
HAL Id: hal-01094316
https://hal.inria.fr/hal-01094316

Submitted on 12 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attacking RSA–CRT Signatures with Faults on
Montgomery Multiplication

Pierre-Alain Fouque, Nicolas Guillermin, Delphine Leresteux, Mehdi
Tibouchi, Jean-Christophe Zapalowicz

To cite this version:
Pierre-Alain Fouque, Nicolas Guillermin, Delphine Leresteux, Mehdi Tibouchi, Jean-Christophe Za-
palowicz. Attacking RSA–CRT Signatures with Faults on Montgomery Multiplication. Cryptographic
Hardware and Embedded Systems - 2012, Sep 2012, Leuven, Belgium. pp.16, �10.1007/978-3-642-
33027-8_26�. �hal-01094316�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49572497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01094316
https://hal.archives-ouvertes.fr

Attacking RSA–CRT Signatures

with Faults on Montgomery Multiplication

Pierre-Alain Fouque1,2, Nicolas Guillermin3, Delphine Leresteux3,
Mehdi Tibouchi4, and Jean-Christophe Zapalowicz2

1 École normale supérieure
pierre-alain.fouque@ens.fr

2 INRIA Rennes
jean-christophe.zapalowicz@inria.fr

3 DGA IS
nicolas.guillermin@m4x.org

delphine.leresteux@dga.defense.gouv.fr
4 NTT Secure Platform Laboratories

tibouchi.mehdi@lab.ntt.co.jp

Abstract. In this paper, we present several efficient fault attacks against
implementations of RSA–CRT signatures that use modular exponentia-
tion algorithms based on Montgomery multiplication. They apply to any
padding function, including randomized paddings, and as such are the
first fault attacks effective against RSA–PSS.

The new attacks work provided that a small register can be forced to
either zero, or a constant value, or a value with zero high-order bits. We
show that these models are quite realistic, as such faults can be achieved
against many proposed hardware designs for RSA signatures.

Keywords: Fault Attacks, Montgomery Multiplication, RSA–CRT, PSS

1 Introduction

The RSA signature scheme is one of the most used schemes nowadays.
An RSA signature is computed by applying some encoding function to
the message, and raising the result to d-th power modulo N , where d and
N are the private exponent and the public modulus respectively. This
modular exponentiation is the costlier part of signature generation, so it
is important to implement it efficiently. A very commonly used speed-
up is the RSA–CRT signature generation, where the exponentiation is
carried out separately modulo the two factors of N , and the results are
then recombined using the Chinese Remainder Theorem. However, when
unprotected, RSA–CRT signatures are vulnerable to the so-called Bellcore
attack first introduced by Boneh et al. in [3], and later refined in multiple
publications such as [31]: an attacker who knows the padded message
and is able to inject a fault in one of the two half-exponentiations can

factor the public modulus using a faulty signature with a simple GCD
computation.

Many workarounds have been proposed to patch this vulnerability,
including extra computations and sanity checks of intermediate and fi-
nal results. A recent taxonomy of these countermeasures is given in [24].
The simplest countermeasure may be to verify the signature before re-
leasing it. This is reasonably cheap if the public exponent e is small and
available in the signing device. In some cases, however, e is not small,
or even not given—e.g. the JavaCard API does not provide it [22]. An-
other approach is to use an extended modulus. Shamir’s trick [25] was
the first such technique to be proposed; later refinements were suggested
that also protect CRT recombination when it is computed using Garner’s
formula [2,7,30,9]. Finally, yet another way to protect RSA–CRT signa-
tures against faults is to use redundant exponentiation algorithms, such as
the Montgomery Ladder. Papers including [14,24] propose such counter-
measures. Regardless of the approach, RSA–CRT fault countermeasures
tend to be rather costly: for example, Rivain’s countermeasure [24] has
a stated overhead of 10% compared to an unprotected implementation,
and is purportedly more efficient than previous works including [14,30].

Relatedly, while Boneh et al.’s original fault attack does not apply
to RSA signatures with probabilistic encoding functions, some extensions
of it were proposed to attack randomized ad hoc padding schemes such
as ISO 9796-2 and EMV [10,12]. However, Coron and Mandal [11] were
able to prove that Bellare and Rogaway’s padding scheme RSA–PSS [1] is
secure against random faults in the random oracle model. In other words,
if injecting a fault on the half-exponentiation modulo the second factor
q of N produces a result that can be modeled as uniformly distributed
modulo q, then the result of such a fault cannot be used to break RSA–
PSS signatures. It is tempting to conclude that using RSA–PSS should
enable signers to dispense with costly RSA–CRT countermeasures. In this
paper, we argue that this is not necessarily the case.

Our contributions. The RSA–CRT implementations targeted in this
paper use the state-of-the-art modular multiplication algorithm due to
Montgomery [20], which avoids the need to compute actual divisions on
large integers, replacing them with only multiplications and bit shifts. A
typical implementation of the Montgomery multiplication algorithm will
use small registers to store precomputed values or short integer variables
throughout the computation. The size of these registers varies with the
architecture, from a single bit in certain hardware implementations to 16

2

bits, 32 bits or more in software. This paper presents several fault attacks
on these small registers during Montgomery multiplication, that cause
the result of one of the half-exponentiations to be unusually small. The
factorization of N can then be recovered using a GCD, or an approximate
common divisor algorithm such as [15,5,8].

