-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Covariance tracking: architecture optimizations for
embedded systems

Andrés Romero, Lionel Lacassagne, Michele Gouiffes, Ali Hassan Zahraee

» To cite this version:

Andrés Romero, Lionel Lacassagne, Michele Gouiffes, Ali Hassan Zahraee. Covariance tracking: ar-
chitecture optimizations for embedded systems. EURASIP Journal on Advances in Signal Processing,
SpringerOpen, 2014, pp.25. 10.1186/1687-6180-2014-175 . hal-01094903

HAL Id: hal-01094903
https://hal.inria.fr /hal-01094903

Submitted on 14 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/49571992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01094903
https://hal.archives-ouvertes.fr

S procenivg ™" SpringerOpen®

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Covariance tracking: architecture optimizations for embedded systems

EURASIP Journal on Advances in Signal Processing 2014,
2014:175 doi:10.1186/1687-6180-2014-175

Andrés Romero (andresrommier@gmail.com)
Lionel Lacassagne (lionel.lacassagne@Iri.fr)

Michéle Gouiffes (michele.gouiffes@u-psud.fr)
Ali Hassan Zahraee (ahzahraee@gmail.com)

ISSN 1687-6180
Article type Research
Submission date 7 March 2014
Acceptance date 16 October 2014
Publication date 6 December 2014

Article URL http://asp.eurasipjournals.com/content/2014/1/175

This peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see
copyright notice below).

For information about publishing your research in EURASIP Journal on Advances in Signal
Processing go to

http://asp.eurasipjournals.com/authors/instructions/

For information about other SpringerOpen publications go to

http://www.springeropen.com

© 2014 Romero et al.
This is an Open Access atrticle distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

mailto:andresrommier@gmail.com
mailto:lionel.lacassagne@lri.fr
mailto:michele.gouiffes@u-psud.fr
mailto:ahzahraee@gmail.com
http://asp.eurasipjournals.com/content/2014/1/175
http://asp.eurasipjournals.com/authors/instructions/
http://www.springeropen.com

Covariance tracking: architecture optimizations
for embedded systems

Andrés Romert-t
*Corresponding author
Email; andres.romero@lIri.fr

Lionel Lacassagrie
Email: lionel.lacassagne@Iri.fr

Michele Gouifféd
Email: michele.guiffes@u-psud.fr

Ali Hassan Zahraée
Email: ali.hassan@u-psud.fr

!Laboratoire de Recherche en Informatique, Université Paris-Sué3BatUniversité Paris
Sud, Orsay, France

2Laboratoire d’'Informatique pour la Mécanique et les Sciences de I'iegérBat 508,
Université Paris Sud, Orsay, France

fEqual contributors.

Abstract

Covariance matching techniques have recently grown in interest due tgtieiperformances for
object retrieval, detection, and tracking. By mixing color and texture informati@ncompact
representation, it can be applied to various kinds of objects (textured,aigid or not).
Unfortunately, the original version requires heavy computations and isulliffccexecute in real
time on embedded systems. This article presents a review on different weo$itre algorithm and
its various applications; our aim is to describe the most crucial challengesaaticlifarities that
appeared when implementing and optimizing the covariance matching algorithm detg g&
desktop processors and on low-power processors suitable for encdb&gdlems. An application of
texture classification is used to compare different versions of the regicnptes. Then a
comprehensive study is made to reach a higher level of performance oncongt€PU architecture
by comparing different ways to structure the information, using single instryctiattiple data
(SIMD) instructions and advanced loop transformations. The execution timélseaé significantly
on two dual-core CPU architectures for embedded computing: ARM Cortexad@artex-A15 and
Intel Penryn-M U9300 and Haswell-M 4650U. According to our experitmen covariance
tracking, it is possible to reach a speedup greater #izaon both ARM and Intel architectures, when
compared to the original algorithm, leading to real-time execution.

Keywords

Covariance tracking; SIMD; Multi-core; Embedded systems

Introduction

Tracking consists in estimating the evolution in state (e.qg., location, size, orientdtemaving target
over time. This process is often subdivided into two other subproblemsctibgteand matching. De-
tection deals with the difficulties of generic object recognition, i.e., finding ins&from a particular
object class or semantic category (e.g., humans, faces, vehicles)nejistdigital images and videos.
On the other hand, matching methods provide the location which maximizes the similiiity @ ob-
jects previously detected in the sequence. Generic object recognitidreegquodels that cope with the
diversity of instances’ appearances and shapes. This is generallyoyn&aning techniques and clas-
sification. Conversely, matching algorithms analyze particular information arglrochdiscriminative
models that allow to disambiguate different instances from the same categoryathd@nfusions.

The main difficulty of tracking is to trace target trajectories and adapt togdsaof appearance, pose,
orientation, scale, and shape. Since the beginnings of computer visioreraityiwf tracking methods
have been proposed, some of them construct path and state evolution essnuatiumn a Bayesian
framework (e.g., particle filters, hidden Markov models), others measureetiseiped optical flow in
order to determine object displacements and scale changes (median flo&xlaustive appearance-
based methods compare a dense set of overlapping candidate locationsttthdetee that fits best with
some kind of template or model. Wharpriori information about the target location and its dynamics
(e.g., speed and acceleration) is available, the number of comparisons ctubed enormously by
giving preference to the more likely target regions. Other accelerationsecachieved using local
searches that are based on gradient-descent algorithms able to hantlirgmeadisplacements and
geometrical changes. Among these approaches, feature points trackingjtees are very popular [2]
since points can be extracted in most scenes, contrary to lines or other gedeagtres. Because they
represent very local patterns, their motion models can be assumed as rigid estinbated in a very
efficient way. This method, as well as block matching, are raw-pixel metlsot= the target is directly
represented by its pixels matrix.

In order to deal with non-rigid motion, kernel-based methods such as méda(vtd) [3] and [4] use a
representation based on color or texture distribution.

Covariance trackingQT) [5] is a very interesting and elegant alternative which offers a compaysttar
representation based on the spatial correlation of different features cahgiwgach pixel in the target
bounding box. Very satisfying tracking performances have beemadatéor diverse kinds of objects
(e.g., with rigid motion or not, with texture or not). CT has been studied extensasmdlymany feature
configurations and arrays of covariance descriptors have beengapo improve its discrimination
power [6-11] and. Smoother trajectories can be obtained by considerigg thynamics; therefore, they
increase tracking accuracy and reduce the search space [12¢t#ticzalgorithms [14] can also be used
to accelerate the convergence towards the optimal solution of the bestai@npligition, considering a
search in a large image. But, to our knowledge, little work has been donealgzarthe computational
demands of CT and its portability to embedded systems [15]. The goal of thig astio fill this gap,
analyze the algorithm’s computational behavior for different implementations, aadumeetheir load
on embedded architectures. A study is also made to compare different sizesrdigurations of the
descriptors in terms of discrimination power through a texture classification applic

The article is structured as follows. The first section introduces some of#ie principles of the CT
algorithm and provides a brief description of the different searching artdhing methods that can
be associated with C. Then various configurations of the covariance medrevaluated. Finally, we
provide an in-depth description of implementation details and suitable acceleratioigiges proposed
to achieve a higher level of performance. Experiments and details atalgbrithm implementation
are presented in the final section that comes followed by our conclusions.

