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ABSTRACT 
 

     Today, technology that permits devices and machines to be fabricated in micro sizes is readily available.  Similar 
technology has benefited the development of micro-compressors.  This paper describes a simulation approach of a 
complete working cycle of a micro-compressor taking into consideration of micro flow features.  The treatment for the 
micro-compressor using the available findings in the literature related to MEMS together with an approach that has been 
developed will be proposed.  The prediction on the P-V histories will be shown and discussed. 

 
INTRODUCTION 

 
     Nanotechnology [1] has the potential of not only revolutionaries the whole manufacturing industry and materials 
processing, it has also changed the way we think, greatly, especially those related to engineering design.  The 
miniaturising of energy systems, in particular, influences every aspect of engineering sciences to the extent that the 
existing theories and conventional fabrication techniques are greatly challenged.  Today, the miniature devices or 
MEMS such as micro-engine, micro-motor, micro-turbo machinery and micro pump can be fabricated with relative ease.  
However, for air pumping applications, the development of high-pressure compressors has rarely been reported. 
 
     Steme E. et al [2] presented a piezoelectric micro-pump using diffuser nozzle element.  Though the use of the diffuser 
valve instead of check valve simplifies the fabricating process of the micro-pump, at the same time, it penalizes the 
operating pressure range of the compressor.  The use of the piezoelectric element as the �diaphragm� type compressing 
mechanism in this manner has also restricted the maximum pressure achievable. Fujiwira et al [3] developed a 
reciprocating air micro-compressor using a needle as the piston.  Because of the use of a relatively large reciprocating 
motion generator, the combined compressor-prime mover, excludes the whole unit to be classified as a micro-
compressor. 
 
     In a true sense of micro-compressor, the dimensions, in particular the characteristic dimensions such as the piston 
diameter should be within micro-scales. It is believed that the operation and the responses of such a small machine will 
be greatly different from the conventional ones.  The applicability of conventional governing laws and theories in these 
micro-situations requires re-examination. Hitherto, all the simulation involving compressor at various levels of 
comprehensiveness such as the thermodynamics and the fluid dynamics description were normally carried out separately 
and the hypothesis of continuum mechanics was assumed.  The latter is a reasonable assumption as the characteristic 
dimensions of these machines are relatively large as compared to the mean free path of the working medium.  However, 
as the dimensions of the compressor reduce, rarefied and surface effects, viscosity and others are becoming more 
significant.  When the dimensions of the compressor reached the micro-level, the mean free path is no longer negligible 
as compared to the characteristic dimensions of the flow geometry, hence descriptions by continuum mechanics failed.  
Under such situations, the flow is best described by kinetic theory of gasses and Navier-Stoke equation should be 
replaced by Boltzmann equation.  Consequently, kinetic theory must combine with thermodynamics in order to give 
satisfied description of fluid behaviour, especially when the gas equation of state (Boyle�s law or other equation of real 
gas) can�t satisfy micro-scale behaviour of fluid.  
 



     Literature shows that the simulation of a whole working cycle for a micro-compressor taking into consideration of 
micro-features has not been reported.  In fact, the true sense of micro-reciprocating compressors has not been developed.  
In this paper, an attempt has been made to introduce a new theoretical description of the working cycle of a micro-
reciprocating compressor.  
 

CONSIDERATIONS FOR MICRO-SIMULATION 
 
 

Description form of a micro-compressor working cycle 
 
     Although both molecular dynamics (MD) and Boltzmann equation (BE) can be used to describe micro-scale systems, 
representation method of classical thermodynamics (property diagram) is more straightforward than statistical 
thermodynamics.  From macroscopic viewpoint, the size of a reciprocating compressor is infinitesimal, but the space is 
very large when compared to the size of molecules of the working fluid i.e. one square micro volume contained several 
millions of molecules, hence representing a complete working cycle by macroscopic quantity has far-reaching 
significance. 
 
The relationship between rarefaction and microflow 

  
     Rarefaction effects mean pressure drop, shear stress, heat flux and the corresponding mass flow rate can no longer be 
predicted using the flow and heat transfer model based on continuum hypothesis [4].  From a conventional definition [5], 
rarefied gases mean very low-density gases or low-pressure gases. 

 
     In the field of microelectromechanical systems (MEMS), Kn (i.e. mean free path/ characteristics dimension) may be 
large, which represents the degree of rarefaction effect.  However, it must be noted that rarefaction effect in micro-
geometry does not necessarily warrant the application of the rarefied gas theory.  In fact, to the contrary, the application 
of such theory is inappropriate.  This is because the reason for high Kn in the micro-sized geometry is a result of a size 
reduction while molecular density and hence the gas density remains constant.   Under such a situation, an application of 
rarefied gas theory may not be suitable. 