We consider three models of faults on the small registers. In the first
model, one register can be forced to zero. In that case, we show that
causing such a fault in the inverse Montgomery transformation of the
result of a half-exponentiation, or a few earlier consecutive Montgomery
multiplications, yields a faulty signature which is a multiple of the corre-
sponding factor q of N . Hence, we can factor N by taking a simple GCD.
In the second model, another register can be forced to some (possibly
unknown) constant value throughout the inverse Montgomery transfor-
mation of the result of a half-exponentiation, or a few earlier consecutive
Montgomery multiplications. A faulty signature in this model is a close
multiple of the corresponding factor q of N , and we can thus factor N
using an approximate common divisor algorithm. Finally, the third model
makes it possible to force some of the higher-order bits of one register to
zero. We show that, while injecting one such fault at the end of the in-
verse Montgomery transformation results in a faulty signature that isn’t
usually close enough to a multiple of q to reveal the factorization of N on
its own, a moderate number of faulty signatures (a dozen or so) obtained
using that process are enough to factor N .

The RSA padding scheme used for signing, whether deterministic or
probabilistic, is irrelevant in our attacks. In particular, RSA–PSS imple-
mentations are also vulnerable. Of course, this does not contradict the
security result due to Coron and Mandal [11], as the faults we consider
are strongly non-random. Our results do suggest, however, that exponen-
tiation algorithms based on Montgomery multiplication are quite sensi-
tive to a very realistic type of fault attacks and that using RSA–CRT
countermeasures is advisable even for RSA–PSS.

Organization of the paper. In §2, we recall some background material
on the Montgomery multiplication algorithm, on modular exponentiation
techniques, and on RSA–CRT signatures. Our new attacks are then de-
scribed in §§3–5, corresponding to three different fault models: null faults,
constant faults, and zero high-order bits faults. Finally, in §6, we discuss
the applicability of our fault models to concrete hardware implementa-
tions of RSA–CRT signatures, and find that many proposed designs are
vulnerable.

3

2 Preliminaries

2.1 Montgomery multiplication

Proposed by Montgomery in [20], the Montgomery multiplication algo-
rithm provides a fast way method for computing modular multiplications
and squarings. Indeed, the Montgomery multiplication algorithm only
uses multiplications, additions and shifts, and its cost is about twice that
of a simple multiplication (compared to 2.5 times for a multiplication and
a Barett reduction), without imposing any constraint on the modulus.

Usually, one of two different techniques is used to compute Mont-
gomery multiplication: either Separate Operand Scanning (SOS), or Coar-
sely Integrated Operand Scanning (CIOS). Consider a device whose pro-
cessor or coprocessor architecture has r-bit registers (typically r = 1, 8, 16,
32 or 64 bits). Let b = 2r, q be the (odd) modulus with respect to which
multiplications are carried out, k the number of r-bit registers used to
store q, and R = bk, so that q < R and gcd(q,R) = 1. The SOS variant
consists in using the Montgomery reduction after the multiplication: for
an input A such that A < Rq, it computes Mgt(A) ≡ AR−1 (mod q),
with 0 ≤ Mgt(A) < q. The CIOS mixes the reduction algorithm with
the previous multiplication step: considering x and y with xy < Rq, it
computes CIOS(x, y) = xyR−1 mod q with CIOS(x, y) < q.

Figure 2 presents the main steps of the CIOS variant, which will be
used thereafter. However, replacing the CIOS by the SOS or any other
variant proposed in [17] does not protect against any of our attacks.

2.2 Exponentiation algorithms using Montgomery
multiplication

Montgomery reduction is especially interesting when used as part of a
modular exponentiation algorithm. A large number of such exponentia-
tion algorithms are known, including the Square-and-Multiply algorithm
from either the least or the most significant bit of the exponent, the Mont-
gomery Ladder (used as a side-channel countermeasure against cache
analysis, branch analysis, timing analysis and power analysis), the Square-
and-Multiply k-ary algorithm (which boasts greater efficiency thanks to
fewer multiplications), etc. The first three exponentiation algorithms will
be considered in this paper, and two of those are detailed in Figure 3.

Note that using the Montgomery multiplications inside any exponenti-
ation algorithm requires all variables to be in Montgomery representation
(x̄ = xR mod q is the Montgomery representation of x) before applying

4

1: function SignRSA–CRT(m)
2: M ← µ(m) ∈ ZN ⊲ message

encoding
3: Mp ←M mod p
4: Mq ←M mod q

5: Sp ←M
dp
p mod p

6: Sq ←M
dq
q mod q

7: t← Sp − Sq

8: if t < 0 then t← t+ p

9: S ← Sq +
(

(t · π) mod p
)

· q
10: return S

Fig. 1. RSA–CRT signature genera-
tion with Garner’s recombination. The
reductions dp, dq modulo p− 1, q− 1 of
the private exponent are precomputed,
as is π = q−1 mod p.

