
HAL Id: hal-01094120
https://hal.inria.fr/hal-01094120

Preprint submitted on 11 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2-or-more approximation for intuitionistic logic
Gabriel Scherer

To cite this version:

Gabriel Scherer. 2-or-more approximation for intuitionistic logic. 2014. �hal-01094120�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49572668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01094120
https://hal.archives-ouvertes.fr

2-or-more approximation for intuitionistic logic

Gabriel Scherer

November 25, 2014

1 Introduction
The correspondence between natural-deduction proofs of propositional intu-
itionistic logic, usually written as (logic) derivations for judgments of the form
Γ ` A, and well-typed terms in the simply-typed lambda-calculus, with (typing)
derivations for the judgment Γ ` t : A, is not one-to-one. In typing judgments
Γ ` t : A, the context Γ is a mapping from free variables to their type. In logic
derivations, the context Γ is a set of hypotheses; there is no notion of variable,
and at most one hypothesis of each type in the set. This means, for example,
that the following logic derivation

A ` A
A ` A→ A

∅ ` A→ A→ A

corresponds to two distinct programs, namely λ(x)λ(y)x and λ(x)λ(y) y. We
say that those programs have the same shape, in the sense that the erasure of
their typing derivation gives the same logic derivation – and they are the only
programs of this shape.

Despite, or because, not being one-to-one, this correspondence is very helpful
to answer questions about type systems. For example, the question of whether,
in a given typing environment Γ, the type A is inhabited, can be answered by
looking instead for a valid logic derivation of bΓc ` A, where bΓc denotes the
erasure of the mapping Γ into a set of hypotheses. If we can independently
prove that only a finite number of different types need to be considered to find
a valid proof (this is the case for propositional logic because of the subformula
property), then there are finitely many set-of-hypothesis ∆, and the search space
of sequents ∆ ` B to consider during proof search is finite. This property is
key to the termination of most search algorithms for the simply-typed lambda-
calculus. Note that it would not work if we searched typing derivations Γ ` t : A
directly: even if there are finitely many types of interest, the set of mappings
from variables to such types is infinite.

In our current brand of work, we are interested in a different problem. In-
stead of knowing whether there exists a term t such that Γ ` t : A, we want to

1

know whether this term is unique – modulo a given notion of program equiva-
lence. Intuitively, this can be formulated as a search problem where search does
not stop to the first candidate, but tries to find whether a second one (that is
nonequivalent as a program) exists. In this setting, the technique of searching for
logic derivations bΓc ` A instead is not enough, because a unique logic deriva-
tion may correspond to several distinct programs of this shape: summarizing
typing environments as set-of-hypotheses loses information about (non)-unicity.

To better preserve this information, one could keep track of the number of
times an hypothesis has been added to the context, representing contexts as
multisets of hypotheses; given a logic derivation annotated with such counts in
the context, we can precisely compute the number of programs of this shape.
However, even for a finite number of types/formulas, the space of such multisets
is infinite; this breaks termination arguments. A natural idea is then to approx-
imate multisets by labeling hypotheses with 0 (not available in the context), 1
(added exactly once), or 2̄ (available two times or more); this two-or-more ap-
proximation has three possible states, and there are thus finitely many contexts
annotated in this way.

The question we answer in this note is the following: is the two-or-more
approximation correct? By correct, we mean that if the precise number of times
a given hypothesis is available varies, but remains in the same approximation
class, then the total number of programs of this shape may vary, but will itself
remain in the same annotation class. A possible counter-example would be a
logic derivation ∆ ` B such that, if a given hypothesis A ∈ ∆ is present exactly
twice in the context (or has two free variables of this type), there is one possible
program of this shape, but having three copies of this hypothesis would lead to
several distinct programs.

Is this approximation correct? We found it surprisingly difficult to have
an intuition on this question (guessing what the answer should be), and dis-
cussions with colleagues indicate that there is no obvious guess – people have
contradictory intuitions on this. In this note, we show (Corollary 2) that this
approximation is in fact correct.

