
HAL Id: hal-01093908
https://hal.inria.fr/hal-01093908

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenging Analytical Knowledge On
Exception-Handling: An Empirical Study of 32 Java

Software Packages
Martin Monperrus, Maxence Germain de Montauzan, Benoit Cornu, Raphael

Marvie, Romain Rouvoy

To cite this version:
Martin Monperrus, Maxence Germain de Montauzan, Benoit Cornu, Raphael Marvie, Romain Rouvoy.
Challenging Analytical Knowledge On Exception-Handling: An Empirical Study of 32 Java Software
Packages. [Technical Report] hal-01093908, Laboratoire d’Informatique Fondamentale de Lille. 2014.
�hal-01093908�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49572851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01093908
https://hal.archives-ouvertes.fr

Challenging Analytical Knowledge On Exception-Handling: An
Empirical Study of of 32 Java Software Packages

Martin Monperrus Maxence Germain de Montauzan Benoit Cornu
Raphael Marvie Romain Rouvoy

Technical Report, Inria, 2014

Abstract

In this paper, we aim at contributing to the body
of knowledge on exception-handling. We take nei-
ther an analytical approach (“we think exception
handling is good because X and Y”) nor an empir-
ical approach (“most developers do Z and T”). Our
method is to compare analytical knowledge against
empirical one. We first review the literature to
find analytical knowledge on exception handling,
we then set up a dataset of 32 Java software ap-
plications and an experimental protocol to stati-
cally characterize and measure the exception han-
dling design. We eventually compare our measures
against the claims on exception handling that au-
thors have made over time. Our results show that
some analytical principles for exception design do
not support the empirical validation: 1) practi-
tioners violate the principle and 2) upon analysis,
there are indeed very good use cases going against
this principle. This is in particular the case for
“Empty Catch Blocks are Bad” and “Do not Catch
Generic Exceptions”.

1 Introduction

C code handles errors using return codes. Java,
as well as other most modern programming lan-
guages has a dedicated construct for errors: ex-
ceptions. The core idea behind exception dates
back to the 70ies [10] and its implementation in
Java with try/catch/finally is very close to the
one of Modula designed in the 80ies [19]. However,
there is still no established knowledge on what a
good or a bad design of exception handling is.

We can of course find authoritative experts
who wrote a book chapter or an article on this
topic [2, 21]. However, many points on this topic
are still debated [16] and you can find on open-
source forums lively debates (if not flame wars)
about exceptions.

In this paper, we aim at contributing to the
body of knowledge on exception-handling, by iden-
tifying the reasons behind known principles of ex-
ception handling design. We take neither an an-
alytical approach (“we think exception handling is
good because X and Y ”) nor an empirical approach
(“most developers do Z and T ”). Our idea is rather
to compare analytical knowledge against empiri-
cal one. We hope that from this confrontation will
emerge principles founded on analytical arguments
and validated by empirical practices.

We first review the literature to find analytical
knowledge on exception handling (Section 2), we
then set up a dataset of 32 Java software appli-
cations and an experimental protocol to statically
characterize and measure the exception handling
design (Section 3). We eventually compare our
measures against the claims on exception handling
that authors have made over time.

To sum up, our contributions are:
• a survey of analytical knowledge on exception

handling,
• a set of empirical facts on the exception han-

dling design of 32 Java libraries,
• the validation or falsification of 6 important

claims about good exception handling.

2 Analytical Knowledge About
Exception Handling

What is analytical knowledge about exception-
handling? It is knowledge that is derived from
what one thinks about exceptions from an analyt-
ical point of view. Conversely, empirical knowledge
is knowledge that is derived from empirical obser-
vations on how practitioners use error and excep-
tion handling.

In this section, we review what has been said
by authoritative references about exception han-
dling design. We consider as “authoritative” the
knowledge described in books, articles published

1

1try {
2// code
3} catch (IOException ex) {
4throw new ServerConnectionProblemException(

ex);
5}

Listing 1: Example of Exception
Wrapping/Recast in Java

in respectful venues and Internet posts authored
by senior respected engineers from known IT com-
panies. Thanks to the Internet, many developers
assert analytical knowledge on exception handling
based on their own experience1, we do not consider
this non-authoritative knowledge.

We propose to classify the analytical knowledge
about exception usages into six categories: the de-
sign of catch sites (Section 2.1), the design of throw
sites (Section 2.2), the design of exception classes
(Section 2.3), the design of try blocks (Section 2.4),
the design of finally blocks (Section 2.4). They are
ordered by frequency of use.

2.1 Catching Exceptions

When working with a programming language that
offers exceptions, the first thing one learns about
the exception system is how to catch an exception.
Indeed, many exceptions occurred at development
time, due to the program under construction be-
ing temporarily incorrect. Those exceptions may
be thrown by the runtime environment (e.g., a
NullPointerException in Java) or by libraries
(e.g., an IllegalArgumentException).

We have found many pieces of analytical knowl-
edge about catching exceptions. First, it is rec-
ommended that, there should be no empty catch
blocks (“Don’t Catch and Ignore” [14], “Don’t ig-
nore exceptions” [2]).

Second, the scope of the caught exception is
important, the scope is statically specified by
the exception type (“catch (IOException e)”).
Many believe [14, 6] that one should not catch
the most generic exception object (“Exception”
or even “Throwable” in Java): “Do not catch Ex-
ception” [14].

Third, there is a known practice consisting of
translating an exception type into another one,
that is more appropriate, as shown in Listing 1.
This is known as “exception translation” [2], “ex-
ception wrapping” [6] or “exception recast” [21].
The goal of exception wrapping is to provide a

1See for instance http://c2.com/cgi/wiki?
ExceptionPatterns (last visited: July 2, 2013)

clean exceptional behavior, both in terms of excep-
tion types and in terms of system layers. All the
authors agree on this point. Bloch states that this
as “higher layers should catch lower-level excep-
tions and, in their place, throw exceptions that can
be explained in terms of the higher-level abstrac-
tion” [2]. Cwalina recommends “wrapping specific
exceptions thrown from a lower layer in a more
appropriate exception, if the lower layer exception
does not make sense in the context of the higher-
layer operation” [6]. Wirfs-Brock goes along the
same line and advises to “Recast lower-level excep-
tions to higher-level ones whenever you raise an
abstraction level” [21].