1: function CIOS(x, y)
2: a← 0
3: y0 ← y mod b
4: for j = 0 to k − 1 do

5: a0 ← a mod b
6: uj ← (a0 +xj · y0) · q

′ mod b

7: a←
⌊a+ xj · y + uj · q

b

⌋

8: if a ≥ q then a← a− q

9: return a

Fig. 2. The Montgomery multiplica-
tion algorithm. The xi’s and yi’s are
the digits of x and y in base b; q′ =
−q−1 mod b is precomputed. The re-
turned value is (xy · b−k mod q). Since
b = 2r, the division is a bit shift.

the exponentiation process. In line 2 of each algorithm from Figure 3,
the message is transformed into Montgomery representation by comput-
ing CIOS(x,R2) = xR2R−1 mod q = x̄. At the end, the very last CIOS
call allows to revert to the classical representation by performing a Mont-
gomery reduction: CIOS(Ā, 1) = (Ā·1)R−1 mod q = ARR−1 mod q = A.
Finally the other CIOS steps compute the product in Montgomery rep-
resentation: CIOS(Ā, B̄) = (AR)(BR)R−1 mod q = AB.

2.3 RSA–CRT signature generation

Let N = pq be a n-bit RSA modulus. The public key is denoted by
(N, e) and the associated private key by (p, q, d). For a message M to
be signed, we note S = md mod N the corresponding signature, where
m is deduced from M by an encoding function, possibly randomized. A
well-known optimization of this operation is the RSA–CRT which takes
advantage of the decomposition of N into prime factors. By replacing a
full exponentiation of size n by two n/2, it divides the computational cost
by a factor of around 4. Therefore RSA–CRT is almost always employed:
for example, OpenSSL as well as the JavaCard API [22] use it.

Recovering S from its reductions Sp and Sq modulo p and q can be
done either by the usual CRT reconstruction formula (1) below, or using
the recombination technique (2) due to Garner:

S = (Sq · p
−1 mod q) · p+ (Sp · q

−1 mod p) · q mod N. (1)

S = Sq + q · (q−1 · (Sp − Sq) mod p). (2)

5

Square-and-Multiply LSB Montgomery Ladder

1: function ExpLSB(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = 0 to t do
5: if ei = 1 then

6: A← CIOS(A, x̄)

7: x̄← CIOS(x̄, x̄)

8: A← CIOS(A, 1)
9: return A

1: function ExpLadder(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = t down to 0 do

5: if ei = 0 then

6: x̄← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then

9: A← CIOS(A, x̄)
10: x̄← CIOS(x̄, x̄)

11: A← CIOS(A, 1)
12: return A

Fig. 3. Two of the exponentiation algorithms considered in this paper. In each case,
e0, . . . , et are the bits of the exponent e (from the least to the most significant), b is
the base in which computations are carried out (gcd(b, q) = 1) and R = bk.

Garner’s formula (2) does not require a reduction modulo N , which is
interesting for efficiency reasons and also because it prevents certain fault
attacks [4]. On the other hand, it does require an inverse Montgomery
transformation Sq = CIOS(S̄q, 1), whereas that step is not necessary for
formula (1), as it can be mixed with the multiplication with q−1 mod p.
This is an important point, as some of our attacks specifically target
the inverse Montgomery transformation. The main steps of the RSA–
CRT signature generation with Garner’s recombination are recalled in
Figure 1.

3 Null Faults

We first consider a fault model in which the attacker can force the register
containing the precomputed value q′ = (−q mod b) to zero in certain calls
to the CIOS algorithm during the computation of Sq.

Under suitable conditions, we will see that such faults can cause the q-
part of the signature to be erroneously evaluated as S̃q = 0, which makes

it possible to retrieve the factor q of N from one such faulty signature S̃,
as q = gcd(S̃, N).

6

3.1 Attacking CIOS(A, 1)

Suppose first that the fault attacker can force q′ to zero in the very last
CIOS computation during the evaluation of Sq, namely the computation
of CIOS(A, 1). In that case, the situation is quite simple.

Theorem 1. A faulty signature S̃ generated in this fault model is a mul-
tiple of q (for any of the exponentiation algorithms considered herein and
regardless of the encoding function involved, probabilistic or not).

Proof. The faulty value q̃′ = 0 causes all of the variables u in the CIOS
loop to vanish; indeed, for j = 0, . . . , k − 1, they evaluate to:

ũj = (a0 +Aj · 1) · q̃′ mod 2r = 0.

As a result, the value S̃q computed by this CIOS loop can be written as:

S̃q =

⌊(⌊
· · ·
⌊(⌊

A0 · 2
−r
⌋
+A1

)
· 2−r

⌋
+ · · ·

⌋
+Ak−1

)
· 2−r

⌋
.

Now, the values Aj are r-words, i.e. 0 ≤ Aj ≤ 2r − 1. It follows that each

of the integer divisions by 2r evaluate to zero, and hence S̃q = 0. As a

result, the faulty signature S̃ is a multiple of q as stated. ⊓⊔

It is thus easy to factor N with a single faulty signature S̃, by com-
puting gcd(S̃, N). Note also that if this last CIOS step is computed as
CIOS(1, A) instead of CIOS(A, 1), the formulas are slightly different but
the result still holds.

