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ABSTRACT 
 
This study presents a theoretical explanation for the excellent lubrication at the thrust slide-bearing of scroll 
compressors, caused by elastic deformation of the thrust plate, due to large loads. In theoretical calculations, the 
thrust slide-bearing surfaces are treated as a rough sliding one, and the average Reynolds equation by Patir & Cheng 
for the rough surfaces is applied to analyze the fluid lubrication at the thrust slide-bearing, while the Solid Contact 
Theory by Greenwood & Williamson is applied to analyze the plastic and elastic contacts between the orbiting and 
fixed thrust plates. For given values of the wedge angle between the sliding surfaces, the oil film pressure, the solid 
contact force, the fluid frictional force and the solid shearing drag force are calculated to determine the resultant 
friction coefficient at the thrust slide-bearing. As a result, the theoretical calculations show a good agreement with 
the lubrication test results, thus unveiling the excellent fluid lubrication at the thrust slide-bearing, caused by the 
wedge formation due to large thrust loads. 
 

1. INTRODUCTION 
 
The common type of thrust bearing of the scroll compressors, widely used for room air-conditioners, is the sliding 
type for its high performance in lubrication and for its low noise generation, where the orbiting thrust flat plate is 
firmly pressed on the fixed one. The thrust slide-bearing supports a large thrust force and is not lubricated by a 
special device like an oil pump with high power, but the thrust slide-bearing never induces any serious troubles in 
lubrication, such as a seizure of the sliding surfaces, and rather exhibits a better performance in lubrication. A few 
theoretical studies for the thrust slide-bearing of the scroll compressors have been reported by Kulkarni (1990a, b), 
and an experimental study by Nishiwaki et al (1996), but the essential characteristics of lubrication at the thrust 
slide-bearing have not been revealed at all. Thereupon, as the first step, lubrication tests for the thrust slide-bearing 
in the closed vessel pressurized with the refrigerant R-22 gas were conducted by Ishii et al (2004). As a result, it was 
shown that the pressure difference between the outside and inside spaces of the thrust slide-bearing made a 
significant role to improve the performance in lubrication:  the friction coefficient from 0.043 to 0.033 at zero 
pressure difference drastically decreased to about 0.008 at 1.0MPa pressure difference. In addition, the observation 
of wear state of the friction surface, after tested, suggested that the excellent lubrication was caused by a wedge 
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formation between the friction surfaces, in addition to the oil flow into the inner space with lower pressure.  
 
The major purpose of the present study is to theoretically explain the excellent lubrication at the thrust slide-bearing. 
The orbiting thrust flat plate, made of Aluminum alloy, is pressed on the fixed one due to high pressure loads on it 
and induces elastic deformation, thus forming a wedge against the rigid fixed thrust plate. Such a wedge formation 
surely depends upon various factors, such as the pressure loads on the back and inner sides of the orbiting scroll, the 
oil film pressure at the friction surface, the friction temperature and so on. Therefore, it is indeed a difficult subject 
to theoretically determine the wedge angle. Thereupon, for given wedge angles, a theoretical analysis is made for 
lubrication mechanism at the thrust slide-bearing. The average Reynolds Equation developed by Patir & Cheng 
(1978, 1979), applicable to any general roughness structure, is used to analyze the fluid lubrication at the thrust 
slide-bearing, and the Solid Contact Theory by Greenwood & Williamson (1966) is used to analyze the plastic 
contacts between the orbiting and fixed thrust plates. Accordingly, the oil film pressure, the oil film thrust force, the 
solid contact force, the fluid frictional force and the solid shearing drag force are calculated to determine the 
resultant attitude of the orbiting scroll and the resultant friction coefficient for a series of conditions of the 
lubrication tests.  
 

2. THRUST SLIDE-BEARING AND ITS MODEL FOR LUBRICATION TESTS 
 
The compression mechanism of a high-pressure type scroll compressor is shown in Figure 1a, where the orbiting 
thrust plate is pressed upward against the fixed thrust plate, by the high and intermediate pressure oil. The orbiting 
thrust plate, made of Aluminum Alloy, induces an elastic deformation, thus forming a wedge at the thrust slide-
bearing. In addition, the pressure difference between the intermediate and suction pressures, across the thrust slide-
bearing, induces an oil flow from the outside into the inside.  
 