2 Terms, types and derivations
We will manipulate several different systems of inference rules and discuss the
relations between them: the type system, the logic, and inference systems an-
notated with counts (precise and approximated). To work uniformly over those
various judgments, we will define their context structure as a mapping from
types to some set. A set of hypothesis is a mapping from types to booleans, a
multiset is a mapping to natural number, and and typing judgment is a mapping
from types to sets of free variables (we inverse the usual association order).

Let us first define the set of types (or formulas) T, and the set of λ-terms,

2

by the following grammars:

T 3 A,B,C := types
| X,Y, Z atoms
| A→ B arrows
| A ∗B products
| A+B sums

t, u := untyped terms
| x, y, z variables
| λ(x) t λ-abstraction
| t u application
| (t, u) pair
| πi t projection
| σi t sum injection
| case(t, x.u1, y.u2) sum destruction

Besides the set of types T, we will write V for the set of term variables, B
for the set of booleans {1B, 0B}, N for the (non-negative) natural numbers, and
2̄ for the set {0, 1, 2̄} used by the two-or-more approximation – note the bar on
2̄ to indicate the extra element 2̄ and avoid confusion with other notations for
the booleans.

We write FE for the set of functions from the set E to the set F , and #E
for the cardinal of the set E.

To make our discussion of shapes (of propositional judgments) precise and
notationally convenient, we will also give a syntax for them, instead of ma-
nipulating derivation trees directly. A shape is a variable-less proof-term; we
will manipulate explicitly typed shapes, where variables have been replaced with
their typing information.

S, T := typed shapes
| A,B,C axioms
| λ(A)S λ-abstraction
| S T application
| (S, T) pair
| πi S projection
| σi S sum injection
| case(S,A.T1, B.T2) sum destruction

There is a immediate mapping from valid derivations of the usual logic
judgment Γ ` A into shapes, which suggests reformulating the judgment as
S :: Γ ` A. Valid judgments are then in direct one-to-one mapping with their
valid derivations – a principle all our different judgments will satisfy.

A shape may be invalid, that is not correspond to any valid logic derivation
(for example π1 (λ(X)Y) is an invalid shape), but a shape-indexed judgment
only classifies valid shapes, and we will only consider valid shapes in the rest of
this document.

3

We will manipulate the following judgments, each annotated with a propo-
sitional shape S:

• the provability judgment S :: Γ ` A, where the context Γ is in BT –
isomorphic to sets of types;

• the typing judgment S :: E ` t : A, where the context E is in P(V)
T –

isomorphic to mappings from term variables to types;

• various counting judgments of the form S :: Φ `K A : a for a set K, where
Φ is in KT – mapping from types to a multiplicity in K – and a, in K,
represents the output count of the derivation.

The context annotations of all those judgments each have a (commutative)
monoid structure ((+M), 0M) of a binary operation and its unit/neutral element:
((∨), 0B) for B and ((∪), ∅) for P(V). Our counting sets K will even have the
stronger algebraic structure of a semiring, we detail this in the next section
(Section 3). This is used to define common notations as follows.

The binary operation of the monoid can be lifted to whole context, and we
will write Γ,∆ for the addition of contexts: (Γ,∆)(A) = Γ(A)+M ∆(A). We will
also routinely specify a context as a partial mapping from types to annotations,
for example the singleton mapping [A 7→ a] (for some a in the codomain of the
mapping); by this we mean that the value for any other element of the domain is
the neutral element 0M . In particular, the notation Γ, A on sets of hypotheses
corresponds to the addition Γ, [A 7→ 1B] in BT, and the notation Γ, x : A on
mapping from variables to types corresponds to the addition Γ, [A 7→ {x}] in
P(V)

T.
Finally, for any function f : E → F , we will write b_cf : ET → FT the point-

wise lifting of f on contexts: bΦcf (A)
4
= f(Φ(A)). In particular, b_c 6=∅ erases

typing environments P(V)
T into logic contexts BT, b_c 6=0 erases multiplicity-

annotated contexts NT into logic context BT, and b_c# erases typing environ-
ments P(V)

T into multiplicity-annotated contexts NT.
The logic and typing judgments are defined below. In logic derivations we

will simply write A for the singleton mapping [A 7→ 1B].