Exceptions often initiate a debugging session.
For the sake of debugging, there are two important
guidelines: one should “specify the inner exception
when wrapping exceptions” [6] as shown Listing 1;
also, the stack trace of the original exception—
of primary importance for debugging—should be
never be destroyed (what McCune calls “destruc-
tive wrapping” [14]).

2.2 Throwing Exceptions

The second basic activity when working with a
language with exception is to throw exception ob-
jects (instances of exception classes), usually when
error conditions are met.

First, let us recall the traditional way of han-
dling errors in exception-less programming lan-
guage, such as standard C. It consists of return-
ing error codes or passing mutable error variables
to store them. This has several drawback and ex-
ceptions have been invented to cope with them
(see [6] for a comprehensive discussion). However,
due to habits or education, many developers keep
using error-codes even with languages with excep-
tions. Consequently, it has to be said to “report
execution failures by throwing exceptions” [6] and
to “use exceptions rather than return codes” [13].
However, exceptions can be very handy to have
an agile control flow and some use them outside
exceptional cases. Some authors disagree and con-
sider that exceptions should be used “only to signal
emergencies” [21].

Second, there exist guidelines on the exception
types to be thrown. Standard development li-
braries already define a lot of exception classes.
It has been recommended to “favor the use of
standard exceptions” [2, 6]. For instance, Java’s
IllegalArgumentException is appropriate to sig-
nal that a parameter is incorrect. Also, it has been
advocated not to throw completely generic excep-

2

http://c2.com/cgi/wiki?ExceptionPatterns
http://c2.com/cgi/wiki?ExceptionPatterns

tions [14].
Another important point in the literature is

about how to create a new exception. Cwalina
et al. recommends “to consider using exception
builder methods” [6]. Wirfs-Brock warns from
repeatedly re-throwing the same exception [21].
Both guidelines aim at facilitating debugging and
evolution.

Finally, the guidelines on throwing exceptions
can also be very technical as illustrated by the
following recommendations of Cwalina et al.’s
book [6]: 1. “Avoid explicitly throwing exceptions
from finally blocks”; 2. “Do not have public mem-
bers that can either throw or not based on some
option”; 3. “Do not have public members that re-
turn exceptions as the return value or an out pa-
rameter”.

2.3 Designing Exception Classes

Once a programmer is acquainted with throwing
and catching exceptions, she may design her own
exception classes. Let us now review the main
guidelines on designing exception classes.

First, Java, .Net and other languages provide
two kinds of exceptions: checked and unchecked
exceptions. The checked exceptions are subject
to compile-time verification. Unchecked are sim-
ilar to those exceptions found in dynamic lan-
guages. We detail their semantics later (in Sec-
tion 3.7). There is no consensus on when and how
to choose between checked or unchecked excep-
tions. For example, some technology gurus, such
as Robert C. Martin (“Uncle Bob”), recommend to
“use unchecked exceptions” [13].

Second, thrown exceptions are meant to signal
an error and to trigger some kind or recovery (or
to log for offline analysis). Both use cases require
detailed information. As such, it is recommended
to add state to exception classes (e.g., using class
fields) [13, 21], which is summarized as “provide
context with exceptions” [13].

Finally, exceptions in object-oriented languages
are fully fledged classes and can form exception hi-
erarchies. As Jeff Atwood puts it [1], “designing
exception hierarchies is tricky”. Wirfs-Brock pro-
poses to mitigate the problem by avoiding “declar-
ing lots of exception classes” [21].

2.4 Other Guidelines

The last guidelines to be discussed relate to the
design of try and finally blocks.

Designing Finally Blocks Cwalina et al. value
finally blocks that can be found in some lan-
guages, such as Java and .Net. They recommend
them especially for cleanup code [6]. However,
they assert that one should not explicitly throw
exceptions from finally blocks [6]. When an ex-
ception is thrown in a finally block, the initial
exception and its stack trace is lost forever and
this greatly hinders debugging. This also holds for
“return” statements in finally blocks.

Designing Try Blocks There are very few dis-
cussions on the how to design try blocks. The
only notable guideline is by Google engineers, who
recommend to “minimize the amount of code in a
try block” [17].

To sum up, much has been analytically said
about exception design. Nevertheless, what does
the reality of programs and programmers look like?

2.5 Relation between Analytical and
Empirical Knowledge

Analytical and empirical knowledge on exception-
handling are not completely independent. Analyt-
ical knowledge about exception handling has an
impact on practice.

First, it gives the foundations of the exception-
handling constructs and semantics of a program-
ming language. Given their experience and analy-
sis, the designers of a programming language make
design decisions on how exceptions are specified
and handled (statically and dynamically). This
has an impact on practice: due to the choices of
the language designers, some design may be im-
possible to implement given the constructs of the
language and the associated compilation errors.

Second, thinkers derive guidelines from this
analytical knowledge about exception handling.
Within a given programming language, those
guidelines aim at helping practitioners to de-
sign and implement “good” exception handling
(“good” w.r.t. performance, understandability,
reuse, maintenance, etc.). The readers of those
guidelines may follow them, which is an impact
from the analysis to the practice. There may be
a relation between the programming language de-
sign decisions and guidelines: some guidelines may
be workarounds for pitfalls of the exception sys-
tem.

3

1<try>try <block>{
2<expr_stmt ><expr><call>
3<name><name>s</name>.<name>update </name></name>
4<argument_list >()</argument_list >
5</call></expr>;</expr_stmt >
6}</block ><catch>catch (
7<param ><decl>
8<type><name>GeneralSecurityException </name></type>
9<name>e</name>
10</decl></param >)<block >{
11<throw >throw <expr>new <call><name>DNSSECException </name><argument_list >(
12<argument ><expr><call>
13<name><name>e</name>.<name>toString </name></name>
14<argument_list >()</argument_list >
15</call></expr></argument >)
16</argument_list ></call></expr>;</throw >
17}</block ></catch >
18</try>

Listing 3: The XML tree extracted from Listing 2 using srcML

1try {
2s.update (); }
3catch (GeneralSecurityException e) {
4throw new DNSSECException(e.toString ()); }

Listing 2: An excerpt of DNSJava that throws an
exception

3 Empirical Findings on Excep-
tion Handling

We now set up an experiment to observe, charac-
terize, and measure the exception handling design
in Java libraries. Our protocol consists in stati-
cally studying the source code of Java software.