1 Covariance matrices as image region descriptors

Let I represent a luminance (grayscale) or a color image with three channadsmsider a rectangular
region of sizen = W x H (it can be the bounding box of the target to be tracked for example)F'Let
be theW x H x ng dimensional feature image extracted frém

Fuv = F(puv) = QZ)(Iapuv)Wlth Puv = (xwyv) (l)

where¢ is anyn r-dimensional mapping forming a feature vector for each pixel of the bogrubx.
The features can be spatial coordingpgs, intensity, color (in any color space), gradients, filter re-
sponses, or any possible set of images obtained fronow, let{z; };—;..., be a set of.p-dimensional
feature vectors inside the rectangular regidorc F' of n pixels. Concerning notationg,,, stands for
the pixel atuth row anduvth column.

The regionR is represented with ther x np covariance matrix

Cr= ;zk — W)z —)T)

whereyp is the mean feature vector computed onsthgoints.

The covariance matrix isar x np matrix which fuses multiple features naturally by measuring their
correlations. The diagonal terms represent the variance of eachefeatoite elements outside this
diagonal are the correlations. Thanks to the averaging in the covariangautation, noisy pixels are
largely filtered out, which is an interesting advantage when compared to rarpethods. Covariance
matrices are more compact than most classical object descriptors. Indeeth sigmmetryCr has
only (n% + nr)/2 different values whatever the size of the target. To some extent, it istrabasist
scale changes, because all values are normalized by the size of thie afjeagainst rotation when the
locations coordinates,,, are replaced by the distance to the center of the bounding box.

The covariance descriptor ceases to be rotationally invariant when aidentgormation is introduced
in the feature vector such as the norm of gradients with respecataly directions. The information
considered by the covariance descriptor should be adapted to thempratitend, because they depend
on the application, as described in the next paragraph.

1.1 Covariance descriptor feature spaces

Covariance descriptors have been used in computer vision for objectidefd®], reidentification [10,
11] and tracking [5]. The recommended set of features to use dep@gmificantly on the application
and the nature of the object: tracking faces is different than trackingspeains because faces are
somehow more rigid than pedestrians which have more articulations. Color is artamtplont for
pedestrian or vehicle tracking/reidentification because of their clothesdymtmok color. But color is
less significant for reidentification or tracking faces because the sei@fsahey exhibit is relatively
limited.

Table 1 displays a summary of the more common feature combinations used by mowakéscriptors
in computer vision. The most obvious ones are the components from diffedlenspaces such as RGB

and HSV. Pixel brightness in the grayscale imégmd its local directional gradients as absolute values
|I.| and|I,|, gradient magnitud%/lg + 12, and its angle calculated asctan % Foreground images

G resulting from background subtraction methods and its grad@éptandG,. Featuresgjy(z,y) to
g74(z,y) represent the 2D Gabor kernel as a product of an elliptical Gaussiaa anthplex plane
wave [9].

Table 1 Features considered by the covariance descriptor depeimd) on the application

Application Feature set¢(I, p) with p = (z,y)

[z y Ll L] |l [Lyl]
Face tracking and recognition [9] [z vy I |L| |L] [l [yl 6(zy)]

[z y I goolz,y) go(z,y) - gr(z,y) |

[« v Ll Ll VE+T Ll Lyl arctanie

[a: y || Iy 12+ IE arctanﬁz

]

| 2 2
6 \/ei+GE |

Pedestrian detection [16,17]

[z y R G B |L| |I]]
[33 y R G B |[x| |L/| |Iw:‘ |[yy‘]
[x y H S V |L| | }

Pedestrian tracking [5,10,11,16] and [18][.

=y

G B Var gp }
[z y I sin(LBPg,) cos(LBPy,) sin(LBPs,) cos(LBPs,) |

[z y R G B sin(LBPy,) cos(LBPy,) sin(LBPy,) cos(LBPy,) |

Some texture analysis and tracking methods use local binary patt@&R¥i(the place of Gabor filters
and the reason is that LBP operators are much more simple and economicals Vaiyg, LBP,,
and LBR), in Table 1 represent local binary pattern variance (which is a classicpépy of the LBP
operator [19]) and the angles defined by them, as detailed in [18]. Thiswuesf the feature vector has
shown very good performances for tracking, both in terms of robustaed computation times, and
requires a far shorter vectonf = 7) when compared to Gabor filters 4 = 43). In the rest of the
paper, for the algorithmic optimization, a vector of five to nine features is camsidbut note that the
proposed optimizations can be applied to any matrix size.

Now, let us detail the computation of the covariance descriptor.

1.2 Covariance descriptor computation

After some term expansions and rearrangements on Equation @, jheh element of the covariance
matrix can be expressed as

n n

Crlird) = = [asi)d) — + D 2(D) D 24()| 3)

n—1
k=1 k=1 k=1

Therefore, the covariance in a given region depends on the sunclffeature dimension(:);—i...n,
as well as the sum of the multiplications of any pair of featur@$z(j); j—1...., requiring in total
nr + n%/2 integral images, one for each feature dimensi@i) and one for the multiplication of any
pair of feature dimensionsi)z(j) (the covariance matrix is symmetric).

Let A be alW x H x np tensor of the integral images of each feature dimension

Aw(@)= Y Fu(fori=i---np, (4)
pER(11,uv)

whereR(11,uv) is the region bounded by the top-left image corper = (1, 1) and any other point in

the imagep,, = (x4, yy). In a general way, leR(uv, v'v") be the rectangular region defined by the top-
left point p,,, and the right-bottom point,,.. Similarly, the tensor containing the feature product-pair
integral images is denoted as

Bu(i,j)= > Fu()Fu(jforij=i---ng. (5)
pER(11,uv)

Now, for any pointp,,, letA,, be ang-dimensional vector anB anr x nr dimensional matrix such

as
Buv(lvl) Buv(lanF)

Ay = [Auw(1) -+ Aup(np)]T and By, = : . (6)
Buv(”Fv 1) e Buv(nFa nF)

The covariance of the region bounded(ly1) andp,,, is

Cr(11,uv) = 1
n—

1
|:Buv - AUUAEU] ’ (7)
n

wheren is the number of pixels in thé&? under investigation. Similarly, and after some algebraic
manipulations, the covariance of the regifuv, v'v") as it was presented in [20] is

CR(uv,u/v’) = ﬁ (Bu’v’ + Buy — By — Buv’)
L (Au’v’ + Auv - Auv’ - Au’v) : (Au’v’ + Auv - Auv’ - Au”u)T .

n

(8)

Once the integral images have been calculated, the covariance of tanyg@ar region can be computed
in O(n%) time regardless of the size of the regi@fuv,u'v'). The complete process is represented
graphically in Figure 1, where different image-processing operateraplied to the initial image (top
left) to calculate the set of feature images (top right). Each feature compoisamted to generate the
integral imageA,,,(7) (bottom left) and the crossed product between featiadsl; is used to calculate
the second order integral imagBs, (i, j).