Γ(A) = 1B

A :: Γ ` A

S :: Γ, A ` B
λ(A)S :: Γ ` A→ B

S :: Γ ` A→ B T :: Γ ` A
S T :: Γ ` B

S :: Γ ` A T :: Γ ` B
(S, T) :: Γ ` A ∗B

S :: Γ ` A1 ∗A2

πi S :: Γ ` Ai

S :: Γ ` Ai

σi S :: Γ ` A1 +A2

S :: Γ ` A+B T1 :: Γ, A ` C T2 :: Γ, B ` C
case(S,A.T1, B.T2) :: Γ ` C

4

In typing derivations, we write x : A for the singleton mapping [A 7→ {x}].
Similarly, the variable freshness condition x /∈ E means (∀A ∈ T, x /∈ E(A)).

x ∈ E(A)

A :: E ` x : A

x /∈ E S :: E, x : A ` t : B

λ(A)S :: E ` λ(x) t : A→ B

S :: E ` t : A→ B T :: E ` u : A

S T :: E ` t u : B

S :: E ` t : A T :: E ` u : B

(S, T) :: E ` (t, u) : A ∗B
S :: E ` t : A1 ∗A2

πi S :: E ` πi t : Ai

S :: E ` t : Ai

σi S :: E ` σi t : A1 +A2

S :: E ` t : A+B x /∈ E, y /∈ E T1 :: E, x : A ` u1 : C T2 :: E, y : B ` u2 : C

case(S,A.T1, B.T2) :: E ` case(t, x.u1, y.u2) : C

Note that while changing the logic judgment from Γ ` A to S :: Γ ` A has
the clear notational benefit of making valid judgments equivalent to derivations,
this argument does not apply to changing the typing judgment from E ` t : A
to S :: E ` t : A, as the valid judgments E ` t : A are already in one-to-one
correspondence with their derivations; S adds some extra redundancy and could
be computed from the triple (E, t, A) (or directly from t if we had used explicitly
typed λ-terms). The benefit of S :: E ` t : A is to let us talk very simply of
the logical shape of a program, without having to define an additional erasure
function from typing derivation to logical derivations: the set of programs of
shape S and type A in the environment E is simply defined as:

{t | S :: E ` t : A}

3 Counting terms in semirings
We are trying to connect two distinct ways of “counting” things about a logic
derivation S :: Γ ` A. One is precise, it counts the number of distinct programs
of shape S, and the other is the two-or-more approximation.

We generalize those two ways of counting as instances of a generic counting
scheme that works for any semiring (K, 0K , 1K ,+K ,×K). A semiring is defined
as a two-operation structure where (0K ,+K) and (1K ,×K) are monoids, (+K)
commutes and distributes over (×K) (which may or may not commute), 0K is a
zero/absorbing element for (×K), but (+K) and (×K) need not have inverses1

1For a ring (K, 0K , 1K ,+K ,×K), (+K) must be invertible, so Z is a ring while N is only
a semiring.

5

The usual semiring is (N, 0, 1,+, ∗), and it will give the precise counting
scheme. The 2-or-more semiring, which we will call 2̄, will correspond to the
approximated scheme:

• its support is 2̄ = {0, 1, 2̄}; 0K is 0, 1K is 1

• we define the addition by 1 +K 1 = 2̄ and 2̄ +K 1 = 2̄ +K 2̄ = 2̄.

• we define the (commutative) multiplication by 2̄×K 2̄ = 2̄.

Definition 1 (Semiring notations) Addition and multiplication can be lifted
pointwise from K to KT: for any A ∈ T we define (Φ+KΨ)(A)

4
= Φ(A)+KΨ(A)

and (Φ×K Ψ)(A)
4
= Φ(A)×K Ψ(A).

Finally, we define a morphism from the semiring N to the semiring 2̄. Recall
that ϕ : K → K ′ is a semiring morphism if ϕ(0K) = 0K′ , ϕ(1K) = 1K′ ,
ϕ(a+K b) = ϕ(a) +K′ ϕ(b) and ϕ(a×K b) = ϕ(a)×K′ ϕ(b).

Definition 2 (The 2-or-more morphism ϕ2̄) We define ϕ2̄ : N→ 2̄ as fol-
lows:  ϕ2(0) = 0

ϕ2(1) = 1
ϕ2(n) = 2̄ if n ≥ 2

ϕ2̄ is a semiring morphism.

