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Abstract

Covariance matching techniques have recently grown in interest due to theirgood performances for
object retrieval, detection, and tracking. By mixing color and texture informationin a compact
representation, it can be applied to various kinds of objects (textured or not, rigid or not).
Unfortunately, the original version requires heavy computations and is difficult to execute in real
time on embedded systems. This article presents a review on different versions of the algorithm and
its various applications; our aim is to describe the most crucial challenges and particularities that
appeared when implementing and optimizing the covariance matching algorithm on a variety of
desktop processors and on low-power processors suitable for embedded systems. An application of
texture classification is used to compare different versions of the region descriptor. Then a
comprehensive study is made to reach a higher level of performance on multi-core CPU architectures
by comparing different ways to structure the information, using single instruction, multiple data
(SIMD) instructions and advanced loop transformations. The execution time is reduced significantly
on two dual-core CPU architectures for embedded computing: ARM Cortex-A9 and Cortex-A15 and
Intel Penryn-M U9300 and Haswell-M 4650U. According to our experiments on covariance
tracking, it is possible to reach a speedup greater than×2 on both ARM and Intel architectures, when
compared to the original algorithm, leading to real-time execution.
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Introduction

Tracking consists in estimating the evolution in state (e.g., location, size, orientation) of a moving target
over time. This process is often subdivided into two other subproblems: detection and matching. De-
tection deals with the difficulties of generic object recognition, i.e., finding instances from a particular
object class or semantic category (e.g., humans, faces, vehicles) registered in digital images and videos.
On the other hand, matching methods provide the location which maximizes the similarity with the ob-
jects previously detected in the sequence. Generic object recognition requires models that cope with the
diversity of instances’ appearances and shapes. This is generally madeby learning techniques and clas-
sification. Conversely, matching algorithms analyze particular information and construct discriminative
models that allow to disambiguate different instances from the same category and avoid confusions.

The main difficulty of tracking is to trace target trajectories and adapt to changes of appearance, pose,
orientation, scale, and shape. Since the beginnings of computer vision, a diversity of tracking methods
have been proposed, some of them construct path and state evolution estimations using a Bayesian
framework (e.g., particle filters, hidden Markov models), others measure the perceived optical flow in
order to determine object displacements and scale changes (median flow) [1]. Exhaustive appearance-
based methods compare a dense set of overlapping candidate locations to detect the one that fits best with
some kind of template or model. Whena priori information about the target location and its dynamics
(e.g., speed and acceleration) is available, the number of comparisons can be reduced enormously by
giving preference to the more likely target regions. Other accelerations can be achieved using local
searches that are based on gradient-descent algorithms able to handle small target displacements and
geometrical changes. Among these approaches, feature points tracking techniques are very popular [2]
since points can be extracted in most scenes, contrary to lines or other geometric features. Because they
represent very local patterns, their motion models can be assumed as rigid and be estimated in a very
efficient way. This method, as well as block matching, are raw-pixel methods, since the target is directly
represented by its pixels matrix.

In order to deal with non-rigid motion, kernel-based methods such as mean-shift (MS) [3] and [4] use a
representation based on color or texture distribution.

Covariance tracking (CT) [5] is a very interesting and elegant alternative which offers a compact target
representation based on the spatial correlation of different features computed at each pixel in the target
bounding box. Very satisfying tracking performances have been observed for diverse kinds of objects
(e.g., with rigid motion or not, with texture or not). CT has been studied extensively, and many feature
configurations and arrays of covariance descriptors have been proposed to improve its discrimination
power [6-11] and. Smoother trajectories can be obtained by considering target dynamics; therefore, they
increase tracking accuracy and reduce the search space [12,13]. Genetic algorithms [14] can also be used
to accelerate the convergence towards the optimal solution of the best candidate position, considering a
search in a large image. But, to our knowledge, little work has been done to analyze the computational
demands of CT and its portability to embedded systems [15]. The goal of this article is to fill this gap,
analyze the algorithm’s computational behavior for different implementations, and measure their load
on embedded architectures. A study is also made to compare different sizes and configurations of the
descriptors in terms of discrimination power through a texture classification application.