3.2 Attacking consecutive CIOS steps

If Garner recombination is not used or the computation of CIOS(A, 1)
is somehow protected against faults, a similar result can be achieved by
forcing q′ to zero in earlier calls to CIOS, provided that a certain number
of successive CIOS executions are faulty.

Assuming that the values x̄ and A in Montgomery representation are
uniformly distributed modulo q before the first faulty CIOS, we show
in the full version of this paper [13]that faults across ℓ = ⌈log2⌈log2 q⌉⌉
iterations in the loop of the exponentiation algorithm are enough to ensure
that S̃q will evaluate to zero with probability at least 1/2. For example, if
q is a 512-bit prime, we have ℓ = 9. This means that forcing q′ to zero in
9 iterations (from 9 to 18 calls to CIOS depending on the exponentiation
algorithm under consideration and on the input bits) is enough to factor
the modulus at least 50% of the time—and more faulty iterations translate
to higher success rates.

7

S&M LSB S&M MSB Montgomery Ladder

Faulty iterations (%) Start (%) Anywhere (%) Start (%) Anywhere (%)

8 31 93 62 45 30

9 65 100 93 87 76

10 89 100 100 99 93

Table 1. Success rate of the null fault attack on consecutive CIOS steps, for a 512-
bit prime q and r = 16. 100 faulty signatures were computed for each parameter set.
For the Square-and-Multiply MSB and Montgomery Ladder algorithms, we compare
success rates when faults start at the beginning of the loop vs. at a random iteration.

Simulation results. We have carried out a simulation of null faults on
consecutive CIOS steps for each of the three exponentiation process al-
gorithms, with varying numbers of faulty iterations; for the Square-and-
Multiply MSB and the Montgomery Ladder algorithms, two sets of ex-
periments have been conducted for each parameter set: one with faults
starting from the first iteration, and another one with faults starting
from a random iteration somewhere in the exponentiation loop. Results
are collected in Table 1.

4 Constant Faults

In this section, we consider a different fault model, in which the fault at-
tacker can force the variables uj in the CIOS algorithm to some (possibly
unknown) constant value ũ.

Just as with null faults, we consider two scenarios: one in which the
last CIOS computation is attacked, and another in which several inner
consecutive CIOS computations in the exponentiation algorithm are tar-
geted.

4.1 Attacking CIOS(A, 1)

Faults on all iterations. Consider first the case when faults are injected
in all iterations of the very last CIOS computation. In other words, the
device computes CIOS(A, 1), except that the variables uj , j = 0, . . . , k−
1, are replaced by a fixed, possibly unknown value ũ. In that case, we
show that a single faulty signature is enough to factor N and recover the
secret key. The key result is as follows (the proof can be found in the full
version [13]).

8

Theorem 2. Let S̃ be a faulty signature obtained in the fault model de-
scribed above. Then, (2r − 1) · S̃ is a close multiple of q with error size at
most 2r+1, i.e. there exists an integer T such that:

∣∣(2r − 1) · (S̃ + 1)− qT
∣∣ ≤ 2r+1.

Thus, a single faulty signature yields a value V = (2r − 1) · (S̃ +
1) mod N which is very close to a multiple of q. It is easy to use this
value to recover q itself. Several methods are available:

– If r is small (say 8 or 16), it may be easiest to just use exhaustive
search: q is found among the values gcd(V + X,N) for |X| ≤ 2r+1,
and hence can be retrieved using around 2r+2 GCD computations.

– A more sophisticated option, which may be interesting for r = 32,
is the baby step, giant step-like algorithm by Chen and Nguyen [5],
which runs in time Õ(2r/2).

– Alternatively, for any r up to half of the size of q, one can use Howgrave-
Graham’s algorithm [15] based on Coppersmith techniques. It is the
fastest option unless r is very small (a simple implementation in
Sageruns in about 1.5 ms on our standard desktop PC with a 512-
bit prime q for a any r up to ≈ 160 bits, whereas exhaustive search
already takes over one second for r = 16).

Faults on most iterations. Howgrave-Graham’s algorithm is especially
relevant if the constant faults do not start at the very first iteration
in the CIOS loop. More precisely, suppose that the fault attacker can
force the variables uj to a constant value ũ not for all j but for j =
j0, j0 + 1, . . . , k − 1 for some j0.

Then, the same computation as in the proof of Theorem 2 yields the
following bound on S̃q:

ũ · q

2r − 1
− 2rj0 − 2 < S̃q ≤

ũ · q

2r − 1
+ 2rj0 + 1.

It follows that (2r−1) · S̃ is a close multiple of q with error size . 2r(j0+1).

Now note that Howgrave-Graham’s algorithm [15] will recover q given
N and a close multiple with error size at most q1/2−ε. This means that
one faulty signature S̃ is enough to factor N as long as j0 + 1 < k/2, i.e.
the constant faults start in the first half of the CIOS loop.