Note that (B, 0B, 1B,∨,∧) is also a semiring. For any semiring K, the func-
tion (_ 6= 0K) : K → B (which we may also write (6= 0)) is a semiring morphism.

3.1 Semiring-annotated derivations
Given a semiring K, we now define derivations S :: Φ `K A : a where Φ is a a
set of types labeled with counts in K (that is, an element of the product KT for
some set Γ), and a is itself in K.

We construct those inference rules such that, when K is instantiated with
the semiring of natural numbers N, they really count the different programs of
the same shape. For example, consider a logic derivation S :: Γ ` B starting
with a function elimination rule

S1 :: Γ ` A→ B S2 :: Γ ` A
S1 S2 :: Γ ` B

A program of this shape is of the form t u, at type B; it can be obtained by
pairing any possible program t (of shape S1) at type A→ B with any possible
program u at type A (of shape S2), so the number of possible applications is the
product of the number of possible functions and possible arguments. Formally

6

we have that, for any typing environment E, writing #S for the cardinal of the
set S:

{t0 | S1 S2 :: E ` B} =

{
(t u) | S1 :: E ` t : A→ B,

S2 :: E ` u : A

}
#{t0 | S1 S2 :: E ` B} = #{t | S1 :: E ` t : A→ B} ×#{u | S2 :: E ` u : A}

This suggests the following semiring-annotated inference rule:

S1 :: Φ `K A→ B : a1 S2 :: Φ `K B : a2

S1 S2 :: Φ `K B : a1 ×K a2

The other rules are constructed in the same way, and the full inference system
is as follows. We write A : a for the singleton mapping [A 7→ a].

A :: Φ `K A : Φ(A)

S :: Φ, A : 1 `K B : a

λ(A)S :: Φ `K A→ B : a

S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1 × a2

S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1, S2) :: Φ `K A ∗B : a1 × a2

S :: Φ `K A1 ∗A2 : a

πi S :: Φ `K Ai : a

S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a

S :: Φ `K A+B : a1 T1 :: Φ, A : 1 `K C : a2 T2 :: Φ, B : 1 `K C : a3

case(S,A.T1, B.T2) :: Φ `K C : a1 × a2 × a3

The identity rule says that if we have a different program variables of type A
in our context, then using the variable rule of our typing judgment we can form
a different programs. In particular, if A is absent from the context Φ, we have
A :: Φ ` A : 0. In the function-introduction rule, the number of programs of the
form λ(x) t : A→ B is the number of programs t : B in a context enriched with
one extra variable of type A. The most complex rule is the sum elimination
rule: the number of case-eliminations case(t, x1.u1, x2.u2) : C is the product of
the number of possible scrutinees t : A + B and cases u1 : C and u2 : C, with
u1 and u2 built from one extra formal variable of type A or B accordingly.

We now precisely formulate the fact that the system `N really counts the
number of programs of a given shape. Recall that b_c# : P(V)

T → NT erases a
typing environment into a multiplicity-annotated context.

Lemma 1 (Cardinality count) For any typing environment E ∈ P(V)
T, shape

S and type A, the following is derivable:

S :: bEc# `N A : #{t | S :: E ` t : A}

7

Proof: By induction on the shape S, using the following equalities (obtained by
inversion of the shape-directed typing judgment):

{t0 | A :: E ` t0 : A} = {x ∈ E(A)}

{t0 | λ(A)S :: E ` t0 : A→ B} = {λ(x) t | S :: E, x : A ` t : A}

{t0 | S T :: E ` t0 : B} =

{
t u | S :: E ` t : A→ B

T :: E ` u : A

}

{t0 | (S, T) :: E ` t0 : A} =

{
(t, u) | S :: E ` t : A

T :: E ` u : B

}
{t0 | πi S :: E ` t0 : A} = {πi t | S :: E ` t : A}

{t0 | σi S :: E ` t0 : A} = {σi t | S :: E ` t : A}

{t0 | case(S,A.T1, B.T2) :: E ` t0 : C}

=

case(t, x.u1, y.u2) |
S :: E ` t : A+B
T1 :: E, x : A ` u1 : C
T2 :: E, y : B ` u2 : C