We select 6 design principle for exception han-
dling, devise measures for them and assess whether
those principles hold in practice. This process en-
ables us to validate or invalidate analytical knowl-
edge. Furthermore, our experiments also confirm
some existing findings through replication.

3.1 Challenged Analytical Principles

Based on our analysis of analytical knowledge
(see 2), we select 6 analytical principles that are
prominent in the literature:
1. “Empty catch blocks are bad”,
2. “Reuse Standard Exceptions”,
3. “Define Exceptions With State”,
4. “Use Checked Exceptions”,
5. “Consider Exception Builder Methods”,
6. “Do not Catch Generic Exceptions”.
We choose those principles because they are ei-

ther emphasized by different authors (e.g., “Empty
catch blocks are bad”) or they resonate with our ex-
perience and discussions with our fellow program-
mers.

3.2 Experimental Protocol

We now present the process we follow to stat-
ically analyze the exception handling design of
Java libraries. First, the abstract syntax tree
(AST) of a corpus of Java programs are extracted
and persisted as XML trees. Second, those trees
are queried and analyzed using the XQuery lan-
guage [3].

3.2.1 Dataset

We build a dataset of Java program as follows.
The inclusion criteria is to maximize the diver-
sity of application domains and development pro-
cesses. It goes from parts of the standard Java
library (java-regexp, java-io) to database appli-
cations (h2) and desktop applications (columba).
Some programs come from well-known and estab-
lished development organizations (Apache Com-
mons Collections, Apache Lucence) and other are
more specific (FraSCAti [20] is a middleware plat-
form developed in our software engineering re-
search group for several years). There is a to-
tal of 32 Java libraries in our dataset. These
are argouml, avrora, batik, carol, columba, com-
monscollections, DNSJava, fop, foray, FraSCAti, h2,
itext, java-regexp, java-util, jboss, jedit, jface, jhot-
draw, jUnit, jython, log4j, lucene, org-eclipse-jdt-
core, org-eclipse-ui-workbench, pmd, rhino, Scarab,
solr, Struts, sunflow, tomcat, xalan. This dataset is
available as auxiliary material.

3.2.2 Implementation

Transformation of Java Source Code into
XML We extract the ASTs of java libraries using
srcML [5]. An entire program consisting of dozens

4

of Java files is transformed into a singe XML file.
In our dataset, those XML files contain between
105, 000 and 4, 826, 000 nodes and weight between
1, 172 and 52, 893 kilobytes. Listing 3 shows an
excerpt of Java source code and the corresponding
XML representation. The snippet contains a try
and a catch block, both are converted into the
appropriate XML tags.

Analysis of XML Abstract Syntax Trees To
explore the exception handling design of real Java
libraries, we query the XML abstract syntax trees
using the XQuery language. This language, com-
bined with XPath selectors, enables to quickly ob-
tain interesting metrics. For instance, the number
of catch blocks containing a throw statement is
expressed as count(//catch//throw). Listing 2
would match this selector.

3.3 Overview of the Java Exception
System

Since we analyze Java libraries, this section briefly
introduces the Java exception handling system.
In Java, an exception is “thrown” (or “raised”,
we equate those terms) when a problem arises.
For example, a NullPointerException indicates
that an access is performed to a variable that
does not contain any reference to a valid object,
or IllegalArgumentException is thrown when a
method parameter is invalid.

Some exceptions are thrown by the
underlying Java Runtime Environment
(JRE) (e.g., NullPointerException,
ArrayIndexOutOfBoundsException). The
others exceptions are also explicitly thrown
from the application code, by using the keyword
throw. Note that developers can also man-
ually throw JRE exceptions (e.g., throw new
NullPointerException().

There are two categories of exceptions in Java:
checked and unchecked. Checked exceptions re-
quire to be declared in the associated method sig-
nature if they can be thrown, but are not caught
within the body of this method. The idea of
checked exception is to force the developers of
client code to handle foreseeable errors.

Catching an exception is achieved by the pair
of keywords try and catch. The block associated
to the try (a try block) describes a sequence of
instructions that can potentially throw an excep-
tion, while the block associated to the catch refers
to the instructions to be executed whenever a spe-
cific exception is thrown within the try block. By

1int port = 8080; // default value
2try {
3port = loadPortFromConfigFile ();
4} catch (Exception ex) {
5// keeps the default value
6}
7openSocket(port);

Listing 4: Empty catch blocks to support setting
default values

1Strategy o = createDefaultStrategy ();

3try {
4o = createBetterStrategy ();
5} catch (Exception ex) {
6// keeps default strategy
7}

9try {
10o = createBestStrategy ();
11} catch (Exception ex) {
12// keeps default or better strategy
13}

Listing 5: Empty catch blocks for implementing a
strategy design pattern

using several catch clauses, the developer can dis-
tinguish the treatment to be applied upon error
depending on the type of exception thrown by the
system.

In addition, the keyword finally can be ap-
pended at the end of a try block (whether there
is no, one or multiple catch blocks) to describe
a body of statements that are always executed
(whether an exception is thrown or not).

3.3.1 Presentation Template

For all the challenged design principles, we use the
same template for presentation: definition, analyt-
ical knowledge, previous empirical knowledge, our
empirical results, discussion.

The definition explains the content and ratio-
nal of this principle. The analytical knowledge
summarizes the arguments presented in Section 2.
The previous empirical knowledge gives empirical
figures about this claim (e.g., abundance), which
we found in previous papers. Then, we present
out empirical results measured on the dataset pre-
sented in 3.2.1. Finally, a discussion synthesizes
the pros and cons of the principle and whether it
has supported the confrontation with reality.

5

1// in ./org/eclipse/jface/viewers/deferred/
BackgroundContentProvider.java

2while (true) {
3try {
4// this is the main work
5doSort(sortingProgressMonitor);
6} catch (Exception ex) {
7// ignore
8}
9}

Listing 6: Excerpt of an empty catch block for
resilience in Eclipse JFace

3.4 Challenging “Empty Catch Blocks
are Bad”

Definition An empty catch, as its name sug-
gests, contains no code. Upon execution, an empty
catch stops the propagation of an exception and
leaves the program state as is.

Analytical Knowledge Bloch says “don’t ig-
nore exception” (in the sense of not silencing ex-
ceptions with empty catch blocks) [2, p. 258] and
TimMcCune goes along the same line [15]. Bloch’s
arguments are sharp: “The advice in this item ap-
plies equally to checked and unchecked exceptions.
Whether an exception represents a predictable ex-
ceptional condition or a programming error, ignor-
ing it with an empty catch block will result in a pro-
gram that continues silently in the face of error.
” However, Bloch may admit some empty catch
blocks when they “contain a comment explaining
why it is appropriate to ignore the exception.”.