9

q/2⌈log2 q⌉ 0.666 0.696 0.846 0.957

Success rate (%) 36 34.4 26.7 20.4

Table 2. Success rate of the constant fault attack on successive CIOS steps, when using
Square-and-Multiply LSB exponentiation with random 512-bit primes q and r = 16.

4.2 Attacking other CIOS steps

As in §3.2, if Garner recombination is not used or CIOS(A, 1) is protected
against faults, we can adapt the previous attack to target earlier calls to
CIOS and still reveal the factorization of N . However, the attack requires
two faulty signatures with the same constant fault ũ. Details are given in
the full version [13].

In short, depending on the ratios q/2⌈log2 q⌉ and ũ/(2r−1), two faulty
signatures S̃, S̃′ with the same faulty value ũ have a certain probability
of being equal modulo q. Thus, we recover q as gcd(N, S̃ − S̃′). This
attack works with the Square-and-Multiply LSB and Montgomery Ladder
algorithms, but not with Square-and-Multiply MSB exponentiation.

Simulation results are presented in Table 2. For various 512-bit primes
q, the attack has been carried out for 1000 pairs of random messages, with
a random constant fault ũ for each pair. It is successful if the two resulting
faulty signatures S̃, S̃′ satisfy gcd(N, S̃ − S̃′) = q.

5 Zero High-Order Bits Faults

In this section, we consider yet another fault model, in which the fault
attacker targets the very last iteration in the evaluation of CIOS(A, 1)
during the computation of Sq. We assume that the attacker is able to
force a certain number h of the highest-order bits of uk−1 to zero, possibly
but not necessarily all of them (i.e. 1 ≤ h ≤ r). Then, while a single faulty
signature is typically not sufficient to factor the modulus, multiple such
signatures will be enough if h is not too small. More precisely, we prove
the following theorem in the full version of this paper [13]:

Theorem 3. Let S̃ be a faulty signature obtained in this fault model.
Then, S̃ is a close multiple of q with error size at most 2−h · q + 1, i.e.
there exists an integer T such that |S̃ − qT | ≤ 2−h · q + 1.

Now, recovering q from faulty signatures of the form S̃ is a partial
approximate common divisor (PACD) problem, as we know one exact

10

multiple of q, namely N , and several close multiples, namely the faulty
signatures. Since the error size ≈ q/2h is rather large relative to q, the
state-of-the-art algorithm to recover q in that case is the one proposed by
Cohn and Heninger [8] using multivariate Coppersmith techniques.

The algorithm by Cohn and Heninger is likely to recover the common
divisor q ≈ N1/2 given ℓ close multiples S̃(1), . . . , S̃(ℓ) provided that the
error size is significantly less than N (1/2)1+1/ℓ

. Hence, if the faults cancel
the top h bits of uk−1, we need ℓ of them to factor the modulus, where:

ℓ & −
1

log2

(
1− h

log2 q

) . (3)

In practice, if a few more faults can be collected, it is probably prefer-
able to simply use the linear case of the Cohn-Heninger attack (the case
t = k = 1 in their paper [8]), since it is much easier to implement (as
it requires only linear algebra rather than Gröbner bases) and involves
lattice reduction in a lattice of small dimension that is straightforward to
construct. We examine this method in more details in the full version of
this paper [13], and find that it makes it possible to factor N provided
that:

ℓ &
log2 q

h
(4)

which is always a worse bound than (3) but usually not by a very large
margin. Table 3 gives the theoretical number of faulty signatures required
to factor N for various values of h, both in the general attack by Cohn
and Heninger and in the simplified linear case.

We carried out a simulation of the linear version of the attack on a
1024-bit modulus N with various values of h, and found that it works
very well in practice with a number of faulty signatures consistent with
the theoretical minimum. The results are collected in Table 4. The attack
is also quite fast: a naive implementation in Sage runs in a fraction of a
second on a standard PC.

6 Fault Models

In this section we discuss how realistic the setup of the attacks described
above can be. In principle, all the RSA–CRT implementations using
Montgomery multiplication may be vulnerable, but we have to note that
the fault setup (and how realistic it is) depends heavily on implementa-
tion choices, since many variations around the algorithm from Figure 2
have been proposed in recent literature.

11

Number h of zero top bits 48 40 32 24 16

Minimum ℓ with the general attack 8 9 11 15 22

Minimum ℓ with the linear attack 11 13 16 22 32

Table 3. Theoretical minimum number ℓ of zero higher-order h-bit faulty signatures re-
quired to factor a balanced 1024-bit RSA modulus N using the general Cohn-Heninger
attack or the simplified linear one.

Number ℓ of faulty signatures 11 12 13 14 15 16 17 18

Success rate with h = 48 (%) 23 100 100 100 100 100 100 100

Success rate with h = 40 (%) 0 0 2 100 100 100 100 100

Success rate with h = 32 (%) 0 0 0 0 0 0 99 100

Average CPU time (ms) 33 35 38 41 45 49 54 59

Table 4. Experimental success rate of the simplified (linear) Cohn-Heninger attack
with ℓ faulty signatures when N is a balanced 1024-bit RSA modulus. Timings are
given for our Sage implementation on a single core of a Core 2 CPU at 3 GHz.