�

While the inference system `N corresponds to counting programs of a given
shape (we formally claim and prove it below), other semirings indeed correspond
to counting schemes of interest. The system `2̄ corresponds to the “two-or-more”
approximation, as can be exemplified by the following derivations:

A :: A : 2̄ `
2̄
A : 2̄

λ(A)A :: A : 1 `
2̄
A→ A : 2̄

λ(A)λ(A)A :: 0 `
2̄
A→ A→ A : 2̄

A :: A : 2̄ `
2̄
A : 2̄

λ(A)A :: A : 2̄ `
2̄
A→ A : 2̄

λ(A)λ(A)A :: A : 1 `
2̄
A→ A→ A : 2̄

λ(A)λ(A)λ(A)A :: 0 `
2̄
A→ A→ A→ A : 2̄

The `B system intuitively corresponds to a system where the two possible
counts are “zero” and “one-or-more”, that is, it only counts inhabitation. There
is a precise correspondence between this system and the logic derivation we
formulated: derivations of the form S :: Γ ` 1B : A are in one-to-one correspon-
dence with valid logic derivations S :: Γ ` A, and derivations S :: Γ ` 0B : A
correspond to invalid logic derivations, where the shape S is valid but the con-
text Γ lacks some hypothesis used in S. In particular, ∅ ` 0B : A is always
provable by immediate application of the variable rule.

Lemma 2 (Provability count) There is a one-to-one correspondence between
logic derivations of S :: Γ ` A and B-counting derivations of S :: Γ `B 1B : A.

Proof: Immediate by induction on the shape S. �

8

3.2 Semiring morphisms determine correct approximations
The key reason why the two-or-more approximation is correct is that the map-
ping from N to 2̄ is a semiring morphism and, as such, preserves the annotation
structure of counting derivations.

Theorem 1 (Morphism of derivations) If ϕ : K → K ′ is a semiring mor-
phism and S :: Φ ` A : a holds, then S :: bΦcϕ ` A : ϕ(a) also holds.

Proof: By induction on S.

A :: Φ `K A : Φ(A) ⇒ A :: bΦcϕ `K′ A : ϕ(Φ(A))

S :: Φ, A : 1K `K B : a

λ(A)S :: Φ `K A→ B : a
⇒

S :: bΦcϕ, A : 1K′ `K′ B : ϕ(a)

λ(A)S :: bΦcϕ `K′ A→ B : ϕ(a)

To use our induction hypothesis, we needed the fact that bΦcϕ, A : 1K′ is equal to
bΦ, A : 1Kcϕ; this comes from the fact that ϕ is a semiring morphism: ϕ(1K) =
ϕ(1K′) and ϕ(a+K b) = ϕ(a) +K′ ϕ(b), thus bΦ,Ψcϕ = bΦcϕ, bΨcϕ.

S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1 × a2

⇒

S1 :: bΦcϕ `K′ A→ B : ϕ(a1) S2 :: bΦcϕ `K′ A : ϕ(a2)

S1 S2 :: bΦcϕ `K′ B : ϕ(a1)× ϕ(a2)

To conclude we then use the fact that ϕ(a1)× ϕ(a2) = ϕ(a1 × a2).

S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1, S2) :: Φ `K A ∗B : a1 × a2

⇒

S1 :: bΦcϕ `K′ A : ϕ(a1) S2 :: bΦcϕ `K′ B : ϕ(a2)

(S1, S2) :: bΦcϕ `K′ A ∗B : ϕ(a1)× ϕ(a2)

S :: Φ `K A1 ∗A2 : a

πi S :: Φ `K Ai : a
⇒

S :: bΦcϕ `K′ A1 ∗A2 : ϕ(a)

πi S :: bΦcϕ `K′ Ai : ϕ(a)

S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a
⇒

S :: bΦcϕ `K′ Ai : ϕ(a)

σi S :: bΦcϕ `K′ A1 +A2 : ϕ(a)

9

S :: Φ `K A+B : a1

T1 :: Φ, A : 1K `K C : a2 T2 :: Φ, B : 1K `K C : a3

case(S,A.T1, B.T2) :: Φ `K C : a1 × a2 × a3

⇒

S :: bΦcϕ `K′ A+B : ϕ(a1) T1 :: bΦcϕ, A : 1K′ `K′ C : ϕ(a2) T2 :: bΦcϕ, B : 1K′ `K′ C : ϕ(a3)

case(S,A.T1, B.T2) :: bΦcϕ `K′ C : ϕ(a1)× ϕ(a2)× ϕ(a3)

�

From there, it remains to point out that the right-hand-side count is uniquely
determined by the context multiplicity.