Figure 1 Covariance descriptor computation. The image is first decomposed into an array of feature
images (feature image tensor) applying the feature Bap= ¢(I, pu,). Then the crossed-products of
these features are computed; using these arrays, the tensor integra itpage) and the second order
integral images tensds, (¢, j) are computed.

Next section explains the covariance matching process.

2 Searching and matching

Covariance models and instances can be compared and matched using a sargse meghbor ap-
proach, i.e., by finding the covariance descriptors that best resemble d. midue problem is that
covariance matrices and symmetric positive definite (SPD) matrices in géndrat they do not lie on
the Euclidean space and many common and widely known operations in Euclicesss spe not ap-
plicable or require to be adapted (e.g., a SPD matrix multiplied by a negative soadeloisger a valid
SPD matrix). Any x np SPD matrix only hasr x (np + 1)/2 different elements; while it is possible
to vectorize them and perform element-by-element subtraction, this apgsoaddes very poor results
as it fails to analyze the correlations between variables and the patterrisiattirem. A solution to this

problem is proposed in [21] where a dissimilarity measure between twoiangarmatrices is given as

ng
p(C1,Ca) = | > In*Xi(Cy,Cy) (9)
i=1

where{\;(C1, C2) }i=1.... n, are the generalized eigenvaluesifandC, computed from

ANCiX —Cox; =0i=1,--- ,np. (10)

The tracking starts in the first frame of the sequence, by computing the caamaatrixC; in the
bounding box of the target under consideration (i.e., the model). The initiaitd®tés not detailed in
this paper since it can be made in various ways, by object recognition ogtoagid subtraction for ex-
ample. The tracking procedure consists in determining the new target positidhe successive frames
by comparing the covariance mati® (i.e., the candidate position) and minimizing the Riemannian
distance (9).

Figure 2 depicts two possible searching strategiesexhaustive searcapproach (left) and a gradient-
based local search steepest desceapproach (right). Exhaustive search methods uniformly sample a
large number of candidate positions scanning the whole image (or the regionrsling the previous
target position). Steepest descent methods look for the position which maxiimézeppearance sim-
ilarity when compared to the target model. Gradient-based methods do noeradange number of
matrix comparisons; however, they do require to run iteratively until cgarere, causing their compu-
tation time to be very unpredictable. Another limitation (and probably the most impontahtothat
contrary to exhaustive search approaches, local search mayrfeardets undergoing brutal motion or
target occlusions. The reason behind this problem is that local searchdaééimd to fall into local min-
ima. Due to these limitations, the exhaustive search method was preferred toacking application
implemented for this research.

Figure 2 lllustration of two possible covariance trackingsearch strategies. Theexhaustive search

approach (left) where a large number of candidate bounding boxes miifsampled and evaluated,
and thesteepest descentethod (right) where gradient-basktal searchis launched looking for the

position that minimizes the Riemannian distance.

3 Feature vector evaluation

The objective of this section is to determine the most discriminative vector combinatiothedeal
number of featuresi(r) to use. Multiple feature combinations were tested using a texture classification
method. Th&KTH-Tipsdataset [22] is composed of ten different texture classes each oeseafed by

81 different samples of siZ#0 x 200 taken at different scales, illuminations, and poses.

There are different approaches for texture classification with covariamatrices. Most methods subdi-
vide the image in small overlapping subregions and compute a descriptoraésddo each one. The
drawback with this approach is that it increases the number of matrix compmesdnthe storage re-
quired. To avoid this problem, the local log-Euclidean covariance matrix Q\E[6] computes a
single covariance matrix from the log-Euclidean transformations of other (siyquieariance matrices
calculated at every pixel neighborhood (typical sizeslare: 15 or 30 x 30). While L2ZECM provides
high texture reidentification scores, its main drawback is that it consideratrigases the number of
computations and the memory space that is required during the computation phaséoréhe2ECM

is clearly not appropriate for embedded platforms; hence, for the saplicity, we were much more

inclined to use a very simple approach and compute a single covariance tedorigvery sample and
feature combination.

Ten random images were selected for the training of each texture class ffie set of 81 samples

that represents each one); the remaining samples were used during #ifécatzen evaluation. The
descriptor obtained from each test image is compared against all the comearatrices inside the
different training sets (ten samples for each texture class) using the Riemanetric proposed in [20].

A label is assigned to each class using the Ridigjorithm counting the number of votes of each texture
class for the closedét = 5 samples. The same procedure was repeated ten times to summarize and avoid
unstable or misguiding results.

To evaluate the quality of our classification results, we counted the numbered¢fatse positives and
negatives and calculated their associdigdcore (this represents the weighted average of the precision

and recall) defined as
precision - recall

P9 11
1 precision + recall’ D
where iti
L #1rue positives
precision = #True positives«False positives
(12)

#True positives
#True positives #False negative's

recall =

Multiple feature combinations were evaluated based on the spatial coordinatedy(), the luminance
(I) and color channelsi{, G, andB), the first and second order gradient magnitudés,(|Z,|, |Izz|,
|I.y| and|I,,|), and the enhanced local binary covariance matrices (ELBCM) fesapuioposed in [18].

Figure 3 depicts the set of feature combinations that were evaluated andSbedisaedF’; scores.
Each combination has a set of points representing the score associated tomeawhtle different
texture classes. Boxplots are used to highlight their concentration and theanr(edépicted by the
horizontal bars in pink inside the boxes). The figure is divided in two rfowgrayscale and color-based
configurations. Each row is further divided into two parts: firstly, the featombinations including
gradient components only (on the left), and secondly, all feature combinatzsesl lon the ELBCM
descriptor (on the right). Within each cell, the different feature combinatiansated by their number
of features) in increasing order and by theff; scores median.

Figure 3 F;-scores measuring the texture classification accuracy for the KTH-IPS dataset using
multiple feature combinations. Boxplots are used to highlight the concentrationfgfscores and
their median.

Three observations can be made from Figure 3: (1) that ELBCM-basetbinations tend to have
slightly higher scores than gradient-based ones (i.e., fiesicores are higher and more concentrated),
(2) that color plays a crucial role to improve the discriminative power (guyedient and ELBCM-
based configurations both improve their scores when color information is etjudnd (3) the rele-
vance of the spatial coordinatesdndy) seems to be small for the texture recognition problem.

According to Figure 3, the ideal number of features (among the set of éeatunbinations evaluated
here) is betweenr = 7 andny = 9 given that most of the smaller configurations produce less accurate
results. However, for such as size of covariance matrix, real-time ggag4d0 ms for 25 frames per
second) as required for visual tracking is impossible without optimizations.

4 Covariance tracking algorithm analysis and optimizatiors

Three strategies are studied to optimize the CT on multi-core CPUs. The firgs drased on the
structure of arrayqSoA) towardsarray of structuregAoS) transformation: SoA>AoS. The second
one consists in architectural optimizations: either multi-threading the SoA versioropgth multi-
processing (OpenMP) middleware or using single instruction, multiple data (SiBDuctions (SSE
and AVX for Intel, Neon on ARM) for the AoS version. The third and fisalategy consists of using
loop-fusion transformations. In-depth information about the transformagornsoyed in this article
can be found in [23].