After a discussion about the tools needed to get the desired effects,
we focus on several implementation proposals [29,18,16,21,28,19,6], chosen
for their relevance.

6.1 Characteristics of the perturbation tool

First all the perturbations needed to carry out our attacks need to be
controlled and local to some gates of the chip. Therefore, the attacker
needs to identify the localization of the vulnerable gates and registers. The
null fault attacks described in §3 need either a q′ value set to 0, or multiple
consecutive faults in line 6 of the main loop of CIOS(A, 1) or during
multiple consecutive CIOS. The attacks described in §4 also need these
multiple consecutive faults. Considering that state-of-art secure micro-
controllers embed desynchronization countermeasures such as clock jitters
and idle cycles, if the target of the perturbation is some shared logic with
other treatments (like in the ALU of a CPU), the fault must be accurately
space and time controlled, and the effects must be repeatable as well.
Identification of the good cycles to inject the perturbation may be a very
difficult task, and our attacks seem to be irrelevant. The only exception

12

may be the null fault of §3, if the fault is injected when the q′ register is
loaded.

Nevertheless, many secure microcontrollers embed an isolated modu-
lar arithmetic acceleration coprocessor. A large proportion of them specif-
ically use the Montgomery multiplication CIOS algorithm (or one of its
described variants [17]). Therefore, if the q′ or the uj value is isolated
in a specific small size register, a unique long duration perturbation can
be sufficient for our attack to succeed. The duration of the perturbation
varies with the implementation choices and can vary from one cycle to
log2 q, which does not exceed a hundred microseconds on actual chips.
To get this kind of effect, laser diodes are the best-suited tool, since the
duration of the spot is completely controlled by the attacker [26].

6.2 Analysis of classical implementations of the Montgomery
multiplication

The public Montgomery architectures can be divided in 3 different cate-
gories :

– the first one [29,18,16] contains variations on the Tenca and KoçMulti-
ple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM)
[29], which can be seen as a CIOS algorithm with r = 1. The charac-
teristic of these implementations is that they use no multiplier. They
are then suited for constrained area.

– the second category [28,19] is an intermediate where r is a classical
size for embedded architecture, such as 8,16 or 32 bits. They can be
used for intermediate area/latency trade-offs.

– the last category [21,6] propose a version of CIOS/SOS with only one
loop, implying that r ≥ ⌈log2 q⌉. The main difficulty of these imple-
mentation techniques is to deal with the very large multiplications
they require . For that purpose they use interpolation techniques, like
Karatsuba in [6] or RNS in [21]. These implementations are designed
to achieve the shortest latency.

Architectures based on MWR2MM (r = 1). In this kind of ar-
chitecture, q′ cannot be manipulated, since it is always equal to 1, so no
wire or register carries its value. On the other hand, the value of uj is
computed at every loop of the CIOS, and since it is only one bit, a sim-
ple shot on the logic driving the register during the final multiplication
CIOS(A, 1) is sufficient to get an exploitable result (uj = 0 corresponds
to the null fault of §3, and uj = 1 to the constant fault of §4).

13

Fig. 4. Systolic Montgomery Multiplier of [29] and potential target of the fault

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

RAM

RAM

PE 1 PE 2 PE t

1 11

CS to binary

conversion

data path

CS adder

ai−1(j)

xi

Control logic

ai(j)

q(j)

y(j) y(j)

q(j)
· · ·

xi xi+1 xi+t−1

queue

Control logic

y(j)

ai(j)

input

result Vulnerable areas

q(j)

n-bit Right t-shifter for x

w

2w

w

The first proposal [29] is a fully systolic 5 array of processing elements
(PE) executing consecutively line 6 of the CIOS algorithm in one cycle,
and line 7 in k cycles from LSB to MSB. Figure 4 proposes an overview
of the architecture. Each PE consists of a w-word carry save adder, able
to compute a w word addition and to keep the carry for the next cycle.
In the figure, T (j) stands for the j-th least significant w word of T .

At each clock cycle, the PE presents the computed result ai(j) to the
next one, and the value ui is kept in the PE for the computation of the
next word ai(j + 1). The value of ui is computed before the word ai(0)
is presented, and then is kept in each PE during the whole computation
of ai in a register. This architecture has the great advantage of being
completely scalable (whatever the number of PEs and the size of M , this
architecture can compute the expected result as long as the RAM are
correctly dimensioned).

To achieve our attack, the register keeping ui can be the targeted, but
every PE must be targeted simultaneously in order to get the correct re-
sult. Therefore it is more interesting to target the control logic responsible
for the sequencing of the register loading, since all the PEs are connected.

In [18], the authors manage to get rid of the CS to binary converter
by redesigning the CS adder of every PE. The vulnerability to our attack
is therefore the same, since the redesign does not affect the targeted area.