Previous Empirical Knowledge Reimer [18]
observed that between 2% and 26% of catch blocks
are empty in the JDK and in 6 closed-source appli-
cations. Fu and Ryder [7] confirmed that between
5% and 40% of catch blocks are empty handlers
(out of 2099 catch blocks from 5 applications).

Our Empirical Results In our dataset, all
(32/32) libraries contain empty catch blocks, up to
hundreds of times. For instance, Eclipse’s JDT-core
has 423/1430 (30%) of them and Tomcat 309/2348
(13%). This further confirms the aforementioned
empirical results [18, 7]. We have refined the
measurement to count empty documented catch
blocks (this measure has never been computed
before). For instance, iText contains 118 empty
catch blocks, 43 of them being documented. Some
libraries document catch blocks very systemati-
cally, up to 100% (423/423 for JDT-core).

Discussion According to Bloch’s statement,
empty catch blocks should be rare. In practice,
they often occur up to 1 catch block out of 3
(for Eclipse JDT). This empirical reality suggests
that there exist good reasons to write empty catch
blocks. To further understand the meaning and
the relevance of empty catch blocks, we have ran-
domly browsed dozens of empty catch blocks. We
now present the result of this grounded approach
and discuss usages of empty catch blocks that we
consider as proper design: falling back to default
values (see Listing 4), trying different strategies
(see Listing 5), and resilience (see Listing 6).

Falling back to a default value means that if the
computation fails, there is a meaningful best-effort
value to continue the execution. There are many
variants of this, such as assigning the default value
inside the catch block or returning a default value
when in a method, Listing 4 presents such a catch
block.

Trying different strategies consists in variations
of the chain of responsibility design pattern where
different alternatives are available for the same
task. For instance, Listing 5 shows several state-
ments that are chained in order to try several
strategies. The empty catch block that stops the
exception of a strategy enables one to keep the
previously successfully computed object.

By resilience, we mean that an exception may
crash the current action being performed, but not
the whole application. For instance, a request to
server may fail, but should not crash the applica-
tion. An application of such a resilience scenario
is shown in Listing 6. Similarly, in a loop over el-
ements, an exception may occur for one element
but should not crash the rest of the computation
being performed (not presented for sake of space).
In both cases, an empty catch block is relevant.

Empty catch blocks can be used to transform
exception-oriented error-handling into return-
oriented error-handling as shown in Listing 7.

Finally, there exists hidden empty catch
blocks—i.e., programming designs or idioms that
are in essence equivalent to empty catch blocks.
For instance, using a new thread to perform an ac-
tion is equivalent to an empty catch: when an ex-
ception occurs, the newly created thread crashes,
but not the whole application. Hence, applications
with many short-lived threads, such as GUIs with
thread-based event handling, have a kind of built-
in resilience due to those many “implicit empty
catch blocks”.

6

1// in org/mozilla/javascript/Kit.java
2try {
3return loader.loadClass(className);
4} catch (ClassNotFoundException ex) {
5} catch (SecurityException ex) {
6} catch (LinkageError ex) {
7} catch (IllegalArgumentException e) {
8// Thrown if className has incorrect

characters
9}
10return null;

Listing 7: Empty catch blocks in Rhino
can convert exception-oriented error-handling in
return-oriented error-handling

Empty catch blocks are much used in prac-
tice. When the global application state is cor-
rect, stopping the exception propagation is ap-
propriate and this is what empty catch blocks
do.

Bloch’s sharp reject of empty catch block was
not completely right with regards to empirical ev-
idence: we would reformulate “don’t ignore excep-
tions” as “consider using empty catch blocks when
the global application state is correct”. To con-
clude, the empirical evidence has seriously chal-
lenged the analytical belief that “empty catch
blocks are bad”. We have presented a list of scenar-
ios in which they are indeed relevant and meaning-
ful.

3.5 Challenging “Reuse Standard Ex-
ceptions”

Definition A standard exception is an ex-
ception whose definition is provided by a
third-party software library, including the
standard runtime environment, such as the
JDK in Java. Examples of standard excep-
tions include IllegalArgumentException and
IllegalStateException. Such exceptions are
usually caught and handled by the applications
building on these libraries.

However, “reuse standard exceptions” actually
focuses on throwing exceptions and not catching
them. Indeed, standard exceptions can also be
thrown by application code whenever their seman-
tics matches the context of execution. For in-
stance, in Java, when an incorrect parameter is
passed as an argument of a method call, it is mean-
ingful to throw an IllegalArgumentException, as
shown in Listing 8, which reports such an example
from our dataset.

Analytical Knowledge Cwalina and
Abrams [6] promote reusing standard excep-
tions. In particular, they advise to “consider
throwing existing exceptions residing in the
System namespaces instead of creating custom
exception types (esp for usage errors)”. This
means adopting, whenever it is considered as
appropriated, the standard exceptions that are
provided by the underlying system (e.g., the .Net
or Java runtime environments). According to
them, developers should “create and throw custom
exceptions if [they] have an error condition that
can be programmatically handled in a different
way than any other existing exception. Otherwise,
[they should] throw one of the existing excep-
tions.” This means that before creating her own
exception, the developer should look at whether
some the exception abstractions provided by the
libraries at hand can be meaningfully applied.
In any case, they advise to “not create and
throw new exceptions just to have ´your team’s´
exception.” All these rules are acknowledged by
Bloch in [2], who recommends to “favor the use
of standard exceptions.” Indirectly, by claiming to
“avoid declaring lots of exception classes”, Wirfs-
Brock [21] advises the developers to carefully
design custom exceptions, an objective that can
be achieved by reusing standard exceptions.

Previous Empirical Knowledge We do not
have identified any empirical studies on throwing
standard exceptions.

Our Empirical Results In our dataset, all
(32/32) applications throw standard exceptions
within their code and for 22 of them (73%) the
most thrown exception is a standard exception.
For instance, in iText, the most commonly thrown
exception is an IllegalArgumentException
(168/881 thrown exceptions, 19%). More
specifically, one can observe that standard
exceptions like IllegalArgumentException,
IllegalStateException, and IOException are
all thrown by the libraries of our dataset.