Let us introduce a set of notations for describing the algorithms and theirs ogtiiomg (Table 2):

Table 2 Covariance descriptor algorithm notations
Notation Meaning

1 Input image

h andw Height and width off

ng Number of features used to build the descriptor

np Number of crossed-products of features = np(np +1)/2

F A data structure that contains all the features images

P A data structure containing all the feature image products

Irandlp The summed area tables (integral images) computed FanP

card the cardinal of SIMD register: 4 for SSE and Neon, 8 for AVX

g Number SIMD registers to holdy featureswvnp = [np/card]

unp Number SIMD registers to holdp products:vnp = [np/card] (see Table 3)

In the baseline version of the algorithm, the complete set of feature infagestored separately using

a cube data structure (referred tofamat [kK] [i] [j]) which can be regarded as an instance of a SoA
data structure. The index is used here to select one of the feature images while the pair (j)

is used to select the spatial coordinates. Image cubes are straightfdonanplement, the required
arithmetic to compute the memory of an address using a table of 3D pointers only dehraedsateger
additions; still, the latency time of a memory access is extremely dependent on tleedsada pattern.

4.1 SoA to AoS transform

The goal of SoA~Ao0S transform consists of transforming a set of independent arr&y®ire array,

where each cell is a structure combining the elements of each independsntEne contribution of

such a transform is to leverage the cache performance by enforcitigl sppal temporal cache locality.
Table 2 introduces the notations we will use from now on.

The first aspect we want to optimize is the locality of the features for a givent of coordinatesi, 5).

In the SoA version, we have two cubes: one that stores all the pixelrésdigoa (f mat) which size
isnp x h x w and a different cub&soa (pr mat) of sizenp x h x w that stores the feature crossed-
products. In the AoS data layout, these cubes are transformed into twa&3 Bk,s and Paos of size

h x (w-np)andh x (w-np).

The SoA—A0S transform swaps the loop nests and changes the addressing complitatiom 3D-
form cube[k][i][j] into a 2D-form likematriz[i][j x n+ k|, wheren is the structure cardinal (herg. or
np). The lack of spatial locality within the features in the SoA representation is illudtmatéigure 4;
here, the SoA layout (on the left) stores pixels features in discontiguowsr2is (distant in memory)
while for the AoS representation (on the right) features belonging to the saetepe gathered together
in contiguous memory addresses.

Figure 4 Layout of SOA cube and the AoS feature matrix.

The covariance tracking algorithm is composed of three stages:

1. point-to-point product computation of all features,
2. the integral image computation of features,

3. the integral image computation of products.

The product of features and its transformation are described in Algorithmsl 2.aThanks to com-
mutativity of the multiplication, only half of the products have to be computed (the loo, atarts
at k1, line 3). As the two last stages are similar, we only present a generic varsiotegral image
computation (Algorithm 3) and its transformation (Algorithm 4).

Algorithm 1: Product of features - SoA version

1 k<0
2 foreachk; € [0..nr — 1] do
foreachk; € [k1..nF — 1] do
foreachi € [0..h — 1] do
L foreachj € [0..w — 1] do

N o g »~ w

LPWMM%W%MMHXHbMM
k< k+1

Algorithm 2: Product of features - AoS version

1 foreachi € [0..h — 1] do
foreachj € [0..w — 1] do
k<+0
foreachk; € [0..nr — 1] do
L foreachk: € [ki..np — 1] do

~N o g b~ W N

L Pli][j x np + k] + F[i][j X np + k1] x F[i][j x np + k]
k+—k+1

Concerning the indeX of Algorithms 1 and 2, the incremeit <— k& + 1 can be replaced by =
king — k1(k1 + 1)/n + ko for direct access to the product of featusieby featureks.

Algorithm 3: Integral image - SoA versiom, € {ny,np}

1 foreachk € [0..n — 1] do

2 foreachi € [0..h — 1] do

3 foreachj € [0..w — 1] do

4 L L IKIENG] = TR] + TR — 1] + 2[R — 1][5] — I[k][i - 1][5 — 1]

Algorithm 4: Integral image - AoS versiom, € {ny,np}
1 foreachi € [0..h — 1] do

2 foreachj € [0..w — 1] do
3 foreachk € [0..n — 1] do
4 L | Il x n+k] < I[[5 x n+ k]| +I[i)[(G —1) x n+ k] + I[i = 1)[j x n+ k] = I[k][i = 1][(j — 1) x n+ K]

4.2 SIMD or OpenMP parallelization?

Once this transform is done, one can also apply SIMD to the differetd pathe algorithm. For the
product part, the two internal loops énandk, are fully unrolled in order to show the list of all multipli-
cations and the list of vectors to construct through permutation instructions (erg.shuf f |l e_ps
in streaming SIMD extensions (SSE)). For example, for a typical valug-0f 7, there arevp = 28
products. The associated vectors are (the numbers are the featuresiaekollows:

[Po, P1, P2, P3| = [Fy, Fo, Fo, Fo) x [Fy, F1, Fo, Fs]
[Py, P5, Ps, P;] = [Fo, Fo, Fo, F1] X [F4, F5, Fg, Fi]
[Ps, Py, Pro, P11] = [F1, F1, Fi, F1] X [Fa, F5, Fy, F5)
[Pra, P13, Pia, P1s] = [F1, Fy, Fa, 3] X [Fg, Fy, F3, Fy]
[Pri6, Pi7, Pis, Prg] = [Fy, Py, I3, F3] x [F5, Fe, 3, Fy
(P20, Po1, Pag, Po3] = [F3, F3, Fy, Fy| x [F5, Fg, Fy, F5]
(Pos, Pos, Pag, Par] = [Fy, F5, Fs, Fg| x [Fg, Fs, Fg, Fg|

In that case, the 7th vector is 100% filled, but it will become suboptimalifis not divisible by the
cardinal of the SIMD register4(with SSE and Neon). In SSE, some permutations can be achieved
using only one_mm shuf f | e_ps instruction while others need a maximum of two. Because some
permutations can be reused to perform other permutations, it is possible to acfaet@riaation over

all the required permutations. For example with = 7, 15 shuffles are required.

In advanced vector extensions (AVX)2, there is a new instruction (compar®dX) that greatly sim-
plifies permutations : nm256_per nut evar 8x32_ps. This instruction implements a full cross-bar,
so we need exactly one AVX2 permutation per register that is a total & fer 7).

