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ABSTRACT 

Recently, the natural refrigerants, particularly carbon dioxide (hereinafter called C02) with its advantageous and 

non-flammable properties, have been attracting attention, and now the water heaters that adopt the C02 heat pump 

systems are mass-produced in Japanese markets. This study presents a high-efficiency accumulator-less type scroll 

compressor with a high-pressure vessel, for C02 heat pump water heater system, which has a new thrust load control 

mechanism realizing the higher efficiency and keeping a high reliability of the thrust bearing. A new groove was 

made on the thrust bearing surface of the fixed scroll, in order to control the overturning of the orbiting scroll, thus 

preventing the gas leakage through the tip clearance, even in the low-compression-ratio operations, and thus 

achieving a compliance for the large amount of liquid refrigerant flows into the suction port. As a result, the 

accumulator-less type scroll compressor was realizable, and the compressor performance was significantly improved. 

1. INTRODUCTION 

The production of fluorocarbons containing chlorine is to be phased out by the year 2020 to protect the ozone layer. 

The Kyoto Protocol was adopted to restrict the use of HFC refrigerants from the viewpoint of high global warming 

potential. Thereupon, movements have occurred to review the natural substances as refrigerants for heat pumps, and 

recently research and development of heat pump systems, using natural refrigerants is being actively promoted. In 

the circumstances, particularly carbon dioxide (C02), with its advantageous non-flammable and non-toxic properties, 

is becoming a focus of attention from the viewpoint of low global warming potential, and aggressive works are 

being made to apply C02 to the heat pump water heater systems, which have already been commercialized in 

Japanese markets. 

In this study, a high-efficiency accumulator-less type scroll compressor with a high-pressure vessel, for our C02 

heat pump water heater system, is presented. We achieved the higher efficiency by adopting a new device of thrust 

load control mechanism, in which a new groove was made on the thrust bearing surface of the fixed scroll. The 

operating condition of the C02 refrigeration cycle has the feature of the low compression ratio, compared with other 

refrigerants. When the compressor is operated at such a low compression ratio, the orbiting scroll loses touch with 

the fixed scroll, so-called "overturning", and thereby the volumetric efficiency decreases caused by the increase in 

refrigerant gas leakage through the tip clearances. Thereupon, a special attention was paid to control the overturning 

of the orbiting scroll, where a new groove was made on the thrust bearing surface of the fixed scroll to increase the 

thrust force preventing the overturning. In order to ensure the effect of the new groove upon preventing the 

overturning, the relationship between the overturning limit and the suction dryness was carefully examined, 

experimentally and theoretically. In addition, the thrust load control mechanism realizes the accumulator-less 

refrigeration cycle, where the new groove and liquid release valves make a significant role to achieve compliance 

when the large amount of liquid refrigerant flows into the suction port, and to keep a high reliability of the sliding 
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parts at the thrust bearing. Therefore we were able to get a success to develop the first "accumulator-less" C02 heat 

pump water heater system in the world. 

2. BASIC STRUCTURE OF C02 SCROLL COMPRESSOR 

Discharge pipe Muffler 

Discharge port Compression chamber 

Control valve Suction pipe 

Throttle valve 

Oldham's ring 

Eccentric bearing 

Journal bearing 

Crankshaft 

'~~~~~3t-~- Oil pump 
o Refrigerant flow 

re-~~~~~='!Y'" • Oil Flow 

Figure 1: Cross section of the C02 scroll compressor 

2.1 Compressor Structure 
A C02 scroll compressor, developed by refining our scroll compressor for R410A, is shown in Figure 1. The fixed 

and orbiting scrolls are mated to form a multiple number of compression chambers. With the orbiting motion, these 

compression chambers move towards the center while reducing their volume to compress the refrigerant. The 

orbiting scroll is connected to the crankshaft driven by the motor. The Oldham's ring plays the role of preventing 

the orbiting scroll from self-rotation. The seal ring is attached between the orbiting scroll and the frame to divide 

the high-pressure section inside the seal ring and the intermediate pressure section outside the seal ring. 