In order to examine the lubrication performance at the thrust slide-bearing, the simplified model shown in Figure 1b 
was made, where the orbiting scroll thrust plate was replace by a cylindrical thrust plate, which was arranged to the 
up side and fixed through a pivot bearing, while the fixed scroll thrust plate was replaced by a rigid flat thrust plate, 
which was arranged to the down side and driven by the motor for orbiting motion. The outside of the test model is 
pressurized in a tribo-tester and the inside was released to the atmospheric circumstance to give a pressure difference 
between the outside and inside spaces.  
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(b) Thrust slide-bearing model. 

 Figure 1: Thrust slide-bearing of a scroll compressor and its model for lubrication tests. 

3. MODEL DEVELOPMENT FOR THRORETICAL ANALYSES 
 

3.1 Average Reynolds Equation  
The thrust slide-bearing model shown in Figure 1b can be represented by Figure 2, for theoretical calculations of the 
fluid lubrication by the oil film between the cylindrical and orbiting thrust plates. The cylindrical thrust plate with 
the outer radius ro and the inner radius ri has a wedge angle α at its periphery, the center of which is pressed 
downward at the spring force Fs through the pivot bearing. The cylindrical thrust plate can move about the x and y
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axes, as represented by rotations ψx and ψy, respectively. The x and y axes are the Cartesian coordinates on the 
orbiting thrust plate surface, with the origin at the center of the cylindrical thrust plate.  
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Figure 2: Mathematical model of thrust slide-bearing for theoretical analysis of fluid lubrication. 

 
With the average clearance height between the cylindrical and orbiting thrust plates, ho, the oil film thickness h is 
given by a function of the polar coordinates with radius r and angle θ:  

xyi0 sinrcosrtan)rr(h),r(h ψ⋅θ+ψ⋅θ−α−+=θ      where   oi rrr ≤≤ .  (1) 
The boundary pressure on the oil film is indicated by pout at the periphery and by pin at the inner circumference. The 
boundary velocity on the orbiting thrust plate is indicated by U1 and W1 in the x and y directions, respectively: 

Θ= cosVU1 , Θ= sinVW1 ,     (2) 
where V and Θ represent the orbiting velocity and its orbiting angle, respectively. 
 
Here introduce σ for the composite rms roughness of the standard deviations of surface roughness, σ1 for the 
orbiting thrust plate and σ2 for the cylindrical one. For an isothermal, incompressible oil, the pressure p in 
Elastohydrodynamic lubrication between the rough surfaces is governed by the Average Reynolds Equation relative 
to the Cartesian coordinates of x and y, derived by Patir and Cheng (1979): 
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where µ∗ represents the oil viscosity. h represents the nominal oil film thickness given by (1), as shown by the dotted 
line in Figure 3. Th  represents the average oil film thickness which can be obtained by integrating the local film 
thickness hT, with introduction of a polynomial density function in stead of the Gaussian frequency density function 
for random surface roughness, as given by the following expressions: 

hhT =   ( )3H r ≥  , 

( )( )( )({ }222
T Z528Z70Z140Z128Z35

256
3h −+−+++
σ

= )         ( )3H r < ,  (4) 

where Hr represents the oil film thickness to surface roughness ratio: 
      σ≡ /hHr  .     (5) 
Z represents one third of Hr ( 3/HZ r≡ ).  φ is the pressure flow factor for isotropic surfaces, representing the effect  
of surface roughness on the oil flow due to mean 
pressure difference: 0U2 =

1U

h
Th

x

Orbiting thrust plate 

Cylindrical thrust plate )H56.0exp(90.01 r−−=φ  . (6) 
φs is the shear flow factor, representing the effect of 
the surface roughness on fluid transportation, as 
given by 
 , (7) ( ) ( rs2rrs1rs HVHV Φ−Φ=φ )
where Vr1 and Vr2 are the variance ratio, defined by Figure 3: Film thickness function. 
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Φs is a function of Hr, given by 
2

r3r21 HH
r1s eHA α+α−α=Φ  ( )5H r ≤  ,  rH25.0

2s eA −=Φ ( )5H r >  ,  (9)  
where A1, A2, α1, α2 and α3 are given in a Table by Patir & Cheng (1979), for isotropic surface roughness : 

A1=1.899, A2=1.126,      α1=0.98, α2=0.92,        α3=0.05 .  (10) 
 