In Neon it is more complex. If some permutations can be done into 128-bits regigiatss-with a par-
allelism of 4 - other permutations require instructions only available with 64-bitteggidike thelook-

up tableinstruction namedt bl . So in Neon, 128-bit float registers should be: 1) split into 64-bit regis-
terswithvget | ow _f 32 andvget _hi gh_f 32 instructions, 2) type-casted into 64-bit integer regis-
ters withvr ei nt er pret _u8_f 32 —no latency, just for the compiler —, 3) permuted wittbl 1_u8
andvt bl 2_u8 instructions, 4) type-casted into 64-bit float registers witlei nt er pret _f 32_u8,

and 5) combined into 128-bit float registers witbonbi ne_f 32. Finally it requires 31 SIMD Neon
instructions to create the seven pairs of products (and 17 extra instruatiotieefcastings). Table 3
gives the values ofnr andvnp depending omy € {7,8} andcard, the number of block within an
SIMD register. For the same valueswafy, Table 4 provides the number of permutations for SSE, AVX
and Neon.

Table 3 Parameters values for scalar, 128-bit (SSE and Neon), aidb6-bit (AVX) SIMD

Scalar 128-bit SIMD 256-bit SIMD
nrg np vng vnp vng vnp
7 28 2 7 1 4
8 36 2 9 1 5

Table 4 Permutation instructions for SSE, AVX, and Neon (permutaton + cast) instruction set

ng SSE AVX Neon
7 15 8 31
8 17 10 35

The first part of Table 5 provides the algorithmic complexity and the amount of memoegses for
scalar version. Just replaeg: andnp with vng andvnp from Table 3 to get the SIMD value. This
table also provides the arithmetic intensity (Al) - popularized by Nvidia - that isatie between the
number of operations and the number of memory accesses. Table 6 providascalinesults from
Table 5 for scalar, SSE, AVX, and Neon version; for 3-loop versamd for the 1-loop version with
loop-fusiontransform.

Table 5 Complexity, memory accesses, and arithmetic intensity of Ao&rsions with/without loop-
fusion

Instructions MUL ADD LOAD STORE Al
AoS version with 3 loops
Product of features np 0 2np np -
Integral of features 0 3ng dnp ng -
Integral of products 0 3np dnp np -
Total np 3(np—|—np) 6np + 4np 2np +np -
Total withnp = np(np +1)/2 2n% + bnp 4nt + Inp ~ 0.5
AoS version + loop fusion with 1 loop
Integral of features 0 2np 2ngp ng -
Integral product of features np 2np np np -
Total np 2(np 4+ np) np + 2np np+np -
Total withnp = np(np +1)/2 1.5n% + 3.5np n% + dnp ~ 1.5

Table 6 Complexity, memory accesses, and arithmetic intensity of al@r/SIMD versions
with/without loop-fusion: numerical results for ngp = 7andng = 8

Version Without loop-fusion With loop-fusion
SIMD ng Arith Mem Al Arith Mem Al
Scalar 7 133 259 0.51 98 105 0.93
Scalar 8 168 328 0.51 124 132 0.94

SSE 7 49 66 0.74 40 27 1.48

SSE 8 59 82 0.72 48 33 1.45
Neon 7 65 66 0.98 56 27 2.07
Neon 8 77 82 0.94 66 33 2.00
AVX 7 27 37 0.73 22 15 1.47
AVX 8 33 45 0.73 27 18 1.50

For a given version, loop-fusion divides the complexity by 1.2 and orgraccesses by 2.5.

Concerning OpenMP, the point is to evalug@A + OpenMRrersusAoS + SIMD Indeed, foracommon
4-core General Purpose Processor (GPP), the degree of pamalelis a multi-threaded version and

with a SIMDized version is the same, i.e., four. Results are provided in cpelepoint ¢pp) versus
the data amount (image size). The cpp is a normalized metric thats help toaateetoverflovgwhen
data do not fit in the cache): the curve of cpp increases significantly.

The three versions (SoA + OpenMP, AoS, AoS + SIMD) have beenhmarked on three generations
of Intel processors: Penryn, Nehalem, and SandyBridge for image \&rging from128 x 128 up to
1024 x 1024. It appears (Figure 5) that a 4-threaded version is always slowertfiathreaded SIMD
version. Eight threads are required on the Nehalem to be faster. d$mres the low Al inducing a high
stress on the architecture’s buses and also because manipulating Smésregu= 28 active references
in the cache; that is more than the usual L2 or L3 associativity (24 on thepireéssor). In the next
steps of this article, SIMDization is the only architectural optimization being coresides realistic.

Figure 5 Performance in cpp of al x 4-core Penryn (top),2 x 4-core Nehalem (middle),1 x 4-core
SandyBridge (bottom) for image sizesc [128..1024].

4.3 Loop fusion

We have tested three versions wlibtop-fusionin order to increase the Al ratio by reducing the amount
of memory accesses. But for that, we first have to rewrite the integral inmgputation. As integral
image computation is known as beingemory boundbut also a very simple algorithm (3 LOADs, 1
STORE, and 3 ADDs), it is quite impossible to reduce its complexity. Neverthalesscan remove

2 LOADs by using a register that holds the accumulation along a line. Algorithm 5 implertmgsts
optimization for basic integral image computation.

Algorithm 5: Integral image - computatioin placewith anaccumulator

1 x < I[0][0], s <z

2 foreachj € [1..w — 1] do

s |z I0)[j],s < s+, I[0][j] + s

4 foreachi € [0..h — 1] do

x < I[]][0], s « =

6 foreachj € [1..w — 1] do

7 L | @« I[i][0],s < s+, I[i][j] < s + I[i — 1][j]

(4]

The first one is a scalar parametric version (with) that fuses the externalloop and keeps the three
j -loops unchanged. The second one is a specialized versiomwith 7 where the three internal loops
are fused together. The third one is the SIMDized version of the seaquadTihe internal loop fusion
allows to save the LOAD/STORE instructions in order to write a product of featinto memory and
to read it afterwards to compute the integral image of products. The loagnafhas been done by hand,
but some tools like PIPS [24] can do such a kind of transformation automati2ally The complexity
of scalar and SIMD versions are provided in Table 5. The numerical wdlthese expressions is given
in Table 6.

To be efficient loop-fusion is combined to full loop-unwinding (enandk;) and scalarisation (to store
temporary results within a register instead of a memory cell of an array). Tlawioelf the code is the
following, for a given pixel(s, j):

e all the features associated to pofitj) are loaded inter registers:fo, fi,- - fop—1,

e the integral image computation of features is done on the flyiarglace with Algorithm 5
with np accumulators fo, sf1 - - - sfn.—1. The pointf mat (i, j, k) that previously holds:r
features is replaced by the sums stored inrtheaccumulator,

e thenp products are then calculatedsin registerspoo, poi, ---Pk,k2; - * Pnp—1nF—1

¢ the integral image computation of the product of features is done in the sameritvay,» accu-
mulators. The poinpr mat (i, j , k) is filled with then p accumulators of products.

The code is quite big (as internal loops are unwound) but very effi¢se®t next section), but it can be
easily generated automatically by a C program, as it is very systematic: |dadefedo accumulation
of features, store accumulations, and compute products and do accumulatioydoétprand store
accumulations. It is relevant for a bigger valuergf to avoid bugs. The complexity of these new
versions are given in the second part of Tables 5 and 6.