The article is structured as follows. The first section introduces some of the basic principles of the CT
algorithm and provides a brief description of the different searching and matching methods that can
be associated with C. Then various configurations of the covariance matrix are evaluated. Finally, we
provide an in-depth description of implementation details and suitable acceleration techniques proposed
to achieve a higher level of performance. Experiments and details about the algorithm implementation
are presented in the final section that comes followed by our conclusions.



1 Covariance matrices as image region descriptors

Let I represent a luminance (grayscale) or a color image with three channels andconsider a rectangular
region of sizen = W ×H (it can be the bounding box of the target to be tracked for example). LetF
be theW ×H × nF dimensional feature image extracted fromI

Fuv = F (puv) = φ(I,puv)with puv = (xu, yv) (1)

whereφ is anynF -dimensional mapping forming a feature vector for each pixel of the bounding box.
The features can be spatial coordinatespuv, intensity, color (in any color space), gradients, filter re-
sponses, or any possible set of images obtained fromI. Now, let{zk}k=1···n be a set ofnF -dimensional
feature vectors inside the rectangular regionR ⊂ F of n pixels. Concerning notations,puv stands for
the pixel atuth row andvth column.

The regionR is represented with thenF × nF covariance matrix

CR =
1

n− 1

n
∑

k=1

(zk − µ)(zk − µ)T (2)

whereµ is the mean feature vector computed on then points.

The covariance matrix is anF × nF matrix which fuses multiple features naturally by measuring their
correlations. The diagonal terms represent the variance of each feature, while elements outside this
diagonal are the correlations. Thanks to the averaging in the covariance computation, noisy pixels are
largely filtered out, which is an interesting advantage when compared to raw-pixel methods. Covariance
matrices are more compact than most classical object descriptors. Indeed, due to symmetry,CR has
only (n2

F + nF )/2 different values whatever the size of the target. To some extent, it is robust against
scale changes, because all values are normalized by the size of the object, and against rotation when the
locations coordinatespuv are replaced by the distance to the center of the bounding box.

The covariance descriptor ceases to be rotationally invariant when orientation information is introduced
in the feature vector such as the norm of gradients with respect tox andy directions. The information
considered by the covariance descriptor should be adapted to the problem at hand, because they depend
on the application, as described in the next paragraph.

1.1 Covariance descriptor feature spaces

Covariance descriptors have been used in computer vision for object detection [16], reidentification [10,
11] and tracking [5]. The recommended set of features to use dependssignificantly on the application
and the nature of the object: tracking faces is different than tracking pedestrians because faces are
somehow more rigid than pedestrians which have more articulations. Color is an important hint for
pedestrian or vehicle tracking/reidentification because of their clothes or bodywork color. But color is
less significant for reidentification or tracking faces because the set of colors they exhibit is relatively
limited.

Table 1 displays a summary of the more common feature combinations used by covariance descriptors
in computer vision. The most obvious ones are the components from different color spaces such as RGB
and HSV. Pixel brightness in the grayscale imageI and its local directional gradients as absolute values

|Ix| and|Iy|, gradient magnitude
√

I2x + I2y , and its angle calculated asarctan |Ix|
|Iy |

. Foreground images

G resulting from background subtraction methods and its gradientsGx andGy. Featuresg00(x, y) to
g74(x, y) represent the 2D Gabor kernel as a product of an elliptical Gaussian anda complex plane
wave [9].