2.2 Refrigerant Flow 
The refrigerant returning from the refrigerant cycle passes through the suction pipe and is introduced into the suction 

chambers. The refrigerant confined in the suction chambers is compressed towards the center by the orbiting motion 

and discharged from the discharge port. The discharged refrigerant is introduced to the lower part by the muffler 

and led to the upper section via the connecting channel, and discharged from the discharge pipe and sent to the 

refrigerant cycle. During this process, the oil in the refrigerant is separated to prevent from being discharged into 

the refrigerating cycle. 

2.3 Oil Flow and Back-pressure Adjusting Mechanism 
The oil accumulating at the bottom of the shell is pumped up by an oil pump to pass through the inside of the shaft. 

The oil reaching the top of the crankshaft lubricates the eccentric bearings and the main bearings in order, and then 

returns to the bottom of the shell. 
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In addition, some amount of the oil reaching the top of the crankshaft is depressurized by passing through the 

throttle valve installed in the orbiting scroll, and then reaches the periphery of the orbiting scroll. This oil lubricates 

the Oldham's ring and increases the back-pressure to prevent the orbiting scroll from overturning. 

The back-pressure is maintained at the intermediate pressure by the back-pressure adjusting mechanism installed in 

the fixed scroll. Then the oil flows into the suction chambers, and acts to seal the gas leakages in compression 

process. The shortage of the oil into the compression chamber decreases the effect of the oil sealing between the 

compression chambers, thus resulting in a decrease of the performance. On the other hand, the large amount of the 

oil fed into the compression chamber induces an overheating of the refrigerant in the suction process, thus resulting 

in a decrease of the refrigerant circulating rate. Thereupon, our compressor made a proper setting of the throttle 

valve and the back-pressure to adjust the oil into the suction and compression chambers, thus achieving the higher 

efficiency. 

3. COMPRESSOR BEHAVIORS UNDER ACCUMULATOR-LESS CYCLE 

3.1 Features of "Accumulator-less" Cycle 
When the accumulator is not equipped in the refrigeration cycle, not only the heat pump unit can be downsized but 

also the low noise can be achieved, because the noise (or refrigerant noise) transmitted from the compressor is never 

radiated from the accumulator. In addition, since the pressure loss in the refrigeration cycle can be reduced, the 

efficiency of the whole refrigerant cycle can be increased. 

On the contrast, during the transient operation at starting-up, the large amount of liquid refrigerant unsteadily flows 

into the compressor. In addition, under the conditions in which the heat exchange capacity is reduced because of a 

small temperature difference between the ambient air and the evaporator, the liquid refrigerant steadily flows into 

the compressor. Therefore, in order to achieve the "accumulator-less" refrigeration cycle, it is necessary to increase 

the compressor reliability and the dynamic stability for both unsteady liquid return and steady liquid return. 

3.2 Case of Unsteady Return of the Liquid Refrigerant 
Figure 2 and 3 show the time history of the discharge and suction pressures at starting-up at a low ambient 

temperature with and without an accumulator. Focusing on the discharge pressure in these figures, it was found that 

when an accumulator is equipped, the discharge pressure rises smoothly, while in the case of accumulator-less, the 

discharge pressure suddenly rises when the large amount of liquid refrigerant flows into the compressor. 

Furthermore, it is confirmed that the wear of the bottom surface of the orbiting scroll increases because the orbiting 

scroll is strongly pressed against the fixed scroll by the sudden increase of compression ratio. 

To solve this problem, the release valves are installed to discharge the liquid refrigerant. As shown in Figure 4, the 

release valves are made on the place where the liquid refrigerant can be released immediately after the chambers 

finish suction process. With this configuration, when the pressure abnormally rises by liquid compression, the 

refrigerant can be quickly released. 