Huang et al. [16] proposed a new version of the data dependency in
the MWR2MM algorithm and rearranged the architecture of [29], in a
semi systolic form. Figure 5 gives an overview of the architecture. In this
architecture, the intermediate value ai is manipulated in carry save format

5 Meaning that all the PEs are the same.

14

Fig. 5. Overview of the [16] architecture and potential target of the fault

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

ui−1 ui−2 ui−j

y(0) q(0) y(1) q(1) y(2) q(2) y(j) q(j)

Vulnerable areas

1 bit Right shift register containing x

1 bit Right shift register containing U

· · ·

x(i)

PE1 PEjPE2PE0

x(i− 1) x(i− 2) x(i− j)
re
gi
st
er

logic

Combinational

xi

Vulnerable areas

si(1)

ci(1)

ui y(0) q(0)

ui

si(1)

ci(1) ci−1(2)

si−1(2)

· · ·

A specific PE, PE0 is specialized in generating the ui values at each cycle.
while the j-th PE is in charge of computing the sequence ai(j).

This architecture is very vulnerable to our attacks, since a simple n-
cycle long shot on the right logic in the PE0 (see Figure 5) is sufficient to
get the expected result.

According to the authors, the design works at 100 MHz on their tar-
get platform (a Xilinx Virtex II FPGA), therefore the duration of the
perturbation is at least 10 µs for a 1024 bits multiplication (2048 bits
RSA) if the Garner recombination is used (using the attack from §3.1 or
§4.1). If classical CRT reconstruction is used, according to Table 1, 200
µs will be enough for a null fault.

As a conclusion we can see that this kind of implementation is very
vulnerable, since the setup of the attack is quite simple.

High radix architecture (1 < r < ⌈log2 q⌉). In this type of imple-
mentation the value q′ = −q−1 mod 2r is computed in a r-bit register,
unless the quotient pipelining approach [23] is used.

For example, the implementation of [19] is described in Figure 6. It
relies on the coordinated usage of multiplier blocks of the Xilinx Virtex II
together with specifically designed carry save adders. The values uj can
be the target of any fault described in this paper, but it may be easier
to put once for all the q′ register to 0, with a 100% success rate for the
attack if properly carried out. Another implementation is mentioned in
[19] with a four-deep pipeline, but it suffers from the same vulnerability.

The attack may be more difficult to achieve on the architecture of [28,
Figure 4]. First, it uses quotient determination [23], and therefore does not
need to store q′ anywhere. Second, the multiplier in charge of computing

15

Fig. 6. Overview of the [19] architecture and potential target of the fault

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

q′

3 input carry save adder

ai register

Vulnerable areas

y(i)

x(0) · y(i)

x y

ui

ai(0)

q

ui · q

x · y(i)

uj is shared for all the Montgomery computation. In order to carry out
the attack of §4 on this architecture, the attacker has to determine the
specific cycles where uj is computed to generate a perturbation. For that
particular design, the attacks seem out of reach.

Full radix architecture (r ≥ ⌈log2 q⌉). In this kind of implemen-
tation, a single round is enough to compute the Montgomery algorithm.
This implementation choice reports all the complexity on the design of
a log2 q × log2 q multiplier. To reduce the full complexity of the big mul-
tiplication, interpolation techniques are used. In [6], a classical nested
Karatsuba multiplication is used, whereas [21] proposes RNS.

In these architectures, a specific laser shot must swap all the u0 or
q′ at the same time to produce a null fault. To have a chance, a better
solution is to use non invasive attacks (in the sense of [27]), such as power
or clock glitches. Indeed u0 or q′ are fully manipulated on the same clock
cycle (or in very few), therefore it may be more practical to make the
sequencer miss an instruction instead of aiming directly at the registers.

The zero high-order bits fault attack from §5 is also an option. In the
architecture of [6], the most significant bits of u0 can be set to 0.

7 Conclusion

In this paper, we have shown that specific realistic faults can defeat un-
protected RSA–CRT signatures with any padding scheme, probabilistic
or not. While it is not difficult to devise suitable countermeasures (for

16

example, checking that Sq is not too small before outputting a signature
is enough to thwart all of our attacks), this underscores the fact that rely-
ing on probabilistic signature schemes does not, in itself, protect against
faults.

References

1. M. Bellare and P. Rogaway. Probabilistic signature scheme. Patent, 2001. US
6266771.

2. J. Blömer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure against
Bellcore attacks. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM Conference

on Computer and Communications Security, pages 311–320. ACM, 2003.
3. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryp-

tographic protocols for faults. In EUROCRYPT, pages 37–51, 1997.
4. E. Brier, D. Naccache, P. Q. Nguyen, and M. Tibouchi. Modulus fault attacks

against RSA-CRT signatures. In B. Preneel and T. Takagi, editors, CHES, volume
6917 of LNCS, pages 192–206. Springer, 2011.

5. Y. Chen and P. Q. Nguyen. Faster algorithms for approximate common divisors. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of LNCS,
pages 502–519. Springer, 2012.

6. G. C. T. Chow, K. Eguro, W. Luk, and P. Leong. A Karatsuba-based Montgomery
multiplier. In FPL’10, pages 434–437, 2010.

7. M. Ciet and M. Joye. Practical fault countermeasures for Chinese remaindering
based cryptosystems. In L. Breveglieri and I. Koren, editors, FDTC, pages 124–
131, 2005.

8. H. Cohn and N. yeninger. Approximate common divisors via lattices. Cryptology
ePrint Archive, Report 2011/437, 2011. http://eprint.iacr.org/. To appear at
ANTS-X.

