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ABSTRACT 
 
     The refrigeration and air conditioning industry shows much interest in environmentally-friendly natural 
refrigerants.  One such refrigerant is R744, carbon dioxide. It is attractive because it is not toxic, not 
flammable, and is widely available as a byproduct of industrial processes.  However, carbon dioxide (CO2) 
systems operate at much higher pressures than systems using HCFC, HFC, or HFC-blend refrigerants.  The 
roles of common compressor mechanisms appear established in the marketplace using current refrigerants, 
but applicability for CO2 remains to be seen.  The intrinsic properties of scroll, rolling piston, and 
reciprocating piston mechanisms are compared for their impact on efficiency. 
 
 

INTRODUCTION 
 
     The refrigeration cycle using CO2 is transcritical, and is characterized by common pressure ratios but 
extreme pressure differences acting upon the compressing elements.  With this in mind, the three 
mechanisms are compared to each other using CO2, then to HCFC 22 operation as a baseline. 
     For efficiency comparison the leakage potential, heat transfer potential, and torque are studied.  Leakage 
potential is a quantified as a function of the sealing length and the pressure differential across it, at each 
point of the compression cycle.  Heat transfer is similarly quantified, using surface area and temperature 
difference.  Torque is calculated to make inferences towards motor design. 
     The time axis was normalized to one compression cycle for comparative purposes. 
     The pros and cons associated with design details for each mechanism are not considered. 
 
 

LEAKAGE 
 

  Leakage to and from the compression chamber affects the efficiency of any compressor, and may be 
even more important in CO2 application (8). 

  A rigid compressor model for each mechanism was designed to have equal displacement.  Using CO2, 
the scroll was designed for pressures indicative of operation at the ARI540-99 air conditioning condition.  
Using HCFC 22, the scroll was designed directly for the ARI540-99 air conditioning condition.  The 
criterion selected for comparison to represent the leakage potential of the mechanism is a summation of 
each sealing line length in the compression chamber multiplied by the difference of the squares of the 
pressures across this line.  This is calculated and plotted for increments through one compression cycle.   
The reciprocating piston and rolling piston designs are reasonably straightforward to calculate, but the 
scroll design is more complex, having up to six sealing line and pressure difference combinations to 
calculate and sum.  Raising the pressures acting across a sealing line to a power greater than unity is 
common in the literature and reference materials (1,8). 



  Figure 1 presents the results for CO2 compression.  The rolling piston and scroll designs show the 
greatest potential for leakage during their compression cycles.  The scroll plot is somewhat steady.  Due to 
its small number of wraps, the compression chambers tend to be adjacent to suction and discharge.  The 
rolling piston plot shows a sharp drop in leakage potential towards the end of its compression cycle.  At this 
point the leakage into the compression chamber ceases to dominate, and leakage from the compression 
chamber into the following suction chamber becomes more significant. 

   Figure 2 presents the results for HCFC 22.  Magnitudes of leakage potential are lower due to the lower 
pressure differences and the lower polytropic exponent.  Plots for the rolling piston and reciprocating piston 
are similar in shape.  The scroll mechanism has improved relative to the rolling piston later in its 
compression cycle.  Here, the scroll has a greater number of wraps, and the compression chambers are 
adjacent to those having closer pressures. 

  The reciprocating piston has the lowest leakage potential in either case. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
Fig 1. CO2 Compressor Cyclic Line of Sealing                       Fig 2. R22 Compressor Cyclic Line of Sealing 
 
 

HEAT TRANSFER 
 

      Heat transfer phenomena can affect efficiency also, but the focus here is on keeping discharge 
temperatures at manageable levels.  The ability to transfer heat of compression away from the chamber is 
viewed as helpful.  The chosen criterion to represent heat transfer potential is the surface area of the 
compression chamber multiplied by the temperature difference across this area. The convective heat 
transfer coefficient is assumed to be equal for each mechanism with a given refrigerant.  It is incrementally 
calculated similarly to leakage potential, summing all area and temperature difference combinations.  To 
calculate temperature differences for the rolling piston and reciprocating piston designs, the compression 
chamber temperature is compared to the average temperature of the process.  For the scroll, the temperature 
in the compression chamber is compared to the average temperatures in adjacent chambers. 
     Figure 3 presents results for CO2, and Figure 4 presents results for HCFC 22.  Positive values indicate 
heat transfer potential into the compressing gas.  Heat transfer potentials for HCFC 22 are lower, again due 
to the lower temperature differences and the lower polytropic exponent. The plots for the reciprocating 
piston and rolling piston designs are similar in shape.  These two mechanisms have relatively large 
chambers exposed to areas that are, on average, tending to be dominated by discharge temperature.   In 
either case, the scroll shows noticeable potential for heat rejection, as the compressing chambers see closer 
temperatures in adjacent chambers, tending on average not to be dominated by discharge temperature. 
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Fig 3. CO2 Compressor Heat Potential   Fig 4. R22 Compressor Heat Potential 
 