Discussion Among the standard exceptions
that are reused, our experience with browsing
exception-handling code reveals specific cases.
First, the standard exceptions Exception and
Throwable are used to report error messages to
the end-user (see Listing 9). Second, the stan-
dard exception RuntimeException is mostly used
to convert a checked exception into a unchecked

7

1// in java/org/ow2/carol/jndi/ns/AbsRegistry.
java

2public void setPort(int p) {
3if (p <= 0) {
4throw new IllegalArgumentException("The

number for the port is incorrect. It
must be a value > 0. Value was ’" + p
+ "’");

5}
6this.port = p;
7}

Listing 8: Reuse of the standard exception
IllegalArgumentException to capture non-
authorized parameters.

1// in src/java/org/apache/fop/render/rtf/
rtflib/tools/BuilderContext.java

2public void replaceContainer(RtfContainer oldC
, RtfContainer newC) throws Exception {

3// treating the Stack as a Vector allows
such manipulations (yes , I hear you
screaming ;-)

4final int index = containers.indexOf(oldC);
5if (index < 0) {
6throw new Exception("container to replace

not found:" + oldC);
7}
8containers.setElementAt(newC , index);
9}

Listing 9: Exception used to report an error.

one, we will come back on this point in 3.7.

All in all, the design principle “Use Checked
Exceptions” is much applied in our dataset.
There is a clear match between analytical and
empirical knowledge, which validates the prin-
ciple.

3.6 Challenging “Define Exceptions
With State”

Definition An exception with state is an excep-
tion that contains additional data on the failure
cause or the failure context. This additional data
is usually encoded as fields in the exception object.

1// in src/org/argouml/util/MyTokenizer.java
2public void putToken(String s) {
3if (s == null) {
4throw new NullPointerException("Cannot put

a null token");
5}
6putToken = s;
7}

Listing 10: NullPointerException used to
capture an illegal argument.

For example, a IllegalParameterException can
be defined with a field that contains the name of
the incorrect argument.

Analytical Knowledge Martin says “provide
context with exceptions” [13, p. 107]. Wirfs-Brock
goes along the same line: “provide context along
with an exception” [21]. Martin says that addi-
tional data should always be present: “Each excep-
tion that you throw should provide enough context
to determine the source and location of an error.
In Java, one can get a stack trace from any excep-
tion; however, a stack trace can not tell you the
intent of the operation that failed.”

Bloch is more specific about the nature of the
additional information: “Include failure-capture
information in detail messages” [2, p. 254]. In par-
ticular: “the detail message of an exception should
contain the values of all parameters and fields that
"contributed to the exception."”

As we can see, all authors agree that the stack
trace is insufficient and that additional data is re-
quired.

Previous Empirical Knowledge We do not
have found anything on this topic.

Our Empirical Results In our experiment, we
consider that an exception has a state if and only if
it contains at least one additional significant field2.
In our dataset, there are 389 domain specific ex-
ceptions. Among them, we found 112 exceptions
with additional fields. Also, we notice that in prac-
tice, many exception definitions duplicate already
existing information. For example, 44 exceptions
have the cause exception as a field (already present
in Throwable), 2 exceptions duplicate the message
(idem) and 1 explicitly defines its stack trace (ibi-
dem). All this data being already present in a ba-
sic exception, these exceptions are not considered
as exception with state.

On those 112 exceptions with state, 101 excep-
tions contain additional data directly related to
the context where the failure occurs. For instance,
Listing 11 reports an excerpt of a stateful excep-
tion: the immutable exception includes data about
when a signature expired (field when) and when
this signature has been called (field now).

Also, there are 11 exceptions that contain infor-
mation on the type of error encoded as an error

2The Java specific field serialVersionUID is not con-
sidered as an additional field

8

1class SignatureExpiredException extends
DNSSECException {

2/* When the signature expired */
3private Date when;
4/* When the verification was attempted */
5private Date now;

7SignatureExpiredException(Date when , Date
now) {

8super("signature expired");
9this.when = when;
10this.now = now;
11}
12}

Listing 11: Domain exception with state from
DNSJava

code value. Listing 12 shows a example of such an
exception.

Discussion We observe that less than 30%
domain-specific exceptions (112/389) define some
state. This shows that the design principle “define
exceptions with state” does not hold systematically.

Figure 1 shows the number of exceptions with
state and the number of stateless exceptions for
each project. Only 1 project (java-regexp) contains
100% of stateful exceptions (in total 1 domain-
specific exception) where 8 projects do not contain
any exception with state. The distribution of the
exceptions with state does not seem to be corre-
lated with the project size. For example, fop and
java-util have the same number of domain-specific
exceptions (20 exceptions defined) but fop has only
4 exceptions with state (20%) where java-util has
12 (60%). The distribution does not seem either
linked with the reputation of the organization be-
hind each library. Indeed, the well-known and used
tomcat has 15% of exception with state, the fa-
mous Eclipse’s jdt-core has 22% while the much
less known libraries and Avrora have respectively
57% and 68% of stateful exceptions.

These figures show that Bloch, Martin, and
Wirfs-Brock’s analytical design principles do not
really find their ways in real projects.

3.7 Challenging “Use Checked Excep-
tions”

Definition The Java language defines two kinds
of exceptions: checked and runtime exceptions
(also called unchecked exceptions) [11, Chap-
ter 11]. The checked exceptions are subject to
compile-time verification. The verification ensures
that raised checked exceptions are either handled
or explicitly declared in the enclosing method’s sig-

1class ClassFormatException extends Exception {
2public static final int ErrBadMagic = 1;
3public static final int ErrBadMinorVersion =

2;
4public static final int ErrBadMajorVersion =

3;
5...
6public static final int

ErrInvalidMethodSignature = 28;

8private int errorCode;
9public ClassFormatException(int code) {
10this.errorCode = code;
11}

13/**
14* @return int
15*/
16public int getErrorCode () {
17return this.errorCode;
18}
19}

Listing 12: Domain exception with error-code
from jdt-core

nature.

Analytical Knowledge The authors of the
Java language specification [11] say that “Most
user-defined exceptions should be checked excep-
tions. ” because “compile-time checking [..] aids
programming in the large”.

Bloch [2] recommends to “use checked exceptions
for recoverable conditions and runtime exceptions
for programming errors” (item 40) and to “avoid
unnecessary use of checked exceptions” (item 41).
Both recommendations are related to a known de-
bate on first, whether Java checked exceptions are
good or not [16], and what should be the design
principles to choose between one form and the
other [9].