Here introduce the following non-dimensional variables: 

or/rR ≡ ,       ,          ap/pP ≡ refh/hH ≡ ,      refTT h/hH ≡ ,     tω≡τ   .  (11) 
where pa represents the atmospheric pressure, href an arbitrary standard film thickness and ω the angular orbiting 
velocity. With these variables, equation (3) relative to the Cartesian coordinates (x, y) can be transformed to the 
following non-dimensional expression relative to the polar coordinates (R, θ): 
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where λ is the bearing number determining the bearing load capacity and σs is the squeeze number representing the 
squeeze film works, as defined by 
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3.2 Oil Film Thrust and Viscous Forces 
The Average Reynolds Equation (12) can be numerically solved to calculate the oil film pressure. Integrating p(r,θ) 
over the whole bearing surface, the resultant oil film force FOIL can be calculated: 

drrd),r(pFOIL θθ= ∫∫ .     (14) 

In addition, as given by Patier & Cheng (1979), the oil film viscous force Fvs on the bearing surface with random 
roughness, due to oil viscosity, can be calculated by 

( )[ ] drrdV2
h
VF fs2rfsfvs θφ−φ+φ

µ
= ∫∫

∗
   ,    (15) 

where φf and φfs are called a “shear stress factor”, correcting the effect of the surface roughness on the oil film 
shearing force. These factors are given by the same expressions as expressions (7) to (10) (refer to Patier & Cheng 
1979 for details). For smooth and parallel friction surfaces, φf and φfs approach 1.0 and 0, respectively, and then 
expression (15) is reduced to a well-known oil film shearing force.  
 
 
3.2 Solid Contact Force and Its Shearing Force 
The solid contact theory by Greenwood & Williamson (1966) assumes a plastic contact of the hemispherical 
projection and the flat plane, thus deriving the local solid contact ratio α*(r,θ) of the local real contact area dA to the 
local nominal contact area rdθdr, in the following expression: 

∫
∞∗ φ−ηβσ=⎟

⎠
⎞

⎜
⎝
⎛

θ
≡θ

h
*(s)dsh)(sπ

drrd
dA)(r,α ,     (16) 

where the standardized height distribution φ*(s) is empirically given by Gaussian to a very good approximation: 
2s

2
1

* e
2
1)s(

−

π
=φ .                    (17) 

η represents the surface density of asperities and β the asperity summits radius. Accordingly, the solid contact 
force Fsc and the solid shearing force Fss are given by 

( ) drrd),r(pdApF ccsc θ⋅θα=⋅≡ ∫∫∫ ∗ ,    ( ) drrd),r(dAFss θ⋅θτα=⋅τ≡ ∫∫∫ ∗ , (18) 
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where pc and τ represent the plastic flow pressure and the shearing strength of the friction surface with softer 
material, respectively.  

 
3.3 Friction Coefficient 
The resultant frictional force Ff is given by the sum of the oil film shearing force Fvs and the solid shearing force Fss, 
and the resultant thrust force FT is given by the sum of the axial spring force Fs and the nominal gas thrust force Fp. 
Ultimately, the frictional coefficient µ is calculated by 

ps

ssvs

T

f
FF
FF)

F
F(

+
+

=≡µ ,     (19) 

where the nominal gas thrust force Fp, due to the pressure difference between the outer and inner spaces of the thrust 
slide-bearing, is calculated by 

      ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

−π+−π=
2

pp
)rr(pprF inout2

i
2

oinout
2

ip .   (20) 

 
3.4 Attitude of Cylindrical Thrust Plate 
The resultant frictional force Ff, the solid contact force Fsc, the oil film force FOIL and the spring forces Fs, the gas 
forces Fpo and Fpi exert on the cylindrical thrust plate, as shown in Figure 4, where the equilibrium equations of 
forces and moments are given by 

0FFFFF posscOILpi =−−++  , 

0sinFLpivrdrdsinrp),r(rdrdsinr),r(p fc =Θ⋅−θ⋅θ⋅⋅θα+θ⋅θ⋅θ ∫∫∫∫ ∗  , 

0cosFLpivrdrdcosrp),r(rdrdcosr),r(p fc =Θ⋅+θ⋅θ⋅⋅θα−θ⋅θ⋅θ− ∫∫∫∫ ∗  , (21) 

which determine the attitude of the cylindrical thrust plate, that is, the average clearance height ho, the rotations ψx 
and ψy. 
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Figure 4: Forces on the cylindrical thrust plate. 