Figure 5 shows the time history of the discharge and suction pressures at starting-up at a low ambient temperature 

without an accumulator when the release valves shown in Figure 4 are installed. Focusing on the discharge pressure 

in this figure, it is confirmed that the discharge pressure smoothly rises, as well as the case in which an accumulator 

is installed. In addition, the wear of the bottom surface of the orbiting scroll was not confirmed, and the sliding part 

was under a better condition. 
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Figure 2: Trend graph of discharge and 
suction pressures with an accumulator 
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Figure 4: Liquid release valve 
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Figure 3: Trend graph of discharge and 
suction pressures without accumulators 
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Figure 5: Trend graph of discharge and 
suction pressures with the liquid release 
valve without accumulators 

3.3 Case of Steady Return of the Liquid Refrigerant 
On the other hand, under the conditions in which the heat exchange capacity is reduced because of a small 

temperature difference between the ambient air and the evaporator, the liquid refrigerant steadily flows into the 

compressor. Therefore, when the scroll compressor with the thrust load control mechanism is adopted, a careful 

attention should be paid to low compression ratio conditions, including "overturning", which disengages the orbiting 

scroll from the fixed scroll and decreasing the volumetric efficiency, as described above. Moreover, in the case 

when the liquid refrigerant steadily returns into ---
the compressor, the "overturning" is confirmed 1·14 ......................................................................................................................... . 

at a comparatively high compression ratio. 1.12 D D Experiment 

Figure 6 shows the experimental and 
analytical results of the relationship between 
the overturning limit of compression ratio 
including the "overturning" and the dryness of 
the suction. This figure clearly indicates that 
as the dryness decreases, the overturning limit 
of compression ratio increases for both the 
experimental and analysis results. In addition, 
it also indicates that when the dryness 
approaches in the vicinity of 0.8, the 
overturning critical compression ratio 
increases by about I 0% than the case in which 
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Figure 6: Relationship between the critical overturning limit ratio 

and dryness of the suction 
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the dryness is 1.0. In other word, the compressor overturns easily as the dryness of the suction decreases. This 
phenomenon is explained as follows: as the dryness of the suction decreases, the gradient of isentropic line on the P­
H diagram increases, and hence the pressure rise in the compression process is accelerated, thus increasing the force 

to disengage the orbiting scroll from the fixed scroll. 

Based on these results, investigations can be made on how to control the overturning when the liquid refrigerant 

steadily flows into the compressor. 

4. CONTROL OF OVERTURNING 

4.1 Oil Supply Delay 
Our scroll compressor is equipped with the back-pressure adjustment mechanism as described above. As shown in 
Figure 7, in order to suppress "overturning" disengaging the orbiting scroll from the fixed scroll because of the small 
thrust force, one may increase the back-pressure. However, when the back-pressure increases, the oil is not fed from 
the back-pressure adjusting mechanism into the compression chambers while the discharge pressure rises to the 
back-pressure. As a result, an oil supply delay in lubrication to the compression chambers occurs. 

Figure 8 shows the relationship between the 
back-pressure and the time of oil supply delay 
at starting-up. As shown in this figure, when 
the back-pressure increases to 0.5, 1.0 and 1.5 
MPa, the time duration when the oil is not fed 
into the compression chambers increases. 

The time duration of non-lubricating to the 
compressor exerts a serious effect on the 
compressor reliability. Therefore, in the heat 
pump water heater systems, the start-up tests 
are carried out at the low ambient temperature 
when the large amount of liquid refrigerant 
flows into the suction port of the compressor. 
Comparing the wear at 1.5 MPa back-pressure 
with at l.OMPa back-pressure, the scratched 
damages were more severe, confirmed in the 
part of the bottom surface of the orbiting scroll 
when the back-pressure was set to 1.5 MPa, as 
shown in Figure 9. However, when the back­
pressure was set to 1.0 MPa, there appeared no 
scratched damages on the bottom surface of 
the orbiting scroll. In addition, any wear of the 
bottom surface of the orbiting scroll was not 
confirmed, and the sliding condition was under 
very well. 