We can list many other documents, either in fa-
vor or against checked exceptions. Indeed, as the
Java language designers themselves put it, checked
exceptions are sometimes considered as “an irrita-
tion to programmers” [11].

For unrecoverable checked exceptions, the pro-
grammers have 2 choices: either they write a fake
try-catch block to simulate a recovery block or
they declare the checked exception in the enclosing
method signature. The former is a known practice
that consists of catching checked exceptions and
wrapping them in runtime exceptions, as shown in
Listing 13. Let us call this implementation pattern
the “checked-runtime wrapping pattern”.

The other solution, explicitly declaring the ex-
ception that can be thrown is called the “excep-
tion declaration pattern”. When developers declare

9

S
tr

ut
s

fo
ra

y
Ja

va
-r

eg
ex

p
C

ar
ol

co
m

m
on

sc
ol

le
ct

io
ns lo

g4
j

jh
ot

dr
aw

C
ol

um
ba

jfa
ce

S
ca

ra
b

so
lr

jb
os

s
or

g-
ec

lip
se

-u
i-w

or
kb

en
ch rh

in
o

jy
th

on
ar

go
um

l-a
pp

jU
ni

t pm
d

h2 je
di

t
F

ra
S

C
A

ti ba
tik

D
N

S
Ja

va ite
xt

fo
p

ja
va

-u
til

xa
la

n
or

g-
ec

lip
se

-jd
t-

co
re

av
ro

ra
to

m
ca

t
lu

ce
ne

0
5

10
15
20
25
30
35
40

without state

with state#
E

xc
ep

tio
ns

Figure 1: Number of exceptions with state and the number of stateless exceptions for each project

1try {...}
2catch (IOException e) { // IOException is

checked
3throw new RuntimeException(e);
4}

Listing 13: The Classical Workaround For
Checked Exceptions

throws Exception in method signatures instead
of declaring a specific type of checked exception,
it means that they do not think that the fine grain
exception declaration of Java would make sense.

Both patterns are somehow empirical recipes to
disable the exception checking mechanism of the
Java compiler.

Previous Empirical Knowledge Kiniry [12]
analyzed the JDK 1.4.1 and asserted that there
are 50 defined runtime exceptions and 150 checked
exceptions. He also shows that runtime excep-
tions are more often thrown: there are 3, 000 times
where a runtime exception is thrown versus 2, 650
where a checked exception is thrown.

Our Empirical Results We have measured the
usage of checked and runtime exceptions.

First, we have looked at whether programmers
of software libraries from our dataset prefer to use
checked or runtime exceptions. In total, 15/32
defines more checked exceptions than runtime ex-
ceptions and 12/32 defines more runtime excep-

tions than checked exceptions (the remaining de-
clare as many checked as runtime). On the ex-
tremes, Eclipse’s jdt-core defines 19 runtime excep-
tions and 3 checked exceptions, and Rhino defines
9 runtime exceptions out of 10 domain exceptions.

Second, we have measured the number of in-
stances of the checked-runtime wrapping pattern.
The most basic version of this pattern consists
of catching the checked exception and throwing
a RuntimeException: 26/32 projects use at least
once this pattern. The maximum number of in-
stances is in Apache Lucene: the code base throws
263 new runtime exceptions.

Third, we have measured the number of in-
stances of the exception declaration pattern for
Exception, that is the number of times throws
Exception is declared in the method signature.
27/32 projects use at least once the exception dec-
laration pattern. The maximum number of in-
stances is in Scarab where 525 methods declare
throws Exception in their signature.

Finally, we consider the concrete example of
IOException which is the most common checked
exception of the JDK. It happens when an in-
put/ouput operation fails, for instance, when one
opens a file that does not exist. All projects do
catch IOException (up to 456 times in Lucene).
All projects declare IOException to be throw-
able in at least one method. The maximum value
is for Lucene: 4765 methods declare throwing
IOException.

10

Discussion Checked exceptions are used in
practice: programmers indeed define and throw
checked exceptions. However, there are also two
major pieces of evidence that checked exceptions
are questionable.

First some projects deliberately only use run-
time exceptions. They do not seem to be written
by novice uneducated developers. In our dataset,
there are 6 software projects hosted by the Apache
foundation that prefer runtime exceptions. The
Apache foundation is known to gather very good
developers and to foster best-practices. Further-
more, Eclipse jdt-core also much favors runtime ex-
ceptions. This is very interesting: the developers
of a Java compiler, who are aware of all subtleties
of the language, who have handled thousands of
compiler bug reports, prefer to only use runtime
exceptions.

Our results challenge the statement that
“compile-time checking [..] aids programming
in the large”: many respectful developers do
not think so.

Second, we have shown many traces of
workarounds to trick the static exception check-
ing mechanism (in the form of the checked-runtime
wrapping pattern), both in terms of number of
projects using the pattern and total number of
occurrences. This means something with respect
to library design. When one defines checked ex-
ceptions within one’s own project, one is the only
impacted by this design choice. When one de-
clare checked exceptions in a library interface, all
clients are impacted. Our empirical study gives
numerical values of this impact: there are hun-
dreds of times where developers catch a poten-
tial checked exception declared by a library and
wrap them as a runtime. For instance, there is
a total of 1034 catch elements of IOException
which re-throw a fresh runtime exception (in our
dataset). If IOException had been a runtime ex-
ception, many workarounds and similarly irritat-
ing code would have been avoided.

There is a difference between inner-
application checked exceptions and library
checked exceptions. The latter can induce
workarounds in thousands of methods of client
code.

1// in DNSJava
2throw parseException(fullName , "Name too long"

);

4// in Jython
5throw makeException(t);

7// in Foray
8throw unexpectedValue(value , fobj);
9throw this.unexpectedRetrieval ();

11// in H2
12throw convertException(e);
13throw throwUnsupportedExceptionForType("+");
14throw getUnsupportedException ();

Listing 14: Examples of the Usage of the
Exception Builder Pattern

3.8 Challenging “Consider Exception
Builder Methods”

Definition An exception builder method is a
helper method to obtain exception objects. It
is a variant of the builder pattern [8]. In-
stead of using a throw new A(...) the de-
veloper invokes an helper in order to in-
stantiate the exception to be thrown, e.g.
throw helper.raiseException(...).