4. MAJOR CHARACTERISTICS OF LUBRICATION 
 

4.1 Numerical Calculations 
First, the attitude of the cylindrical thrust plate is determined by the equilibrium equations given by (21). Second, 
the Average Reynolds Equation (12) is solved to determine the oil film forces, and then the solid contact forces are 
calculated. Calculated results are fed back to equations (21) to determine more correct attitude of the cylindrical 
thrust plate. For numerical calculations, the equation (12) can be reduced to the following difference approximation 
based on the central difference, as shown in Figure 5. 
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Figure 5 : Lattice division of oil film at 
the thrust slide-bearing. 

where the pressure at point “p” is approximated from the pressures at points “W”, “E”, “N” and “S”. Application of 
this difference approximation to all the lattice points derives simultaneous linear equations, which can be 
numerically solved for given boundary conditions by using the SOR(Successive Over-Relaxation) method, to 
ultimately calculate the pressure P at all the lattice points. 
 
Numerical calculations were made for the specifications shown in Table 1 and Figure 6, for the test peaces of 
lubrication tests by Ishii et al (2004). The standard deviation of roughness was σ1=2.62µm for the orbiting thrust 
plate made of Cast Iron, and σ２=0.784µm for the cylindrical thrust plate made of Aluminum Alloy with outer 
diameter ro=130.0mm and the inner one ri=75.7mm. The asperities of the Aluminum Alloy with the plastic flow 
pressure pc=1600MPa were carefully examined to find the surface density η=150mm-2 and the summits radius 
β=2µm. The refrigerant oil VG-56 has the viscosity µ*=0.051 sPa ⋅ . The pressure difference at the thrust slide-
bearing, ∆p, was adjusted at 0 and 1.0MPa. Correspondingly, the resultant thrust force FT was 800 and 9200N, 
respectively. The orbiting speed N was varied from 300 to 3600rpm, with the orbiting radius of 3.0mm, and hence 
the resultant sliding velocity V was varied from 0.0942 to 1.13m/s after all. The number of lattice division was fixed 
at 180 in the radial direction and at 24 in the tangential direction, as its permissible maximum value for our 
computer (Pentium4 2.6GHz, Memory 512MB, HDD 60GB, Compaq Visual Fortran Professional Edition 6.6.0). 
 
The formation of wedge at the thrust slide-bearing is caused by the elastic deformation of the thrust plate, which 
depends upon the excessive oil film pressure also, in addition to the gas thrust and axial spring forces. It is indeed 
difficult to perfectly solve the present subject, taking all factors into exact considerations. Thereupon, as the first 
approach, the wedge inclination tanα was assumed, based on detailed examinations, as shown in Figure 6, where the 
dotted line is for ∆p =0MPa and the solid line is for ∆p =1.0MPa. The wedge at ∆p =0MPa increases in inclination, 
since the oil film hydrodynamic pressure increases with increasing the orbiting speed. On the contrast, the wedge at  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table : Major specifications for calculations.
Orbiting thrust plate σ1 [µm]

Cylindrical thrust plate σ2 [µm]
Outer diameter ro   [mm]
Inner diameter ri    [mm]

Inside pin [MPa]
Outside pout   [MPa] 0.1 1.

0 1
0 8600

800 600
800 9200

Radial
Tangential

Surface density of asperities  η  [mm−2] 150
2.0

300～3600

Standard deviation of
surface roughness

0.051

Plastic flow pressure pc [MPa]

2.62

Asperity summits radius  β   [µm]

Bearing dimension

0.784
130.0
75.7
1600

Pressure difference ∆p  [MPa]

24

Sliding velocity V [m/s]

Nominal gus thrust force F

1
.0

p [N]

Resultant thrust force FT  [N]

0.0942～1.13
180

Axial spring force Fs [N]

3.0

Lubricant viscosity µ∗ [Pa・s]

Boundary pressure
0.1

Orbiting speed N [rpm]
Orbiting radius [mm]

Number of lattice division

500 1000 1500 2000 2500 3000 3500
0.0

1.0

2.0

3.0

Orbiting speed N [rpm]

W
ed

ge
 in

cl
in

at
io

n 
ta

n 
α

 (×
10

−4
)

∆p=1.0[MPa] ; FT=9200[N]

Case B

Case A

∆p=0[MPa] ; FT=800[N]

Figure 6 : Wedge inclination, assumed for calculations. 
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∆p=1.0MPa takes a constant inclination even if the orbiting speed 
increases, since the large gas thrust force due to the pressure difference 
holds down the effect of the oil film hydrodynamic pressure.  
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4.2 Calculated Results 
Major calculated results of lubrication at the thrust slide-bearing are 
shown in Figure 7, where the dotted line is at ∆p=0MPa and the solid line 
is at ∆p=1.0MPa. The attitude of the cylindrical thrust plate is shown in 
Figure 7a. The average height of floating on the oil, ho, increases from 5.2 
to 17.6µm at ∆p=0MPa and from 1.8 to 6.6µm at ∆p=1.0MPa, as the 
orbiting speed N increases from 300 to 3600rpm, while the attitude 
rotations were so small that it could be disregarded.  
 