 
   Consider this example:  A house is with twenty persons distributed evenly.  To illustrate the reduction in size from 
macro to micros, take only one tenth (in volume) of the size of the house and it should include two persons in this small 
space.  Notice that the density does not change, the number of molecules per unit volume also remains constant.  At the 
initial instant, in a full-scaled house, a person will interact with nineteen other persons, later with only one!  Obviously, 
the behaviour of the "person" for these two cases will be different. 

 
     From this example, the gas with rarefaction effect behaves as if a person is placed in a prison normally with a very 
limited space. Under such a situation, the gas with rarefaction effects (NOT rarefied gas) and other effects such as 
compressibility, viscosity etc. should be re-examined because of variation of physical environment (size, boundary 
condition) and interaction between molecules.  Hence, the rarefaction effect is obvious in micro-geometries, the gas 
within micro-scale compressor is not a rarefied gas if the conventional definition of rarefied gas is acknowledged. 
However, if Kn is the only determining factor, then the gas within the micro-scale compressor could easily be taken as 
a rarefied gas. 
 

 
The gas in the micro-domain creates non-continuum phenomenon 
 
     In the continuum model, the gas is approximated as a continuous substance, with only the averaged effects of all the 
molecules in a finite region of the gas being considered. When rarefaction effects increase and characteristic size 
reduces, the interaction (though much less) between molecules becomes dominant.  This dominating molecular motion 
results in a significant deviation of gas characteristics from the continuum description and that the continuum model 
fails.  This deviation from the continuum behaviour is caused by two main reasons: First, the intermolecular interaction 
is greatly reduced because the total number of molecules is much less than that in macro-devices.  Secondly, from the 
point of view of the derivation process of continuum kinetic equation, the micro-unit volume used by the computational 



process of gas dynamics equation is so small that every micro-unit volume includes only a limited number of molecules, 
which is unsuited for continuum description.  In other words, the molecular chaos restriction breaks down in the micro-
computational volume, which is the prerequisite condition for the requirement of accurate computation of the 
macroscopic quantities (such as temperature and pressure) using the microscopic information [6]. 
      
The relationship between continuity and equilibrium  
 
     Continuity indicates the mathematical description form of flows, while equilibrium represents the state of the fluid.  
From the continuum viewpoint, the velocity distribution function of fluids is everywhere at the local equilibrium. If the 
fluid is not a continuous medium, the instant local equilibrium fails, the kinetic equation will describe this evolution 
physical process from non-equilibrium to equilibrium (local). Therefore, although continuity is closely related to 
equilibrium, the two have different significance [7]. 
 
 
The characteristic time and length scale difference between micro and macro domains 
 
     Mean free path is the average distance traveled (at constant velocity) by molecules between collisions.  The mean 
free path time is the average time lapsed between two consecutive collisions of a given particle.  The length of the mean 
free time and path determines the transition to local equilibrium.  The evolution process in micro-domain is described by 
kinetic theory.  The characteristic relaxation scales in the kinetic theory are the free path time and free path length. 
 
     One shall distinguish between the relaxation time of kinetic stage which leads to local equilibrium and the relaxation 
time governed by the gas dynamics process.  In kinetic stage, the characteristic time is expressed in terms of internal 
parameters of the system, whereas in gas dynamic process the relaxation time depends on the external scale, for instance 
the dimensions of the system [8].  Although gas dynamic description corresponds to local thermodynamic equilibrium, 
the characteristic length and time scale between kinetic theory and gas dynamics is greatly different, hence different 
iteration time step in computation should be used when considering macro and micro problems.  This will be discussed 
in the following sections. 
 
The state settling time from non-equilibrium to equilibrium is longer in microscale than that in 
macroscale 
 
     When dealing with a non-continuum flow situation, the system settling time from a non-equilibrium state to reach an 
equilibrium state becomes an important parameter because the system takes more molecular collisions to reach the 
equilibrium as compared to continuum systems. 
 
     The total number of molecules within a micro-channel is significantly reduced as compared to the macro-ones 
implying that the collisions between molecules are less and less frequent than before.  There is a need for time of 
evolution towards a most equilibrium state according to Second Law of Thermodynamics, hence the flow approaches 
the local equilibrium state in a relatively longer time as compared to those in low Kn.  The equilibrium state here refers 
to the most randomized/chaotic state of gas molecules. 
 