Table 1 Features considered by the covariance descriptor depending on the application
Application Feature setφ(I, p) with p = (x, y)

Face tracking and recognition [9]

[

x y |Ix| |Iy| |Ixx| |Iyy|
]

[

x y I |Ix| |Iy| |Ixx| |Iyy| θ(x, y)
]

[

x y I g00(x, y) g01(x, y) · · · g74(x, y)
]

Pedestrian detection [16,17]

[

x y |Ix| |Iy|
√

I2x + I2y |Ixx| |Iyy| arctan
|Ix|
|Iy|

]

[

x y |Ix| |Iy|
√

I2x + I2y arctan
|Ix|
|Iy |

G
√

G2

x + G2

y

]

Pedestrian tracking [5,10,11,16] and [18]

[

x y R G B |Ix| |Iy|
]

[

x y R G B |Ix| |Iy| |Ixx| |Iyy|
]

[

x y H S V |Ix| |Iy|
]

[

x y R G B VarLBP
]

[

x y I sin(LBPθ0) cos(LBPθ0) sin(LBPθ1) cos(LBPθ1)
]

[

x y R G B sin(LBPθ0) cos(LBPθ0) sin(LBPθ1) cos(LBPθ1)
]

Some texture analysis and tracking methods use local binary patterns (LBP) in the place of Gabor filters
and the reason is that LBP operators are much more simple and economical. Values VarLBP, LBPθ0 ,
and LBPθ1 in Table 1 represent local binary pattern variance (which is a classical property of the LBP
operator [19]) and the angles defined by them, as detailed in [18]. This version of the feature vector has
shown very good performances for tracking, both in terms of robustness and computation times, and
requires a far shorter vector (nF = 7) when compared to Gabor filters (nF = 43). In the rest of the
paper, for the algorithmic optimization, a vector of five to nine features is considered, but note that the
proposed optimizations can be applied to any matrix size.

Now, let us detail the computation of the covariance descriptor.

1.2 Covariance descriptor computation

After some term expansions and rearrangements on Equation 2, the(i, j)-th element of the covariance
matrix can be expressed as

CR(i, j) =
1

n− 1

[

n
∑

k=1

zk(i)zk(j)−
1

n

n
∑

k=1

zk(i)
n
∑

k=1

zk(j)

]

. (3)

Therefore, the covariance in a given region depends on the sum of each feature dimensionz(i)i=1···n,
as well as the sum of the multiplications of any pair of featuresz(i)z(j)i,j=1···n, requiring in total
nF + n2

F /2 integral images, one for each feature dimensionz(i) and one for the multiplication of any
pair of feature dimensionsz(i)z(j) (the covariance matrix is symmetric).

LetA be aW ×H × nF tensor of the integral images of each feature dimension

Auv(i) =
∑

p∈R(11,uv)

Fuv(i)for i = i · · ·nF , (4)

whereR(11, uv) is the region bounded by the top-left image cornerp11 = (1, 1) and any other point in



the imagepuv = (xu, yv). In a general way, letR(uv, u′v′) be the rectangular region defined by the top-
left pointpuv and the right-bottom pointpu′v′ . Similarly, the tensor containing the feature product-pair
integral images is denoted as

Buv(i, j) =
∑

p∈R(11,uv)

Fuv(i)Fuv(j)for i, j = i · · ·nF . (5)

Now, for any pointpuv, let Auv be anF -dimensional vector andB anF × nF dimensional matrix such
as

Auv = [Auv(1) · · ·Auv(nF )]
T and Buv =







Buv(1, 1) · · · Buv(1, nF )
...

Buv(nF , 1) · · · Buv(nF , nF )






. (6)

The covariance of the region bounded by(1, 1) andpuv is

CR(11, uv) =
1

n− 1

[

Buv −
1

n
AuvAT

uv

]

, (7)

wheren is the number of pixels in theR under investigation. Similarly, and after some algebraic
manipulations, the covariance of the regionR(uv, u′v′) as it was presented in [20] is

CR(uv,u′v′) =
1

n−1

[

(Bu′v′ + Buv − Bu′v − Buv′)

− 1
n
(Au′v′ + Auv − Auv′ − Au′v) · (Au′v′ + Auv − Auv′ − Au′v)

T
]

.
(8)

Once the integral images have been calculated, the covariance of any rectangular region can be computed
in O(n2

F ) time regardless of the size of the regionR(uv, u′v′). The complete process is represented
graphically in Figure 1, where different image-processing operators are applied to the initial image (top
left) to calculate the set of feature images (top right). Each feature componenti is used to generate the
integral imageAuv(i) (bottom left) and the crossed product between featuresi andj is used to calculate
the second order integral imagesBuv(i, j).