We can observe that without loop-fusion has the lowest Al of 0.5. We eacathat, for a given version,
loop-fusion divides the complexity by a factor 1.2 (by rewriting image integrasdtand memory
accesses by a factor 2.5 by avoiding LOADs and STOREs of temporarystes

4.4 Embedded systems

Let us now focus on morembeddegbrocessors like the Intel ULV (ultra low voltage) family and ARM
processors. In order to observe the performance evolution for aadlyftwo processors were bench-
marked: Penryn-M U9300 (1.2GHz, 10 W, SSSE3), Haswell-M 46500 GHz, 15 W, AVX2), ARM
Cortex A9 (1.2 GHz, 1.2 W, Neon), and ARM Cortex Al15 (1.7 GHz, 1.7 WoiNe For Penryn-M
and Haswell-M, the power consumption is the thermal dissipation power (TDRidptbby Intel; for
ARM, these processors are part of SoC (Pandaboard OMAP4 fexasTinstruments and Samsung
Chromebook with Exynos5 from Samsung) and it is very difficult to findamyt figures from ARM or
Samsung. So these figures were collected on the internet and crosgeddtrustablewebsites.

Figures 6 and 7 provide the cpp of the processor for image size vamong 64 to 1024 for Intel
processors and from 64 to 512 for ARM processors.

Figure 6 Performance of Penryn-M and Haswell-M.

Figure 7 Performance of Cortex-A9 and Cortex-A15.

Firstly, for all processors, the SoA version is very inefficient comparéldedest one (AoS+T+SIMD).
The SIMDization alone is also inefficient: around.5 instead ofx4 the ideal speedup for 128-bit
SIMD and x2.5 instead ofx8 for 256-bit SIMD. The reason is that SIMD is really efficient only (a
speedup close to the SIMD register cardinal) when data fit in the cacheH28e the cache overflow
appears for image size around0 x 150 for ARM and 200 x 200 for Intel. As a matter of fact, a
512 x 512 image requires a cache of size of 36 MB, whilé4) x 480 needs 43 MB. If the biggest
server processors just start to have such large cache (IBM Pewi@tél Xeon Ivy bridge), such an
amount of cache is far from the embedded ARM and Intel laptop processon (f to 4 MB). The
important fact, also common to the four processors, is that the cpp of Aog&tsion remains constant,
unlike SoA and AoS versions. So the execution time can be predicted.

Secondly, there is one big difference between them: the cpp values. nfdiepp’s are up to<4.5
smaller than ARM ones that comes from higher latency instructions.

Cortex-Al5 is faster than A9 for two reasons: a faster cache andex adernal memory (same for
Haswell-M versus Penryn-M) and because A15 can execute oneiN&aunction every cycle instead of
every two cycles: the SIMD throughput has been multiplied by two.

Regarding the impact of loop-fusion, Table 7 shows that the speedup w8h/érsion is fromx 1.6 up
to x1.7 for ARM and Intel processor and for scalar and SIMD version, rethgay. So the loop-fusion
is as efficient as SIMDization. The total speedup is fre®8 up to x4.9 for ARM and Penryn-M
processor, respectively, but reacheg9 for Haswell-M (with SSE instructions).

Table 7 Impact of memory layout and loop-fusion transform

Penryn-M Haswell-M Cortex-A9 Cortex-Al5
cpp
SoA 447 300 830 646
AoS 207 178 836 520
AoS+T 126 66 503 238
AoS + SIMD 165 69 476 325
AoS + T SIMD 92 38 201 169
speedups
SoA/Ao0S x2.2 x 1.7 x1.0 x1.2
A0S/A0OS + T x1.6 x 2.7 x1.7 x 2.2
SIMD/SIMD + T x1.8 x1.8 x2.4 x1.9
SO0A/A0S+SIMD + T x4.9 xT7.9 x4.1 x3.8
Execution time (ms) fob12 x 512 images
A0S+T SIMD 20.1 6.1 43.9 26.1
Estimated energy consumption (mJ) fdR x 512 images
AoS+T SIMD 201 91.4 52.7 44.3

cpp and speedups, execution time, and energy consumption for Pdnifaswell-M, Cortex-A9 and Cortex-A15.

Concerning execution time, the Penryn-M and the Haswell-M are, reselyctivd.3 and x 2.2 faster

than the A9 and the A15. If we compare the estimation energy consumption (baspgproximative

TDP as previously said), the A9 and the A15 are, respectivelyy and x2.1 more efficient than the
Penryn-M and the Haswell-M. ARM embedded processors are still moreseffiban Intel ones.

4.5 Impact of other parameters: SIMD width and n y value

The impact of a twice wider SIMD - 256 bits for AVX2 instead of 128 for SSlas been evaluated
on a Haswell-M processor. It appears that there is quite no diffeierperformance between SSE and
AVX2. First, AVX (and AVX2) processors can pair two SSE instructions withime AVX instruction,
thanks to theut-of-ordercapabilities of these processors. Once the SIMD are fetched andettictd
the pipeline, they are put in the ‘instructions ready’ window before beingattibed to an execute unit
(namedport in Intel vocabulary). If the processor can find two SSE data-indes@ridstructions that
are ready to be executed, it pairs them together and sends the newtiostto@n execute unit.

The impact ofnr has been also evaluated for the four processors. The two special@dadand SIMD
versions AoS + T and AoS + T + SIMD have been instancednfor= 8 SSE, AVX, and Neon. It
makes sense for AVX architecture as eight features 100% fills one AYister (see Table 3). The cpp
ratio (cpnr = 8)/cpp(np = 7)) varies from 1.11 up to 1.35 for ARM processors and 1.21 up to
1.27 for Intel processors. These values are very close to the thebratica (1.27 and 1.25) of the
complexity and memory access amounts of Table 5. It means that the execution timiepairtiod the
global algorithm is predictable until we run out of register and generatecsjuié.

5 Algorithm implementation

Two sequences have been used to evaluate the global performanaefonrtprocessors. Panda and
Pedxing for which the robustness of the algorithm have been evaluated]iarjd [18]. For both of
them, the execution times are given in cpp for each version of the algorithm: SbA Imsic version,
and AoS++ stands for AoS transform + SIMDization + loop-fusion tramsfo

Two counter-intuitive results can be noticed. The first one is the featmm@putation cpp: it is lower
for SoA. The reason is obviously the memory layout of SoA (versus Ad&rveomputing the features
and storing them into a cube or a matrix. The second counter-intuitive iegwn more interesting: it
concerns the tracking part of the algorithm which is based on the computatiosiroflarity criterion
that requires the computation of the generalized eigenvalues, inversiahsyarix logarithms (9). In
order to have the same behavior, we use GNU Scientific Library to petfese computations on both
platforms, but we can also use Intel MKL or Eigen libraries. The futuréipods chosen by evaluating
40 (in our case, but it is parameterizable) random positions in a researdbwy so matrix operations
represent a high percentage of the tracking part. It appears thaaheds used for tracking lead to a
‘more’ ill-conditioned matrix requiring more computations for Panda than for the Pgeksequence.