The relationship between the iteration time step and the settling time 
 
     The collision time is the time comparative to mean free path time; the iteration time step is the time interval used for 
computing the settling of the process. The settling time is the time for the micro-system to reorganize itself from one 
non-equilibrium state to an equilibrium state (local), which is the parameter that the iteration time step depends upon. 
 
    In the computation for a micro-compressor cycle, if every process within a small iteration time step is assumed as an 
evolution process from non-equilibrium to equilibrium, then the whole micro-compressor cycle can be simulated by 
replacing the complete continuous cycle with many discrete micro-processes.  Therefore, the relationship 

   timesettlingstep teration  TTi ∆≥∆   should be satisfied in order to guarantee the accuracy of the computation because the 



process within the minimum time interval that the evolution equation can describe is  timesettlingT∆ at a given condition.  
If the settling time is known, then the iteration time step can be decided accordingly. 
 
 
 
Feasibility of combining micro and macro-scale simulation approaches 
 
     In general, thermodynamics [18] can be divided into the probabilistic and the deterministic.  The statistical 
thermodynamics belong to probabilistic, which links microscopic with macroscopic phenomenon, while deterministic 
thermodynamic does not consider the molecular structure of medium.   The latter uses the macroscopic quantities to 
describe the state of the system [16]. BE and MD resemblance the statistical thermodynamics, which could bridge 
between microscopic and macroscopic phenomenon.  BE as a tool for describing the micro-domain phenomenon 
pertaining to gas flow plays an important role in the simulation of micro-compressors. MD is the technique used in the 
present study involving the solution of the equation of motion or system of molecules that interact with each other 
through intermolecular potential.  The MD method is not based on kinetic theory, but attempting to model such 
processes in molecular media as free motion and interaction of molecules, which is very useful for investigating flow 
from the microscopic viewpoint.  
 
     In the field of MEMS, the methodology of statistical thermodynamics and classical thermodynamics may be linked 
together because the micro regime is the transitional regime from macro-scale to molecular level. 
 

PROPOSED MODELLING APPROACHES 
 

The regime of micro reciprocating compressor 
 
     The working medium always exists as a gas phase in the compressor, whose degree of rarefaction is indicated by Kn.  
As an example to gauge the range of Kn, take the diameter of the cylinder of a micro-compressor as D while mean free 
path, L is 8105 −× m (for air at the standard atmospheric condition P=1atm, T=298K).  If D is between 0.1µ m and 
10µm, Kn, which is L/D, will be between 0.005 and 0.5.  Often, the Kn regime is ranged as follow [10]: 
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Hence Kn of air in the micro-compressor is between 0.005 and 0.5, and it lies within the slip boundary condition and the 
transition regime.  For other conditions and working medium of refrigerant, similar estimations can be made.  
 
 
Current Simulation Method for Micro-Scale Devices 
 
      Generally, when the quantum effect is not appreciable, the mathematical modeling of working fluid in micro-devices 
can be described by three methods.  These are Molecular Dynamics (MD), Boltzmann Equation (BE), direct simulation 
of Monte Carlo (DSMC).  BE method belongs to statistical mechanics or kinetic theory, MD represents the molecular 
characteristics by classical mechanics law, while DSMC based on BE or MD, often used to compute fluid flow and heat 
transfer of rarefied gas.  Each of the methods has its own merits and shortcoming.         
 
     MD method [11,12] requires a large amount of computational time, thus it may not be practically feasible for gas 
flows in MEMS.  And, also that the molecular interaction is very important in this method but the molecular interaction 
are infrequent when Kn number is large.  In the transition regimes, the kinetic theory of rarefied gas is more suitable, 
and BE can be solved if the nonlinear collision integral is simplified.  DSMC is related to real physical time and is a 
statistical computational approach used to solve rarefied gas problems, and it is valid for all ranges of Kn [7]. 
 
Three Proposed Simulation methods 



        
Ι.  State Equation method 
 
     This method attempts to build a new equation of state (EOS) for micro-systems.  Previous work based on First Law 
of Thermodynamics depends on equation of state to link pressure, temperature, thermodynamic property, and other state 
variables.  For micro systems, a new EOS should be introduced using a new formulation suitable for micro-domains.  
 
Π    Kinetic Theory  
 
     From BE, the gas dynamics equation and equation of state (such as Boyle�s law) can be derived, and the First Law of 
thermodynamics can be used in the micro-unit volume during the process of derivation.  Hence, it is possible to combine 
the kinetic theory and the First Law of Thermodynamics to simulate the working cycle in micro-compressors. 
 