Figure 1 Covariance descriptor computation. The image is first decomposed into an array of feature
images (feature image tensor) applying the feature mapFuv = φ(I,puv). Then the crossed-products of
these features are computed; using these arrays, the tensor integral imagesAu′v′(i) and the second order
integral images tensorBu′v′(i, j) are computed.

Next section explains the covariance matching process.

2 Searching and matching

Covariance models and instances can be compared and matched using a simple nearest neighbor ap-
proach, i.e., by finding the covariance descriptors that best resemble a model. The problem is that
covariance matrices and symmetric positive definite (SPD) matrices in generalis that they do not lie on
the Euclidean space and many common and widely known operations in Euclidean spaces are not ap-
plicable or require to be adapted (e.g., a SPD matrix multiplied by a negative scalar isno longer a valid
SPD matrix). AnF ×nF SPD matrix only hasnF × (nF +1)/2 different elements; while it is possible
to vectorize them and perform element-by-element subtraction, this approach provides very poor results
as it fails to analyze the correlations between variables and the patterns stored in them. A solution to this



problem is proposed in [21] where a dissimilarity measure between two covariance matrices is given as

ρ(C1,C2) =

√

√

√

√

nF
∑

i=1

ln2 λi(C1,C2) (9)

where{λi(C1,C2)}i=1,··· ,nF
are the generalized eigenvalues ofC1 andC2 computed from

λiC1xi − C2xi = 0i = 1, · · · , nF . (10)

The tracking starts in the first frame of the sequence, by computing the covariance matrixC1 in the
bounding box of the target under consideration (i.e., the model). The initial detection is not detailed in
this paper since it can be made in various ways, by object recognition or background subtraction for ex-
ample. The tracking procedure consists in determining the new target positions for the successive frames
by comparing the covariance matrixC2 (i.e., the candidate position) and minimizing the Riemannian
distance (9).

Figure 2 depicts two possible searching strategies: theexhaustive searchapproach (left) and a gradient-
based local search orsteepest descentapproach (right). Exhaustive search methods uniformly sample a
large number of candidate positions scanning the whole image (or the region surrounding the previous
target position). Steepest descent methods look for the position which maximizesthe appearance sim-
ilarity when compared to the target model. Gradient-based methods do not require a large number of
matrix comparisons; however, they do require to run iteratively until convergence, causing their compu-
tation time to be very unpredictable. Another limitation (and probably the most important one) is that
contrary to exhaustive search approaches, local search may fail for targets undergoing brutal motion or
target occlusions. The reason behind this problem is that local search methods tend to fall into local min-
ima. Due to these limitations, the exhaustive search method was preferred for the tracking application
implemented for this research.

Figure 2 Illustration of two possible covariance trackingsearch strategies. Theexhaustive search
approach (left) where a large number of candidate bounding boxes is uniformly sampled and evaluated,
and thesteepest descentmethod (right) where gradient-basedlocal searchis launched looking for the
position that minimizes the Riemannian distance.

3 Feature vector evaluation

The objective of this section is to determine the most discriminative vector combination and the ideal
number of features (nF ) to use. Multiple feature combinations were tested using a texture classification
method. TheKTH-Tipsdataset [22] is composed of ten different texture classes each one represented by
81 different samples of size200× 200 taken at different scales, illuminations, and poses.

There are different approaches for texture classification with covariance matrices. Most methods subdi-
vide the image in small overlapping subregions and compute a descriptor associated to each one. The
drawback with this approach is that it increases the number of matrix comparisons and the storage re-
quired. To avoid this problem, the local log-Euclidean covariance matrix (L2ECM) [6] computes a
single covariance matrix from the log-Euclidean transformations of other (simpler) covariance matrices
calculated at every pixel neighborhood (typical sizes are15 × 15 or 30 × 30). While L2ECM provides
high texture reidentification scores, its main drawback is that it considerably increases the number of
computations and the memory space that is required during the computation phase. Therefore, L2ECM
is clearly not appropriate for embedded platforms; hence, for the sake ofsimplicity, we were much more



inclined to use a very simple approach and compute a single covariance descriptor for every sample and
feature combination.