Lemma 3 (Determinism) If S :: Φ `K A : a and S :: Φ `K A : b then a = b.

Proof: Immediate by induction on derivations. Note that the fact that the
judgments are indexed by the same shape S is essential here. �

Corollary 1 (Relation under morphism) If ϕ : K → K ′ is a semiring
morphism and bΦ1cϕ = bΦ2cϕ, then S :: Φ1 `K A : a1 and S :: Φ2 `K A : a2

imply ϕ(a1) = ϕ(a2)

Proof: By the Morphism Theorem 1, we have S :: bΦ1cϕ `K′ A : ϕ(a1) and
S :: bΦ2cϕ `K′ A : ϕ(a2). If bΦ1cϕ = bΦ2cϕ we can conclude by determinism
(Lemma 3) that ϕ(a1) = ϕ(a2).

�

Corollary 2 The 2-or-more approximation is correct to decide unicity of in-
habitants of a given shape S. If bE1cϕ2̄# = bE2cϕ2̄#, then

ϕ2̄#{t | S :: E1 ` t : A} = ϕ2̄#{t | S :: E2 ` t : A}

Proof: Counting the inhabitants corresponds to the system `N (Lemma 1), so
we have

S :: bE1c# `N A : #{t | S :: E1 ` t : A}

S :: bE2c# `N A : #{t | S :: E2 ` t : A}

The result then directly comes from the previous corollary, given that ϕ2̄ is a
semiring morphism.

�

10

A Appendix: n-or-more logics
The result can be extended to any “n-or-more” approximation scheme given by
the semiring n̄ and semiring morphism ϕn̄ : N→ n̄ defined as follows (assuming
n > 1):

n̄
4
= {0, 1, . . . , n− 1, n} 0n̄

4
= 0 1n̄

4
= 1

(a+n̄ b)
4
= min(a+N b, n) (a×n̄ b)

4
= min(a×N b, n)

To check that ϕn̄ is indeed a morphism, one needs to remark that having
either a > n or b > n implies (a +N b) > n and, if a and b are non-null,
(a ∗N b) > n.

B Appendix: Counting logics as counting func-
tions

The semiring-annotated systems do not really have good properties as logics;
in particular they do not allow cut elimination: the counts are static properties
of a proof derivation that cannot be nicely connected to the dynamics of cut-
elimination or program execution.

For example, assuming that the context Φ counts two variables for some
fixed atomic type X (for example a parametrization of booleans), from any
proof S :: Φ ` A : a that does not use X we can build a proof Φ ` A : 2×a that
morally corresponds to the same programs:

Φ(X) = 2

X :: Φ ` X : 2 S :: Φ ` A : a

(X,S) :: Φ ` X ∗A : 2× a
π2 (X,S) :: Φ ` A : 2× a

Instead of presenting counting as part of a semiring-annotated logic, it is
possible to decompose each system S :: Φ `K A : a as given by the usual
logic (with good dynamic properties) S :: bΦc 6=0 ` A and a family of counting
functions 〈S〉K : KT → K that represents the (deterministic) computation of
the output annotation a as function of the annotated context Φ.