Concerning the acceleration, Tables 8 and 9 show that the optimization of thed gesvides a speedup

of x2.8 to x2.9 for Intel processors ang2.0 to x2.6 for ARM ones that assets the need of all the
optimizations.

Table 8 cpp and execution time for Intel Penryn-M and Haswell-M

Sequence Panda Pedxing
Size 312 x 233 640 x 480
Intel Penryn-M
Algorithm version SoA AoS++ SoA AoS++
Features computation (cpp) 128 150 128 150
Kernel computation (cpp) 599 87 618 91
Tracking (cpp) 23 23 11 11
Total (cpp) 738 248 769 264
Kernel/total 81% 35% 80% 34%
Total speedup x2.9 x 2.8
1-C execution time (ms) 45 15 197 68
2-C execution time (ms) 36 9 158 38
Intel Haswell-M
Algorithm version SoA AoS++ SoA AoS++
Features computation (cpp) 78 79 88 72
Kernel computation (cpp) 190 36 207 40
Tracking (cpp) 13 23 2 3
Total (cpp) 281 138 297 115
Kernel/total 67% 26% 69% 34%
Total speedup x2.0 x 2.6
1-C execution time (ms) 12 5 54 21

2-C execution time (ms) 8 3 37 13

Table 9 cpp and execution time for ARM Cortex-A9 and Cortex-A15

Sequence Panda Pedxing
Size 312 x 233 640 x 480
ARM Cortex-A9
Algorithm version SoA AoS++ SoA AoS++
Features computation (cpp) 461 461 486 486
Kernel computation (cpp) 1491 395 1600 415
Tracking (cpp) 96 96 19 19
Total (cpp) 2048 952 2106 921
Kernel/total 73% 42% 73% 45%
Total speedup x2.2 x2.3
1-C execution time (ms) 149 69 647 283
2-C execution time (ms) 108 36 492 149
ARM Cortex-Al5
Algorithm version SoA A0S++ SoA A0S++
Features computation (cpp) 207 207 205 205
Kernel computation (cpp) 562 170 582 177
Tracking (cpp) 28 52 4 7
Total (cpp) 797 429 791 389
Kernel/total 70% 39% 73% 45%
Total speedup x1.9 x2.0
1-C execution time (ms) 38 20 161 79
2-C execution time (ms) 27 10 119 42

As both processors have two cores, all the processing parts caméeitoer on one core (the execution
time is the sum of all parts) or on two cores (the biggest part is on one cdréhartwo other parts are
on the second core). With such a coarse grain thread distribution, thgnPdnand the Haswell-M
can track targets in real time for0 x 480 images. The Haswell-M is even real time with only one
core. The Cortex-A9 can do it for image sizes u320 x 240 and the Cortex-A15 is close to real time
for 640 x 480 images. Once the kernel computation has been optimized, the biggest progqessin
becomes the features computation. With the optimization of this part, the Cortex-Aak $e able to
reach real-time execution.

The performance ratio of the whole algorithm is close to the performance féltie kernel: the Penryn-
M and the Haswell-M are, respectively4.0 and x 3.3 faster than the Cortex-A9 and the Cortex-A15.
We can also observe that the image size has quite no impact on the perfoma@mcErom an energy
point of view, the Cortex-A9 and the Cortex-Al5 are, respectivelyl andx2.7 more energy efficient
than the Penryn-M and the Haswell-M.

6 Conclusions

We have presented the implementation of a robust covariance tracking algavithra,parameterizable
complexity that can be adapted to trade-off between robustness andiendtue. A study has been
made to qualitatively compare different covariance matrices in terms of numberadare of visual
features. Classical software and hardware optimizations have beendappldDization and loop-
fusion transform combined with AoS-SoA transform to accelerate the kefribe algorithm. These
optimizations allow a real-time execution (25 fps or about 40 ms per imagépfox 240 image size
on ARM Cortex-A9 and fo640 x 480 on Intel Penryn-M and Haswell. ARM Cortex-A15 should also
reach real-time execution for such image size, once the other parts of thighetgwill be optimized.

Our future work will focus on (1) the optimization of the features computation ahdh@ multi-
threading of the tracking in order to perform multi-target tracking with loadriwmtey on the available
core. A more thorough study should also be made concerning the impact of ¢badlitioning of the
matrix on the execution time.

To the best of our knowledge, our implementation of the covariance traclgogthm is the first real-
time implementation for embedded systems, while perfectly maintaining the quality of tkigrac

Endnotes

aK-Nearest Neighbours

Competing interests

The authors declare that they have no competing interests.

References

1. Z Kalal, K Mikolajczyk, J Matas, Tracking-learning-detection. PatterrmlAMach. Intell. IEEE
Trans.34(7), 1409-1422 (2012)

2. BD Lucas, T Kanade, An iterative image registration technique with an apiplcto stereo vi-
sion. in Proceedings of the 7th International Joint Conference on Atrtificial IntellbgdiMorgan
Kaufmann, San Francisco, 1981), pp. 674—679

3. D Comaniciu, V Ramesh, P Meer, Kernel-based object tracking. P&tein Mach. Intell. IEEE
Trans.25(5), 564-577 (2003)

4. M Gouiffés, F Laguzet, L Lacassagne, Color connectednessealémrmean-shift tracking. iRat-
tern Recognition (ICPR), 2010 20th International ConferencglBEE, 2010), pp. 4561-4564

5. F Porikli, O Tuzel, P Meer, Covariance tracking using model updated@sée algebra. irCom-
puter Vision and Pattern Recognition, 2006 IEEE Computer Society Coutefen vol. 1 (IEEE,
2006), pp. 728-735

6. P Li, Q WangLocal Log-Euclidean Covariance Matrix (L2ZECM) for Image Represimtaand Its
Applications(Springer, 2012)

7. Y Zhang, S Li, Gabor-LBP based region covariance descriptqrefison re-identification. inmage
and Graphics (ICIG), 2011 Sixth International Conferencg2d11), pp. 368-371

8. S Guo, Q Ruan, Facial expression recognition using local binaryieoce matrices. iWireless,
Mobile & Multimedia Networks (ICWMMN 2011), 4th IET International Confereon(2011), pp.
237-242

9. Y Pang, Y Yuan, X Li, Gabor-based region covariance matricesaf fecognition. Circuits Syst.
Video Technol. IEEE Trand.8(7), 989-993 (2008)

10. S Bak, E Corvee, F Bremond, M Thonnat, Multiple-shot human re-idetitfichy mean Rieman-
nian covariance grid. ildvanced Video and Signal-Based Surveillance (AVSS), 2011 8th IEEE
International Conference OGEEE, 2011), pp. 179-184

11. A Romero, M Gouiffes, L Lacassagne, Covariance descriptor multigkctotracking and re-
identication with colorspace evaluation. Asian Conference on Computer Vision, 2012. ACCV
2012(2012)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

Y Wu, B Wu, J Liu, H Lu, Probabilistic tracking on Riemannian manifold$2attern Recognition,
2008. ICPR 2008. 19th International Conference(2608), pp. 1-4