Analytical Knowledge Kwalina recommends
“using exception builder methods.” The main rea-
son is to avoid code bloat for the configuration of
the exception objects.

Our results In our dataset, 19/32 libraries con-
tain usages of the exception builder pattern. Still,
some projects do not use this pattern at all, this is
the case for Apache Commons collections and java-
utils. Then, the frequency of usage ranges from ex-
ceptional (less than 1%) in projects such as Eclipse
jdt-core, Jboss, or Tomcat and raises up to 60.5%
in Java-regexp, 81.7% in Jython, and 81.8% in H2
code-bases. Jython and H2 are particularly inter-
esting as they are following the design principle
very systematically.

Discussion We have identified 3 forms of using
the exception builder method pattern.

First, the object where the exception occurs em-
beds the builder method. This follows the single
responsibility principle in the scope of the object.
A method centralizes the exception building mech-
anism for a given class. Examples from 4 different
projects are shown in Listing 14.

Second, a utility class provides some static
methods for exception building. This centralized

11

1// Jython
2throw Py.TypeError("__dict__ must be set to a

Dictionary "+newDict.getClass ().getName ())
;

Listing 15: Examples of the Usage of the
Exception Builder Pattern as Static Method

1// Jython (info is the injected object)
2throw info.unexpectedCall(args.length , true);

4// DNS Java (st is the injected object)
5throw st.exception("unexpected tokens at end

of record");

Listing 16: Modularizing exception building using
dependency injection

class is accessible from anywhere in the project.
As shown in Listing 16, Jython uses this pattern
for managing the building of Python exceptions.

Third, an injected dependency provides some
exception related methods. This elegant design
allows the replacement of the exception building
mechanism by another one when necessary. In ad-
dition, a second benefit of this form is to permit
the use of exception mocks for testing purpose.

To our knowledge, we are the first to provide
an empirical characterization of the usage of ex-
ception builders. We note that projects that use
exception builder method pattern do not limit its
implementation to a particular form, but mixes
them. H2 uses (1) and (2), DNSJava uses (1) and
(3), Jython uses all three forms.

Not all projects use a form of exception
builder, but when it is done, it gives birth to
very advanced design.

3.9 Challenging “Do not Catch Generic
Exceptions”

Definition In most mainstream object-oriented
programming languages, the exceptions use the
same type system as classes. Consequently, one
can define a hierarchy of exceptions. This has
very important consequence, when a try-catch
block declares to catch an exception type t, it
actually catches exception instances of all sub-
classes of t. In other terms, when one writes
catch(Exception e), all exceptions are caught,
when one writes catch(FileNotFoundException
e), only specific exceptions are caught (In Java,
the most generic type of exception is Throwable

but this is implementation-specific. In this paper,
when we use Exception, we refer to the conceptual
most generic kind of exception).

Analytical Knowledge McCune asserts “Don’t
catch Exception”. Cwalina qualifies this asser-
tion and adds a distinction between framework
code and application code: “Do not swallow errors
by catching non-specific exceptions in framework
code”, “Avoid swallowing errors by catching non-
specific exceptions in application code”. Here the
key difference lies in the “do not” versus “avoid”. A
search on the Internet indicates that “Don’t catch
Exception” is a kind of urban legend, as witnessed
by the wiki page of Ward Cunningham’s website3.

Previous Empirical Knowledge Cabral and
Marques [4] give the percentage of generic catch
blocks (catch(Exception e)) for 4 kinds of sys-
tems (libraries, server applications, server and
stand alone applications) in 2 different program-
ming languages (.Net and Java). According to
their experiments, in .Net, the generic exception
type is the most common caught exception for all
4 kinds of systems. It even accounts for more than
50% of all catch blocks in standalone applications.
In their dataset of Java applications, the generic
exception types (Exception and Throwable) are
ranked #2 in the top caught exception list.

Our Empirical Results In our dataset all 32 li-
braries catch at least once Exception. In addition,
25/32 catch at least once Throwable. They are no
lonely catch blocks written by novice developers
and uncaught by a code review or the continuous
checking system: In Tomcat, they are 475 catch
blocks (out of 2, 348, 20%) catching Exception.
Tomcat is not an exception, there are 13 libraries
for which we found more than 100 generic catch
blocks.

Discussion Many developers write generic catch
blocks. Qualifying this claim by our dataset, a
stronger argument is that many respectful devel-
opers of high-quality open-source projects write
generic catch blocks. The unqualified “Don’t catch
exceptions” is very much challenged. If one trusts
so many expert developers, one accepts that catch-
ing generic exceptions is sometimes a good design
principle. The question that arises is: when is it
good to catch the most generic type of exceptions?
Over the course of our experiments, we analyzed

3http://c2.com/cgi/wiki?DontCatchExceptions

12

http://c2.com/cgi/wiki?DontCatchExceptions

many such generic catch blocks. We discovered
two main reasons to have catch generic exceptions.

First, the resilience exception handling pattern
involves catching the most generic exception type.
We have presented and discussed this pattern
above in Section 3.4. This pattern indeed involves
a caught exception type that is generic.

Second, catching Exception is useful for ensur-
ing a strong and interesting exception contract.
An exception contract is contract on a code ele-
ments related to exceptions. For instance, in Java
and related languages, checked exceptions relates
to a contract on methods: “no checked exceptions
will ever be raised by calling this method”.

We discovered that catching Exception is nec-
essary to provide the following exception contract:
“if an exception is thrown, it will be of type X”.
We call this contract the “all-in-one exception con-
tract” (for referring to the idea that all exception
types are translated in one single exception type).
This contract can be implemented as follows: 1)
the complete method body is wrapped in a try-
catch, 2) the catch block catches the most generic
exception type, 3) the catch block throws an ex-
ception of type X (and optionally wraps the caught
exception inside the thrown exception).

For instance, Listing 17 shows a method of the
Apache Tomcat server which implements this con-
tract. By construction, this method guarantees
that if an normal exception is thrown4, it will be
of type JasperException.

Note that this contract is different from the
checked exception contract. Adding “throws
JasperException” says that “there exist situ-
ations where such a JasperException can be
thrown”. On the contrary, a well-implemented
all-in-one exception contract ensures that only
JasperException can be thrown.

To sum up, we empirically found two cases in
which catching the most generic exception type
makes sense and contradicts the bold statement
that one should not catch Exception. To our
knowledge, we are the first to unveil this part of
exception handling design.