1.  Solve the Boltzmann equation directly 
 
     The whole cycle will be divided into many time intervals (iteration step for the complete working cycle), within 
which the evolution process is described by Boltzmann equation.  The evolution process is simulated at every time 
interval (as if previous Navier-Stokes equation in dynamics simulation), by changing initial condition, boundary 
condition and Kn or other parameter. The boundary condition can be specified by flow rate of the working fluid and the 
temperature of the cylinder wall. 
 
2. Expansion methods (combing the kinetic theory with the First Law of Thermodynamics) 
 
     In this approach, the kinetic theory can be used to describe the fluid flow in the micro-compressor, which obeys the 
First Law of Thermodynamics.  The approach [13] here is to replace every terms in the First Law with functions 
describing the velocity distribution of the molecules to simulate the whole working process. 
  
     In this approach, the macroscopic quantity and gas property (pressure, work, temperature, internal energy, heat 
transfer) will be represented by velocity distribution functions.  
 
 
Ш.  Combination of DSMC and First Law of Thermodynamics 
 
     This method uses similar principle as that in method Π, the difference is that Boltzmann equation is substituted by 
DSMC.  
 

Table 1 Differences between macro and micro compressor simulation method 
 

Different section of simulation Macro-compressor Micro-compressor(MEMS) 

Thermodynamic process Classical thermodynamics Combination of kinetic theory 
Related to statistical thermodynamics  

Valve dynamics Macro-valve  Micro-valve 

Motion equation  
for the volume variation 

Determined by conventional drive method Micro-actuator 

Heat transfer General empirical correlations Micro heat transfer consideration 

Mass flow Quasi-adiabatic flow through an orifice A micro-orifice flow process 

 
The method utilizing the Boltzmann equation (pertaining to method Π)  
 
     Since Kn in the micro-compressor indicates that the flow will be within the slip-boundary and the transition regime, 
therefore MD simulation and gas dynamics are not suitable, as mentioned before.  Under such a situation, Boltzmann 



equation or other kinetic evolution equation such as Liouville equation in the regime of slip boundary and transition 
would be more suitable.  Boltzamnn equation describes a set of identical physical particles modeled as point masses and 
is in the intermediate position between the continuum theory of fluid dynamics and the discrete modeling of numerous 
numbers of particles by means of classical dynamics. 
 
     This section introduces the simulation process using Boltzmann equation and its solving method. 
  
    1. The mathematical model of working fluid 
 
A general form of Boltzmann equation [14-19] with external force is 
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where 
 ),,( zyx XXXX =  the external force which acts on a molecule with a mass 

 ),,( ξxtf  the distribution function 
 ),,( zyxx =r

 position vector 

 ),,( zyx ξξξξ = the velocity vector 

 ),( ffI the collision integral operator, which account for the dissipation due to redistribution of particle�s 
velocities because of interaction (collision) between two particles.  
 
2.  Boundary conditions and initial value 
 
     The initial condition has the form ),(),,0( ξξ xfxf initial=r

, where ),( ξxfinitial
r

 is function for x ∈ V (physical 

space), restriction on the term of ),( ξxfinitial
r

 should be determined by the appropriate existence theorems of the 
problem under consideration.   
 
     A solution to the Boltzmann equation is sought in the infinite domain of the velocity space and in the domain (finite 
or infinite) V of physical space bounded by a surface. The boundary can be divided into two parts, correspondingly 
respective to the boundary of the external flow and the surface of a body.  
 
     In the typical boundary conditions for a part of the Boltzmann equation (e.g. for a free boundary surface), if boundary 
condition function describes the undisturbed outer flow, the equilibrium distribution function for velocity ξ of 
equilibrium directed into the domain V is expressed as Maxwell distribution or others. 
 
3. Selection of computation method for solving Boltzmann equation 
 
    At present, there are many methods of mathematical approaches to solving Boltzmann equation, which are often 
divided into analytical and numerical ones.  Discussion about these methods is beyond the scope of this paper. However, 
it should be mentioned that the approximation of the distribution function and collision integral is the fundamental train 
of thought by whatever methods, because this function is the basis for computing macroscopic quantity or the quantity 
able to describe microscopic domain, transport coefficient, and other fluid property parameters. 
 