 

TORQUE 
 

     Frictionless torque calculations are presented in Figures 5 and 6.  The scroll torque appears flat but has a 
small peak near its end.  Comparing the CO2 plots to those for HCFC 22, the plots rank the same and scale 
similarly.  Comparing the mechanisms, the difference between rotating and reciprocating designs remains 
evident.  The concern remains that the motor design required for the reciprocating piston’s higher starting 
torque can compromise operating efficiency.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 CO2 Compressor Cyclic Torque   Fig 6. R22 Compressor Cyclic Torque 
 
 

CONCLUSIONS 
 

     For the design change from conventional HCFC 22 to CO2, the scroll shows potential sealing issues. 
The reciprocating piston had good sealing properties but very high peak torque. The rolling piston had 
average behavior in all three categories. None of the mechanisms ranked best in all three categories, 
therefore the success of a compressor in CO2 application will likely depend on the designer’s expertise. 
 
  
 
 

SPECIAL THANKS 
 
The authors thank Mr. Michael Maertens for his help with computational scroll modeling and simulation. 

CO2 Compressor Cyclic Torque 

0

20

40

60

80

100

120

140

160

Complete Compression Cycle

To
rq

ue
 (N

.m
)

Scroll Rolling Piston Reciprocating Piston

R22 Compressor Cyclic Torque 

0

5

10

15

20

25

30

Complete Compression Cycle

To
rq

ue
 (N

.m
)

Scroll Rolling Piston Reciprocating Piston

CO2 Compressor Heat Potential 

-100000

-80000

-60000

-40000

-20000

0

20000

Complete Compression Cycle

H
ea

t A
re

a 
Po

te
nt

ia
l (

 
m

m
2*

K
) 

Scroll Rolling Piston Reciprocating Piston

R22 Compressor Heat Potential 

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

Complete Compression Cycle

H
ea

t A
re

a 
Po

te
nt

ia
l (

 
m

m
2 *K

)  

Scroll Rolling Piston Reciprocating Piston



REFERENCES 
 

1. Avallone E.A. and Baumeister III T., “Marks Standard Handbook for Mechanical Engineers.” 
McGraw-Hill, Inc. New York, 1996. 

2. Gnutek Z., Kalinowski E. and Pietrowicz S., “Analysis of Thermodynamic Processes in the 
Work Chamber of a Spiral machine in the Function of the Rotation Angle.” Proceedings of 
the 2000 International Compressor Engineering Conference at Purdue, Vol. II pp 815-822, 
2000. 

3. Hasegawa H., Ikoma M., Nishiwaki F., Shintaku H., and Yakumaru Y., “Experimental and 
Theoretical Study of Hermetic CO2 Scroll Compressor.” Preliminary Proceedings of the 4th 
IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, pp 347-353, 2000. 

4. Holman J., “Heat Transfer”, Fourth Ed., McGraw-Hill, Inc. New York. 
5. McLinden M., Klein S., Lemmon E., and Peskin A., “REFPROP”.  NIST Standard Reference 

Database 23-v. 6.01. 
6. Neksa P., Dorin F., Rekstad H., and Bredesen A., “Development of Two-Stage Semi-

Hermetic CO2 Compressors.” Preliminary Proceedings of the 4th IIR-Gustav Lorentzen 
Conference on Natural Working Fluids at Purdue, pp 355-362, 2000. 

7. Norton, R., “Design of Machinery.” McGraw-Hill, Inc. New York, 1994. 
8. SuB J. and Kruse H., “Efficiency of the Indicated Process of CO2-Compressors.” International 

Journal of Refrigeration, Vol. 21, pp 194-201, 1998. 
9. Tadano M., Ebara T., Oda A., Susai T., Takizawa K., Izaki H., and Komatsubara T., 

“Development of the CO2 Hermetic Compressor.” Preliminary Proceedings of the 4th IIR-
Gustav Lorentzen Conference on Natural Working Fluids at Purdue, pp 323-330, 2000. 

10. Yanagisawa T., Fukuta M., Sakai T., and Kato H., “Basic Operating Characteristics of 
Reciprocating Compressor for CO2 Cycle.” Preliminary Proceedings of the 4th IIR-Gustav 
Lorentzen Conference on Natural Working Fluids at Purdue, pp 331-338, 2000. 

11. Yanagisawa T., Shimizu T., Chu I., and Ishijima K., “Motion Analysis of Rolling Piston in 
Rotary Compressor.” Proceedings of the 1982 International Compressor Engineering 
Conference at Purdue, pp 185-192, 1982. 

 
 
 
 
 
 
  


	Purdue University
	Purdue e-Pubs
	2002

	Compressor Mechanism Comparison For R744 Application
	D. A. Collings
	Z. K. Yap
	D. K. Haller