Ten random images were selected for the training of each texture class (from the set of 81 samples
that represents each one); the remaining samples were used during the classification evaluation. The
descriptor obtained from each test image is compared against all the covariance matrices inside the
different training sets (ten samples for each texture class) using the Riemannian metric proposed in [20].
A label is assigned to each class using the KNNa algorithm counting the number of votes of each texture
class for the closestk = 5 samples. The same procedure was repeated ten times to summarize and avoid
unstable or misguiding results.

To evaluate the quality of our classification results, we counted the number of true/false positives and
negatives and calculated their associatedF1 score (this represents the weighted average of the precision
and recall) defined as

F1 = 2 ·
precision · recall

precision + recall
, (11)

where
precision =

#True positives
#True positives+#False positives

recall =
#True positives

#True positives+#False negatives.

(12)

Multiple feature combinations were evaluated based on the spatial coordinates (x andy), the luminance
(I) and color channels (R, G, andB), the first and second order gradient magnitudes (|Ix|, |Iy|, |Ixx|,
|Ixy| and|Iyy|), and the enhanced local binary covariance matrices (ELBCM) features proposed in [18].

Figure 3 depicts the set of feature combinations that were evaluated and their associatedF1 scores.
Each combination has a set of points representing the score associated to each one of the different
texture classes. Boxplots are used to highlight their concentration and their median (depicted by the
horizontal bars in pink inside the boxes). The figure is divided in two rowsfor grayscale and color-based
configurations. Each row is further divided into two parts: firstly, the feature combinations including
gradient components only (on the left), and secondly, all feature combinations based on the ELBCM
descriptor (on the right). Within each cell, the different feature combinations are sorted by their number
of features (nF ) in increasing order and by theirF1 scores median.

Figure 3 F1-scores measuring the texture classification accuracy for the KTH-TIPS dataset using
multiple feature combinations. Boxplots are used to highlight the concentration ofF1 scores and
their median.

Three observations can be made from Figure 3: (1) that ELBCM-based combinations tend to have
slightly higher scores than gradient-based ones (i.e., theirF1 scores are higher and more concentrated),
(2) that color plays a crucial role to improve the discriminative power (purely gradient and ELBCM-
based configurations both improve their scores when color information is included), and (3) the rele-
vance of the spatial coordinates (x andy) seems to be small for the texture recognition problem.

According to Figure 3, the ideal number of features (among the set of feature combinations evaluated
here) is betweennF = 7 andnF = 9 given that most of the smaller configurations produce less accurate
results. However, for such as size of covariance matrix, real-time execution (40 ms for 25 frames per
second) as required for visual tracking is impossible without optimizations.



4 Covariance tracking algorithm analysis and optimizations

Three strategies are studied to optimize the CT on multi-core CPUs. The first oneis based on the
structure of arrays(SoA) towardsarray of structures(AoS) transformation: SoA→AoS. The second
one consists in architectural optimizations: either multi-threading the SoA version withopen multi-
processing (OpenMP) middleware or using single instruction, multiple data (SIMD)instructions (SSE
and AVX for Intel, Neon on ARM) for the AoS version. The third and finalstrategy consists of using
loop-fusion transformations. In-depth information about the transformationsemployed in this article
can be found in [23].

Let us introduce a set of notations for describing the algorithms and theirs optimizations (Table 2):

Table 2 Covariance descriptor algorithm notations
Notation Meaning
I Input image
h andw Height and width ofI
nF Number of features used to build the descriptor
nP Number of crossed-products of featuresnP = nF (nF + 1)/2
F A data structure that contains all the features images
P A data structure containing all the feature image products
IF andIP The summed area tables (integral images) computed fromF or P
card the cardinal of SIMD register: 4 for SSE and Neon, 8 for AVX
vnF Number SIMD registers to holdnF features:vnF = ⌈nF /card⌉
vnP Number SIMD registers to holdnP products:vnP = ⌈nP /card⌉ (see Table 3)

In the baseline version of the algorithm, the complete set of feature imagesF is stored separately using
a cube data structure (referred to asfmat[k][i][j]) which can be regarded as an instance of a SoA
data structure. The indexk is used here to select one of thenF feature images while the pair (i,j)
is used to select the spatial coordinates. Image cubes are straightforward to implement, the required
arithmetic to compute the memory of an address using a table of 3D pointers only demandsthree integer
additions; still, the latency time of a memory access is extremely dependent on the dataaccess pattern.