A Tyagi, JW Davis, G Potamianos, Steepest descent for efficigatiaace tracking. itMotion and
Video Computing, 2008. WMVC 2008. IEEE Worksho2®®8), pp. 1-6

X Zhang, G Dai, N Xu, Genetic algorithms. A new optimization and searchitigw. Control
Theory Appl.3, (1995)

A Romero, L Lacassagne, M Gouiffes, Real-time covariance trackgugithm for embedded sys-
tems. inlEEE International Conference on Design and Architectures for Signéillarage Process-
ing (DASIP)(2013)

O Tuzel, F Porikli, P Meer, Pedestrian detection via classification on Rienmamaiaifolds. Pattern
Anal. Mach. Intell. IEEE Trans30(10), 1713-1727 (2008)

J Yao, JM Odobez, Fast human detection from videos using covaffieaitees. inThe Eighth
International Workshop on Visual Surveillance-VS2(2@08)

A Romero, M Gouiffés, L Lacassagne, Enhanced local binargréwe matrices ELBCM for tex-
ture analysis and object tracking ACM International Conference Proceedings Seffsssociation
for Computing Machinery, 2013)

M Pietikainen, A Hadid, G Zhao, T AhoneGomputer Vision Using Local Binary Patterns
(Springer, 2011). http://books.google.fr/lbooks?id=wBrZz9FIERsC

O Tuzel, F Porikli, P Meer, Region covariance: a fast descriptoddtection and classification.
Computer Vision—ECCV 2008952 589-600 (2006)

W Forstner, B Moonen, A metric for covariance matrices. Quo Vad&l€sa, 113-128 (1999)

E Hayman, B Caputo, M Fritz, J-O Eklundh, On the significance ofweald conditions for mate-
rial classification. Computer Vision-ECCV 2008024 253—-266 (2004)

L Lacassagne, D Etiemble, A Hassan-Zahraee, A Dominguez, P \/ddiglelevel transforms for
SIMD and low-level computer vision algorithms. XCM Workshop on Programming Models for
SIMD/Vector Processing (PPoPR3014), pp. 49-56

MINES-ParisTech, PIPS. http://pips4u.org. Open source, undev&RR89-2009)

F Irigoin, P Jouvelot, R Triolet, Semantical interprocedural paralt@gizaan overview of the PIPS
project. inICS '91 Proceedings of the 5th international conference on SupercimgdACM, New
York, 1991), pp. 244-251

Input Image I(x,y) Feature Image lensor
F(z,y) = o1, z,y)

Tensor of Integral Images Second order Integral Images Tensor

Am/7y/ BZU/

Y’

Figure 1

z,y)

+

~

tttttt
4 +t+t+

Hi+4+4+
++t+

Hb+++4+
Y

Figure 2

F1l-scores

F1-scores

Evaluation with K1H-Tips dataset (gradients)

oF oF o F Qo F Wy Wy
1.0- o
. - 1
o allllll ,
1 ° 1 .-
I ! ? 1 Y
e T I . |
0.8= 1 & H (4 i
1 °
2 I 4
e Bt : °
0.6~ o . s ¢
? s I o &
1 L] °
I 1 ° 1 |.
1 1 NT e 1
0.4= 1 e i I
4 I [-
i .-
°
0.2=
0.0- 1 1 1 1 1 1
X‘A Y Y Y Y
TRty (i . U‘S}«a XWM . “&}«9 m}g
49" W 5" Y ¥
¥ s 3 33 Aty Ma‘
13 N \X}@
PR
Evaluation with KTH-Tips dataset (color and gradients)
W% oF Wy oF oF
1.0- itk @ -
o 1) - ¢
o ‘ . 3
° ° N
I e ° ——
0.8= 13
° ¢ ° °
g] °
. 1 I Py
° [3 1 1 JA
- @
0.6- Y !
‘ 1 -
® !
]
1
.- 1
-
0.4-
0.2=
0.0~ 1 1 1 1 1
° S N e ?)“M (37 N e
L ¥ 2} R ¥
Q“Ga “}\p ?\’(}» G&’ @ &’X\y
S LS * I
Figure 3 % v Y

F1-scores

F1-scores

Evaluation with KT'H-Tips dataset (LLBCM)

oF ¥ oF ¥
1.0- e °
] 1
1 1
! .
» :
0.8- 4 K —
o q o
°
° o K
1 ! o
- s % *
0.6= —— t ——
b I
—=
0.4-
)
0.2=
0.0- ! ! I
o o o o
¥ ¥ o o
’ N }5,\) X“"X“
; . Sy 3
A RO
Evaluation with KTH-Tips dataset (color and ELBCM)
¥ oF
1.0~ oo -
°)
(1)
(]
P
0.8- . o
[] 1 =Y
.
0.6=
0.4-
0.2=
0.0= 1 1
o o
¥ ¥
¥ G
Q\H 5 \‘)g“

F3
F2
F1
FO

i

Figugad k1 [1] [4]

NF

fmat [i] [() *NF+k]

cpp

Cpp

cpp

Penryn4

Before Transition

400

overflow
—

zone After cache overflow

AOS

350

SOA+OpenMP 4

300

AOS+SIMD

250
X2.2 more cpp's
200} after cache overflow
150
E«—Cachef overflow
100 200 400 600 ’ 800 1000
size
Nehalem8
Before Transition
overflow zone After cache overflow
180 T T T T T T T T T
AOS
1601 L ——
140 /I\-f
[e0]
o~
120 ~
© X
100k N AOS+SIMD
X
|
sl SOA+OpenMP 8
x1.4 more cpp's
eor ,J after cache overflow
s
%
200 400 600 800 1000
size
SandyBridge4
Before Transition
overflow zone After cache overflow
200 T T T T
AOS

180

160l _,—'—J SOA+OpenMP 4

LS
i
xl6ﬁ

140
120
™ AOS+SIMD
o~
100~ x
x1.69 more cpp's
8ot /after cache overflow
o a0
. 20| 400 600 800 1000
Figure 5 sive

PP

cpp

PenryniVi

500— : : : : : : :
450/ SOA
400, |
350 1
300" 1
250 1
AoS
w0 AOS+T]|
150 A0S+SIMD'
1007 A0S+T+SIMD]
50;_d/f/r> |
0 400 200 300 400 500 600 700 800 900 1000
size
HaswellM+SSE
350 : : : ‘ ‘ : : : :
SoA
300" 1
250//, |
200" A0S
100} |
AoS+SIMD
50 A0S+T/
AoS+T+SIMD
0

’700 200 300 400 500 600 700 800 900 1000
Figure 6

sjze

Cortex-A9

900 : : : ‘
SoA
800f A0S
700 1
600" 1
AoS+SIMD
- 500
3 AoS+T
400
AoS+T+SIMD
300 1
200 1
100 1
000 750 250 300 400 450 50
image size
70 ‘ ‘ Cgrtex-Aj 5 ‘ ‘ ‘
Ve SoA
600" 1
500 A0S
400 |
Q
g AoS+T
3007 1
AoS+SIMD
200 AoS+T+SIMD+
100 1
O I I ! 1 I I !
Figur®9 150 250 300 400 450 500

size

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