9. J.-S. Coron, C. Giraud, N. Morin, G. Piret, and D. Vigilant. Fault attacks and
countermeasures on Vigilant’s RSA-CRT algorithm. In L. Breveglieri, M. Joye,
I. Koren, D. Naccache, and I. Verbauwhede, editors, FDTC, pages 89–96. IEEE
Computer Society, 2010.

10. J.-S. Coron, A. Joux, I. Kizhvatov, D. Naccache, and P. Paillier. Fault attacks
on RSA signatures with partially unknown messages. In C. Clavier and K. Gaj,
editors, CHES, volume 5747 of LNCS, pages 444–456. Springer, 2009.

11. J.-S. Coron and A. Mandal. PSS is secure against random fault attacks. In
M. Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 653–666. Springer,
2009.

12. J.-S. Coron, D. Naccache, and M. Tibouchi. Fault attacks against EMV signatures.
In J. Pieprzyk, editor, CT-RSA, volume 5985 of LNCS, pages 208–220. Springer,
2010.

13. P.-A. Fouque, N. Guillermin, D. Leresteux, M. Tibouchi, and J.-C. Zapalowicz.
Attacking RSA–CRT signatures with faults on Montgomery multiplication. Cryp-
tology ePrint Archive, Report 2012/172, 2012. http://eprint.iacr.org/. Full
version of this paper.

14. C. Giraud. An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Trans. Computers, 55(9):1116–1120, 2006.

15. N. Howgrave-Graham. Approximate integer common divisors. In J. H. Silverman,
editor, CaLC, volume 2146 of LNCS, pages 51–66. Springer, 2001.

17

http://eprint.iacr.org/
http://eprint.iacr.org/

16. M. Huang, K. Gaj, S. Kwon, and T. A. El-Ghazawi. An optimized hardware
architecture for the Montgomery multiplication algorithm. In R. Cramer, editor,
Public Key Cryptography, volume 4939 of LNCS, pages 214–228. Springer, 2008.

17. Ç. K. Koç and T. Acar. Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16(3):26–33, 1996.

18. C. McIvor, M. McLoone, and J. McCanny. Modified Montgomery modular multi-
plication and RSA exponentiation techniques. IEE Proceedings - Computers and

Digital Techniques, 151(6):402–408, 2004.
19. N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede. Efficient pipelining

for modular multiplication architectures in prime fields. In Proceedings of the 17th

ACM Great Lakes symposium on VLSI, GLSVLSI ’07, pages 534–539, New York,
NY, USA, 2007. ACM.

20. P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44:519–521, 1985.
21. H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura. Implementation of RSA

algorithm based on RNS Montgomery multiplication. In Ç. K. Koç, D. Naccache,
and C. Paar, editors, CHES, volume 2162 of LNCS, pages 364–376. Springer, 2001.

22. Oracle. JavaCard 3.0.1 Platform Specification. http://www.oracle.com/

technetwork/java/javacard/overview/.
23. H. Orup. Simplifying quotient determination in high-radix modular multiplication.

In IEEE Symposium on Computer Arithmetic’95, pages 193–193, 1995.
24. M. Rivain. Securing RSA against fault analysis by double addition chain exponen-

tiation. In M. Fischlin, editor, CT-RSA, volume 5473 of LNCS, pages 459–480.
Springer, 2009.

25. A. Shamir. Improved method and apparatus for protecting public key schemes
from timing and fault attacks. Patent Application, 1998. WO 1998/052319 A1.

26. S. Skorobogatov. Optical fault masking attacks. In L. Breveglieri, M. Joye, I. Ko-
ren, D. Naccache, and I. Verbauwhede, editors, FDTC, pages 23–29. IEEE Com-
puter Society, 2010.

27. S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks. In B. S.
Kaliski, Ç. K. Koç, and C. Paar, editors, CHES, volume 2523 of LNCS, pages 2–12.
Springer, 2002.

28. D. Suzuki. How to maximize the potential of FPGA resources for modular ex-
ponentiation. In P. Paillier and I. Verbauwhede, editors, CHES, volume 4727 of
LNCS, pages 272–288. Springer, 2007.

29. A. F. Tenca and Ç. K. Koç. A scalable architecture for Montgomery multiplication.
In Proceedings of the First International Workshop on Cryptographic Hardware and

Embedded Systems, CHES ’99, pages 94–108, London, UK, UK, 1999. Springer-
Verlag.

30. D. Vigilant. RSA with CRT: A new cost-effective solution to thwart fault attacks.
In E. Oswald and P. Rohatgi, editors, CHES, volume 5154 of LNCS, pages 130–145.
Springer, 2008.

31. S.-M. Yen, S.-J. Moon, and J. Ha. Hardware fault attack on RSA with CRT
revisited. In P. J. Lee and C. H. Lim, editors, ICISC, volume 2587 of LNCS, pages
374–388. Springer, 2002.

18

http://www.oracle.com/technetwork/java/javacard/overview/
http://www.oracle.com/technetwork/java/javacard/overview/

	Attacking RSA–CRT Signatures with Faults on Montgomery Multiplication