4.1 SoA to AoS transform

The goal of SoA→AoS transform consists of transforming a set of independent arrays into one array,
where each cell is a structure combining the elements of each independent array. The contribution of
such a transform is to leverage the cache performance by enforcing spatial and temporal cache locality.
Table 2 introduces the notations we will use from now on.

The first aspect we want to optimize is the locality of the features for a givenpoint of coordinates(i, j).
In the SoA version, we have two cubes: one that stores all the pixel featuresFSoA (fmat) which size
is nF × h × w and a different cubePSoA (prmat) of sizenP × h × w that stores the feature crossed-
products. In the AoS data layout, these cubes are transformed into two 2D arraysFAoS andPAoS of size
h× (w · nF ) andh× (w · nP ).

The SoA→AoS transform swaps the loop nests and changes the addressing computations from a 3D-
form cube[k][i][j] into a 2D-form likematrix[i][j×n+k], wheren is the structure cardinal (herenF or
nP ). The lack of spatial locality within the features in the SoA representation is illustrated in Figure 4;
here, the SoA layout (on the left) stores pixels features in discontiguous 2Darrays (distant in memory)
while for the AoS representation (on the right) features belonging to the same pixel are gathered together
in contiguous memory addresses.



Figure 4 Layout of SoA cube and the AoS feature matrix.

The covariance tracking algorithm is composed of three stages:

1. point-to-point product computation of all features,

2. the integral image computation of features,

3. the integral image computation of products.

The product of features and its transformation are described in Algorithms 1 and 2. Thanks to com-
mutativity of the multiplication, only half of the products have to be computed (the loop onk2 starts
at k1, line 3). As the two last stages are similar, we only present a generic versionof integral image
computation (Algorithm 3) and its transformation (Algorithm 4).

Algorithm 1: Product of features - SoA version
1 k ← 0
2 foreachk1 ∈ [0..nF − 1] do
3 foreachk2 ∈ [k1..nF − 1] do
4 foreach i ∈ [0..h− 1] do
5 foreach j ∈ [0..w − 1] do
6 P [k][i][j]← F [k1][i][j]× F [k2][i][j]
7 k ← k + 1

Algorithm 2: Product of features - AoS version
1 foreach i ∈ [0..h− 1] do
2 foreach j ∈ [0..w − 1] do
3 k ← 0
4 foreachk1 ∈ [0..nF − 1] do
5 foreachk2 ∈ [k1..nF − 1] do
6 P [i][j × nP + k]← F [i][j × nP + k1]× F [i][j × nP + k2]
7 k ← k + 1

Concerning the indexk of Algorithms 1 and 2, the incrementk ← k + 1 can be replaced byk =
k1nF − k1(k1 + 1)/n+ k2 for direct access to the product of featurek1 by featurek2.

Algorithm 3: Integral image - SoA version,n ∈ {nF , nP }

1 foreachk ∈ [0..n− 1] do
2 foreach i ∈ [0..h− 1] do
3 foreach j ∈ [0..w − 1] do
4 I[k][i][j]← I[k][i][j] + I[k][i][j − 1] + I[k][i− 1][j]− I[k][i− 1][j − 1]



Algorithm 4: Integral image - AoS version,n ∈ {nF , nP }

1 foreach i ∈ [0..h− 1] do
2 foreach j ∈ [0..w − 1] do
3 foreachk ∈ [0..n− 1] do
4 I[i][j×n+k]← I[i][j×n+k]+I[i][(j−1)×n+k]+I[i−1][j×n+k]−I[k][i−1][(j−1)×n+k]