〈A〉K
4
= (Φ 7→ Φ(A))

〈λ(A)S〉K
4
= (Φ 7→ 〈S〉K(Φ, A : 1K))

〈S T 〉K
4
= 〈S〉K ×K 〈T 〉K

〈(S, T)〉K
4
= 〈S〉K ×K 〈T 〉K

〈πi S〉K
4
= 〈S〉K

〈σi S〉K
4
= 〈S〉K

〈case(S,A.T1, B.T2)〉K
4
=

(
Φ 7→ 〈S〉K(Φ)×K 〈T1〉K(Φ, A : 1K)

×K 〈T2〉K(Φ, B : 1K)

)

11

B.1 Correct approximation through counting functions
Counting functions provide an alternate way to formulate the correctness of
approximations (the equivalent of Corollary 1 in our proof). Consider a function
ϕ : K → K ′ between the support sets of two semirings K and K ′; we will
say that ϕ is a correct approximation if a certain relation (Rϕ) holds between
counting functions over K and K ′.

Given two relations R ⊆ E × F and R′ ⊆ E′ × F ′, we define a relation
(R→R′) between the function spaces E → E′ and F → F ′ in the standard
way:

f (R→R′) g ⇐⇒ ∀a, b, (a R b) =⇒ f(a) R′ g(b)

Similarly, a relation R ⊆ E × F can be lifted pointwise to products over
some set G into a relation RG ⊆ EG × FG defined by

sRGt ⇐⇒ ∀x ∈ G, s(x) R t(x)

When manipulating counting functions in KT → K and K ′T → K, we will
simply write (R) instead of (RT→R) to lift a relation R ⊆ K×K ′ to a relation
between functions in KT → K and K ′T → K ′. Finally, given any function
ϕ : K → K ′, we write Rϕ the relation determined by the graph of ϕ:

k Rϕ k
′ ⇐⇒ ϕ(k) = k′

We can then state the correctness of an approximation ϕ : K → K ′ as
follows:

Definition 3 A function ϕ : K → K ′ between the support sets of two semirings
is a correct counting approximation if, for any logic derivation P : Γ ` A, we
have

〈P 〉K Rϕ 〈P 〉K′

We can then prove that any semiring morphism ϕ is a correct counting
approximation; this comes from the stability properties of Rϕ exhibited by the
following admissible reasoning rules:

0K Rϕ 0K′ 1K Rϕ 1K′

k1 Rϕ k
′
1 k2 Rϕ k

′
2

(k1 + k2) Rϕ (k′1 + k′2)

k1 Rϕ k
′
1 k2 Rϕ k

′
2

(k1 ∗ k2) Rϕ (k′1 + k′2)

[A 7→ 1K] Rϕ
T [A 7→ 1K′]

f (Rϕ
T→Rϕ) f ′ g (Rϕ

T→Rϕ) g′

(f + g) (Rϕ
T→Rϕ) (f ′ + g′)

f (Rϕ
T→Rϕ) f ′ g (Rϕ

T→Rϕ) g′

(f ∗ g) (Rϕ
T→Rϕ) (f ′ ∗ g′)

Theorem 2 Any semiring morphism ϕ is a correct counting approximation.

12

B.2 Other uses of counting functions
In our main proof, we were able to side-step the definition and use of counting
functions (which add some notational overhead) by directly formulating the
Morphism Theorem 1. They nonetheless seem to say interesting things about
logic derivations. We can for example define the following notions:

Definition 4 Given a proof of S :: Φ ` A, a type B is said to be necessary if
Φ(B) = 0 implies 〈S〉N = 0.

Given a proof of S :: Φ ` A, a type B is said to be saturating if Φ(B) = 2̄
implies 〈S〉

2̄
= 2̄.

In the intuitionistic logic used so far, it seems that all necessary hypotheses
are saturating, but the converse is not true: A is saturating but not necessary
for λ(A)A.

If we extended our logic with a notion of “squashed types” [T] (which is
empty if T is, and uniquely inhabited otherwise), with the counting rule

S :: Φ `K T : a a 6= 0K

[S] :: Φ `K [T] : 1K

then A would be necessary but not saturating for the shape [A].
In presence of squashed types, the approximation result remains true for all

morphisms ϕ : K → K ′ such that a 6= 0K implies ϕ(a) 6= 0K′ , which is in
particular the case of the morphisms from N to any n̄.

13

	Introduction
	Terms, types and derivations
	Counting terms in semirings
	Semiring-annotated derivations
	Semiring morphisms determine correct approximations

	Appendix: n-or-more logics
	Appendix: Counting logics as counting functions
	Correct approximation through counting functions
	Other uses of counting functions

