database Theory
(ICDT), pages 299–313, 2007.

[15] Filippo Furfaro, Giuseppe M. Mazzeo, Domenico Saccà, and Cristina Sir-
angelo. Compressed hierarchical binary histograms for summarizing multi-
dimensional data. Intl. Journal on Knowledge And Information Systems
(KAIS), 15(3), July 2007.

[16] Filippo Furfaro, Giuseppe M. Mazzeo, and Cristina Sirangelo. Exploit-
ing cluster analysis for constructing multi-dimensional histograms on both
static and evolving data. In International Conference on Extending
Database Technology (EDBT), March 2006.

[17] Luciano Caroprese, Sergio Greco, Cristina Sirangelo, and Ester Zumpano.
Declarative semantics of production rules for integrity maintenance. In Intl.
Conf. on Logic Programming (ICLP), pages 26–40, 2006.

[18] Filippo Furfaro, Giuseppe M. Mazzeo, and Cristina Sirangelo. Clustering-
based histograms for multi-dimensional data. In Intl. Conf. on Data Ware-
housing and Knowledge Discovery (DaWaK), pages 478–487, 2005.

[19] Filippo Furfaro, Giuseppe M. Mazzeo, Domenico Saccà, and Cristina Sir-
angelo. Hierarchical binary histograms for summarizing multi-dimensional
data. In Symposium on Applied Computing (SAC), pages 598–603, 2005.

[20] Luciano Caroprese, Sergio Greco, Cristina Sirangelo, and Ester Zumpano.
A logic based approach to p2p databases. In Italian Symposium on Ad-
vanced Database Systems (SEBD), pages 67–74, 2005.

[21] Sergio Greco, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano.
Preferred repairs for inconsistent databases. In Encyclopedia of Database
Technologies and Applications, pages 480–485. Idea Group, 2005.

[22] Sergio Greco, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano.
Feasibility conditions and preference criteria in querying and repairing in-
consistent databases. In Intl. Conf. on Database and Expert Systems Ap-
plications (DEXA), pages 44–55, 2004.

[23] Filippo Furfaro, Giuseppe M. Mazzeo, Domenico Saccà, and Cristina
Sirangelo. A new histogram-based technique for compressing multi-
dimensional data. In Italian Symposium on Advanced Database Systems
(SEBD), pages 18–29, 2004.

[24] Alfredo Cuzzocrea, Filippo Furfaro, Elio Masciari, and Cristina Sirangelo.
Approximate query answering on sensor network data streams. In Italian
Symposium on Advanced Database Systems (SEBD), pages 93–108, 2003.

[25] Sergio Greco, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano.
Preferred repairs for inconsistent databases. In International Database En-
gineering and Applications Symposium (IDEAS), pages 202–211, 2003.

60

[26] Alfredo Cuzzocrea, Filippo Furfaro, Elio Masciari, Domenico Saccà, and
Cristina Sirangelo. Approximate query answering on sensor network data
streams. In Intl. Workshop on Geo Sensor Networks, 2003.

[27] Francesco Buccafurri, Filippo Furfaro, Domenico Saccà, and Cristina Sir-
angelo. A quad-tree based multiresolution approach for two-dimensional
summary data. In Intl. Conf. on Scientific and Statistical Database Man-
agement (SSDBM), pages 127–140, 2003.

61