Accordingly, the oil film thick enough to achieve the excellent fluid 
lubrication is formed at the thrust slide-bearing, as shown in Figures 7b 
and 7c. As N increases, the solid contact force Fsc of a small value 
decreases more, whereas the oil film force FOIL shows comparatively 
large value, rather increasing gradually. Therefore, most the thrust loads 
on the bearing is supported by the oil, even when ∆p=1.0MPa. 
Furthermore, as N increases, the solid shearing force Fss rapidly decreases, 
and hence most the resultant frictional force Ff depends upon the oil film 
viscous force Fvs. Therefore, even when ∆p=1.0MPa, Ff never increases 
so much as in proportion to the nominal thrust load FT. As a result, the 
friction coefficient µ at ∆p=1.0MPa shows very small values less than 
0.01, compared with those at ∆p=0MPa, as shown in Figure 7d, where the 
theoretical results shown by the dotted and solid lines show a good 
agreement with the plotted data from lubrication tests.  For reference the 
oil film pressure is shown in Figure 8, where its maximum value reaches 
12.5MPa at ∆p=1.0MPa and N=1800rpm (V=0.57m/s). 
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 Figure 8: Oil film pressure(without squeeze effect)  

at V=0.57[m/s] (N=1800[rpm]).  
 

Figure 7: Calculated results. 
 

International Comp



 
C104, Page 8 

 
5. CONCLUSIONS 

 
This study presented theoretical calculations for the lubrication at the thrust slide-bearing of scroll compressors, 
based on Average Reynolds Equation and Solid Contact Theory for random roughness surfaces. As a result, it is 
concluded that a wedge is formed at the sliding area, caused by elastic deformation of the orbiting scroll made of 
Aluminum Alloy, due to high pressure loads on it, and its wedge with small inclination of the order 10-4 can induce 
the oil film , thick enough to achieve the excellent fluid lubrication at the thrust slide-bearing.  
 
In the present study, calculations were made for given wedge inclinations which essentially depend upon the 
structure of the orbiting scroll, in addition to the oil film pressure at the sliding area and the high pressure loads on 
the orbiting scroll. Further theoretical calculations taking all the factors into exact considerations are intensively 
desired, to seek for the fundamental best design of the thrust slide-bearing of the scroll compressors, for its optimal 
performance. 
 

NOMENCLATURE 
 
 
 
 
 
 
 
 
 
 
 
 
 

dA local real contact area        (m2) 
Ff resultant frictional force     (N) 
FOIL oil film force (N) 
Fp nominal gas thrust force     (N) 
Fpi, Fpo gas force (N) 
Fs  axial spring force (N) 
Fsc solid contact force (N) 
Fss solid shearing force (N) 
FT resultant thrust force (N) 
Fvs oil viscous force (N) 
h  nominal oil film  
 thickness (m) 
ho  average clearance (m)
href arvitrary standard film (m) 
Hr oil film thickness to surface 
 roughness ratio (-) 

Th  average oil film  thickness  (m) 
N orbiting speed (rpm) 
p oil film pressure (Pa) 
pa atmospheric pressure (Pa) 
pc plastic flow pressure  (Pa) 
pout , pin     boundary pressure (Pa) 
ro, ri bearing radius (m) 
U1, W1, V boundary velocity (m/s)
Vr1, Vr2      variance ratio (-) 
α wedge angle (rad) 
α* local solid contact ratio (-) 
β asperity summits radius (m) 
∆p pressure difference (Pa) 
η surface density  
 of asperities (m-2) 

Θ orbiting angle (rad) 
λ bearing number (-) 
µ frictional coefficient (-) 
µ∗ oil viscosity                 ( Pa s⋅ )
σ, σ1, σ2 standard deviations of 

surface roughness     (µm) 
σs squeeze number     (-) 
τ shearing strength     (Pa) 
φ pressure flow factor (-) 
φs shear flow factor (-) 
φf, φfs shear stress factor     (-) 
ψx , ψy, rotation angle     (rad) 
ω angular orbiting  
 velocity        (rad/s) 
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