Fixed scroll 
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Figure 7: Thrust force balance of scroll compressor 
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Based on these results, the thrust load control mechanism that were able to control the overturning were modified, 

securing the reliability by setting the back-pressure to 1.0 MPa or lower. 

4.2 New Groove on the Thrust Bearing 
One may devise another method that makes possible to suppress the "overturning" disengaging the orbiting scroll 

from the fixed scroll, where the orbiting scroll is pulled toward the fixed scroll. Figure 10 shows the thrust bearings 

on which a groove is formed to pull the orbiting scroll. With respect to Specification A, a groove that occupies 

about 3 7% of the total thrust bearing area is formed, whereas for Specification B, a groove that occupies about 15% 

is formed. In addition, since these grooves are formed inwards from the orbiting trajectory of the edge of the 

orbiting scroll, these are isolated from the back-pressure chamber. Furthermore, since these are also isolated from 

the compression chambers in the compression process, the grooves on the thrust bearing of the shaded area of Figure 

10 are held at the suction pressure. 

Groove 

Specification B 

Figure 10: Grooves on the thrust bearing to control the overturning 

4.2 Experimental Results 
The overturning limit of the compression ratio was measured for no groove and grooves of Specification A and B, as 

shown in Figure 11, where the abscissa is the back-pressure. From the experimental results for no groove, the 

overturning limit for Specification A and Specification B was also calculated, as shown in the same figure, where 

the vertical force balance acting on the orbiting scroll was taken into consideration, assuming that the oil film 

pressure of the thrust surface was same as the back-pressure and the pressure of the groove on the thrust bearing was 

same as the suction pressure. The dryness of the suction was assumed to be 1.0. 

As clearly shown in Figure 11, the groove on the thrust bearing greatly improves the overturning limit. Now, assume 

the target of the overturning limit of compression ratio to be 1.3. In order to achieve this compression ratio of 1.3, 

the back-pressure of the groove of Specification A is 0.8 MPa, whereas 1.2 MPa for the groove of Specification B 

and 1.35 MPa for no groove. To shorten the time of the oil supply delay, the groove of Specification A is most 

effective. When the groove of Specification A is adopted, the heat pump water heater system can be operated at 

compression ratio of 1.3 or higher, controlling the overturning. If the overturning limit of the compression ratio 
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decreases by about 10% caused by the effects of the steady liquid return, it is possible to operate at compression 

ratio of 1.4 or higher. If the compression ratio is getting 1.4 or higher, almost all the operating conditions of the heat 

pump water heater system can be covered. 

As shown Figure 11, the overturning limit of the experimental results for Specification A and Specification B is 

improved than that of the calculated results. It is assumed that the groove suction pressure has the influence on the 

oil film formation on the thrust surface. Thereupon, the suction pressure area on the thrust bearing was equivalently 

increased from the area of the groove. 

The compressor efficiency of Specification A is compared with no groove, as shown in Figure 12. There appears no 

effect of the groove on the thrust bearing for the compressor efficiency under the rated conditions (compression 

ratio: 2.1) of the heat pump water heater system. 

Back pressure [MPaG] 
~------· -------- ·--- -· ·- ---······ 

Figure 11: Relationship between back-pressure and 

overturning limit 
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Figure 12: Groove influence on the 
efficiency 

6. CONCLUSIONS 

The scroll compressor for C02 heat pump system without accumulators was developed and the following 

conclusions were obtained. 
• A high reliability was secured for unsteady and steady liquid returns even if without accumulators. 

• The groove on the thrust bearing made possible to operate the scroll compressor at a high efficiency also in 

low compression ratio. 
As a result, the noise reduction and space saving have been achieved, both of which are significant features of 

"accumulator-less" refrigeration cycle. Furthermore, the highest COP at present has been achieved in C02 heat pump 

water heater system by the synergy effect of the small pressure loss due to the accumulator-less refrigeration cycle 

and the adaptability for C02 heat pump systems due to the thrust load control mechanism. 
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