4 Conclusion

In this paper, we have studied the exception han-
dling design of 32 Java libraries. The outcome of
this study is twofold.

4We explained above that we discard the language-
specific and conceptually irregular Java “Error”

1// in Tomcat ’s JspRuntimeLibrary.java
2Object convert(String propertyName , String s,

Class t, Class propertyEditorClass) throws
JasperException {

3try {
4// 39 lines of code
5} catch (Exception ex) {
6throw new JasperException(ex);
7}
8}

Listing 17: A Real World Example of the All-in-
one Exception Contract. This method guarantees
that if an exception is thrown, it will be of type
JasperException

First, some analytical principles for exception
design do not support the empirical validation:
1) practitioners violate the principle and 2) upon
analysis, there are indeed very good use cases go-
ing against this principle. This is in particular the
case for “Empty Catch Blocks are Bad” and “Do
not Catch Generic Exceptions”.

Second, our study has reveals specific exception
design patterns, such as resilience and the all-in-
one exception contract. They all contribute to the
body of knowledge on exception handling.

References

[1] J. Atwood. Creating more excep-
tional exceptions. http://www.
codinghorror.com/blog/2004/10/
creating-more-exceptional-exceptions.
html, 2004.

[2] J. Bloch. Effective Java. Addison-Wesley,
2001.

[3] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Siméon. Xquery
1.0: An xml query language. W3c working
draft 04 april 2005, W3C, 2005. http://www.
w3.org/TR/xquery/.

[4] B. Cabral and P. Marques. Exception han-
dling: A field study in java and. net. In
ECOOP 2007–Object-Oriented Programming,
pages 151–175. Springer, 2007.

[5] M. L. Collard, H. H. Kagdi, and J. I. Maletic.
An XML-Based Lightweight C++ Fact Ex-
tractor. In Proceedings of the 11th IEEE In-
ternational Workshop on Program Compre-
hension, pages 134–143, 2003.

[6] K. Cwalina and B. Abrams. Framework De-
sign Guidelines: Conventions, Idioms, and

13

http://www.codinghorror.com/blog/2004/10/creating-more-exceptional-exceptions.html
http://www.codinghorror.com/blog/2004/10/creating-more-exceptional-exceptions.html
http://www.codinghorror.com/blog/2004/10/creating-more-exceptional-exceptions.html
http://www.codinghorror.com/blog/2004/10/creating-more-exceptional-exceptions.html
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

Patterns for Reuseable .NET Libraries. Mi-
crosoft .NET development series. Addison-
Wesley, 2008.

[7] C. Fu and B. G. Ryder. Exception-chain
Analysis: Revealing Exception Handling Ar-
chitecture in Java Server Applications. In
Proceedings of the International Conference
on Software Engineering, 2007.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-
Wesley Publishing Company, New York, NY,
1995.

[9] B. Goetz. Java theory and prac-
tice: The exceptions debate. http:
//www.ibm.com/developerworks/java/
library/j-jtp05254/index.html, 2004.

[10] J. B. Goodenough. Exception handling: Is-
sues and a proposed notation. Commun.
ACM, 18(12):683–696, 1975.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha.
Java Language Specification. Addison-Wesley,
3rd edition, 2005.

[12] J. R. Kiniry. Exceptions in java and eiffel:
Two extremes in exception design and appli-
cation. In Advanced Topics in Exception Han-
dling Techniques, pages 288–300. Springer,
2006.

[13] R. C. Martin. Clean Code: A Handbook of
Agile Software Craftsmanship. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2008.

[14] T. McCune. Exception handling an-
tipatterns. Online: http://today. java.

net/pub/a/today/2006/04/06/exception-
handling-antipatterns. html, accessed, 2006.

[15] T. McCune. Exception-handling an-
tipatterns. http://today.java.
net/pub/a/today/2006/04/06/
exception-handling-antipatterns.html,
2006.

[16] Oracle. Unchecked exceptions: The
controversy. http://docs.oracle.com/
javase/tutorial/essential/exceptions/
runtime.html.

[17] A. Patel, A. Picard, E. Jhong, J. Hyl-
ton, M. Smart, and M. Shields.
Google python style guidelines. http:
//google-styleguide.googlecode.com/
svn/trunk/pyguide.html, Rev 2.54.

[18] D. Reimer and H. Srinivasan. Analyzing Ex-
ception Usage in Large Java Applications. In
Exception Handling in Object Oriented Sys-
tems: Towards Emerging Application Areas
and New Programming Paradigms, pages 10–
19, July 2003.

[19] P. Rovner. Extending modula-2 to build
large, integrated systems. Software, IEEE,
3(6):46–57, 1986.

[20] L. Seinturier, P. Merle, R. Rouvoy,
D. Romero, V. Schiavoni, and J.-B. Ste-
fani. A Component-Based Middleware
Platform for Reconfigurable Service-Oriented
Architectures. Software: Practice and
Experience, 42(5):559–583, May 2012.

[21] R. H. Wirfs-Brock. Toward Exception-
Handling Best Practices and Patterns. IEEE
software, 23(5):11–13, Sept. 2006.

14

http://www.ibm.com/developerworks/java/library/j-jtp05254/index.html
http://www.ibm.com/developerworks/java/library/j-jtp05254/index.html
http://www.ibm.com/developerworks/java/library/j-jtp05254/index.html
http://today.java.net/pub/a/today/2006/04/06/exception-handling-antipatterns.html
http://today.java.net/pub/a/today/2006/04/06/exception-handling-antipatterns.html
http://today.java.net/pub/a/today/2006/04/06/exception-handling-antipatterns.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

	Introduction
	Analytical Knowledge About Exception Handling
	Catching Exceptions
	Throwing Exceptions
	Designing Exception Classes
	Other Guidelines
	Relation between Analytical and Empirical Knowledge

	Empirical Findings on Exception Handling
	Challenged Analytical Principles
	Experimental Protocol
	Dataset
	Implementation

	Overview of the Java Exception System
	Presentation Template

	Challenging ``Empty Catch Blocks are Bad''
	Challenging ``Reuse Standard Exceptions''
	Challenging ``Define Exceptions With State''
	Challenging ``Use Checked Exceptions''
	Challenging ``Consider Exception Builder Methods''
	Challenging ``Do not Catch Generic Exceptions''

	Conclusion