4. The initial condition and boundary condition for a reciprocating micro-compressor 
 
     For the suction and discharge processes, the physical boundaries and outer flow boundary condition are coexist, 
while other processes only involve physical boundaries for describing the boundary conditions.  The first initial 
condition may be assumed at a given equilibrium state, the initial condition of other iteration step is subsequently 
obtained from the results of the previous time step, as in the normal time marching problems, while the form of collision 
integral must be taken into account carefully.   
 



 
5.  The process of computation  
 
      In the First Law of Thermodynamics for closed systems, Q=W+∆U , heat transfer and internal energy terms depend 
on the temperature of the working fluids, and work done  is related to pressure of fluids and the displacement of the 
piston.  Thus, the solution of pressure, P and temperature, T is the key to solving the problem for conventional 
simulation.  In the micro systems, the condition is different, the macroscopic behavior cannot be described easily by the 
conventional quantity, instead, the distribution function will replace those quantities as a medium, and hence the 
iteration process will also be different.    
 
     As mentioned above, the method Π is categorized into two methods. One method is obtaining the value of the state 
variable such as P and T by computing the velocity distribution function through a direct simulation of Boltzmann 
Equation at every time interval.  Because Kn determines the degree of rarefaction and validity of the continuum of the 
model, Kn changes with time and influences heat transfer and work.  In order to solve this problem, as Kn, volumetric 
quantity (work) and boundary condition vary, the coefficient and boundary condition of Boltzmann equation will be 
decided at every iteration time step, the initial condition of subsequent time step is obtained from the equilibrium 
solution of the last time step. 
 
     In the situation that the First Law of Thermodynamics is employed together with the kinetic theory to simulate the 
working cycle of the micro-compressor, three fundamental considerations must be examined. First, what are the time 
dependent parameters?  Secondly, what are the iteration procedures to be used and how to represent every term in the 
First Law properly? Thirdly, how to decide the initial and boundary conditions at every iteration time step?  
Alternatively, every term of the First Law of thermodynamics could be expressed in terms of approximation function of 
the velocity distribution.  In this way, the velocity field is first computed, the value of pressure and temperature can then 
be calculated.  
 
Physical explanation of the working cycle 
 
     In a compression cycle of a micro-compressor, it includes four processes: suction, compression, discharge and 
expansion.  During these processes, the rarefied gas effect is significant. In the suction and discharge processes, the mass 
transfer rate is not zero, the flow situation may be modelled as flow through microchannel.  However, for the 
compression and expansion processes since they involve no mass transfer (consider perfectly sealed systems), the 
compressibility, viscosity and other unconventional micro flow effects must be considered. 
  
    As the rarefaction effect increases, the interaction between molecules decreases, the gas can thus be compressed easily 
using less work. If less work is done, the heat transfer quantity will be reduced and less entropy will be generated.  Thus, 
the gradient of the expansion curve is thus steeper for micro-compressor than that for the macro one.  Inversely, the 
gradient of the compression curve is lower, see figure 1.  Figure 1 is the predicted form of the PV histories for the micro 
and macro compressors. 
 
 
 
 
 



 
 
                         Figure 1  Comparison between PV histories of macro and micro compression cycles 
 
In the diagram, the dot line represents P-V curve of macro compressor whereas the continuous line represents predicted 
curve of the micro compressor. In this figure, the PV diagram for the microcompressor is enlarged to fit the scale for the 
purpose of comparison.  The qualitative variation of the parameters pertaining to four processes is shown in table 2. 
  
 

Table 2  Variation of parameters during a compression cycle. 
 

 Temperature Molecular free path, Kn Pressure Volume 

Expansion  ↓  ↑  ↓  ↑  

Suction  ↓  ↓  Small variation ↑  

Compression ↑  ↓  ↑  ↓  

Discharge ↓  Small variation Small variation ↓  

 
 
     The properties of working fluid such as temperature and pressure are the average values within the whole cylinder, 
and simulation of valve dynamics, heat transfer, mass flow [10,20] etc. is not presented and will be the subject for future 
publication. 
 

CONCLUSION 
  
    This paper presents feasibility of simulating a complete working cycle for a micro reciprocating compressor. Several 
possible methodologies are suggested and discussed.  The method related to Boltzmann equation is focused upon, and 
the computation process is illustrated. 
 
     Following the arguments and elaboration presented, the predicted complete working cycle for the micro-compressor 
is shown together with that of the macro one on a PV history. The method presented in simulating the micro-
reciprocating compressor is in fact applicable to simulating other fluidics involved in working cycle of fluid flow. 
 
 
 

    P  
 
(N/m2) 
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