4.2 SIMD or OpenMP parallelization?

Once this transform is done, one can also apply SIMD to the different parts of the algorithm. For the
product part, the two internal loops onk1 andk2 are fully unrolled in order to show the list of all multipli-
cations and the list of vectors to construct through permutation instructions (e.g.,_mm_shuffle_ps
in streaming SIMD extensions (SSE)). For example, for a typical value ofnF = 7, there arenP = 28
products. The associated vectors are (the numbers are the feature indexes) as follows:

[P0, P1, P2, P3] = [F0, F0, F0, F0]× [F0, F1, F2, F3]

[P4, P5, P6, P7] = [F0, F0, F0, F1]× [F4, F5, F6, F1]

[P8, P9, P10, P11] = [F1, F1, F1, F1]× [F2, F3, F4, F5]

[P12, P13, P14, P15] = [F1, F2, F2, F2]× [F6, F2, F3, F4]

[P16, P17, P18, P19] = [F2, F2, F3, F3]× [F5, F6, F3, F4]

[P20, P21, P22, P23] = [F3, F3, F4, F4]× [F5, F6, F4, F5]

[P24, P25, P26, P27] = [F4, F5, F5, F6]× [F6, F5, F6, F6]

In that case, the 7th vector is 100% filled, but it will become suboptimal ifnP is not divisible by the
cardinal of the SIMD register (4 with SSE and Neon). In SSE, some permutations can be achieved
using only one_mm_shuffle_ps instruction while others need a maximum of two. Because some
permutations can be reused to perform other permutations, it is possible to achieve afactorization over
all the required permutations. For example withnF = 7, 15 shuffles are required.

In advanced vector extensions (AVX)2, there is a new instruction (comparedto AVX) that greatly sim-
plifies permutations :_mm256_permutevar8x32_ps. This instruction implements a full cross-bar,
so we need exactly one AVX2 permutation per register that is a total 8 (fornF = 7).

In Neon it is more complex. If some permutations can be done into 128-bits registers -that is with a par-
allelism of 4 - other permutations require instructions only available with 64-bit registers, like thelook-
up tableinstruction namedvtbl. So in Neon, 128-bit float registers should be: 1) split into 64-bit regis-
ters withvget_low_f32 andvget_high_f32 instructions, 2) type-casted into 64-bit integer regis-
ters withvreinterpret_u8_f32 – no latency, just for the compiler –, 3) permuted withvtbl1_u8
andvtbl2_u8 instructions, 4) type-casted into 64-bit float registers withvreinterpret_f32_u8,
and 5) combined into 128-bit float registers withvcombine_f32. Finally it requires 31 SIMD Neon
instructions to create the seven pairs of products (and 17 extra instructions for the castings). Table 3
gives the values ofvnF andvnP depending onnF ∈ {7, 8} andcard, the number of block within an
SIMD register. For the same values ofvnF , Table 4 provides the number of permutations for SSE, AVX
and Neon.



Table 3 Parameters values for scalar, 128-bit (SSE and Neon), and256-bit (AVX) SIMD
Scalar 128-bit SIMD 256-bit SIMD

nF nP vnF vnP vnF vnP

7 28 2 7 1 4
8 36 2 9 1 5

Table 4 Permutation instructions for SSE, AVX, and Neon (permutation + cast) instruction set
nF SSE AVX Neon
7 15 8 31
8 17 10 35

The first part of Table 5 provides the algorithmic complexity and the amount of memory accesses for
scalar version. Just replacenF andnP with vnF andvnP from Table 3 to get the SIMD value. This
table also provides the arithmetic intensity (AI) - popularized by Nvidia - that is theratio between the
number of operations and the number of memory accesses. Table 6 provides numerical results from
Table 5 for scalar, SSE, AVX, and Neon version; for 3-loop version;and for the 1-loop version with
loop-fusiontransform.

Table 5 Complexity, memory accesses, and arithmetic intensity of AoSversions with/without loop-
fusion

Instructions MUL ADD LOAD STORE AI
AoS version with 3 loops

Product of features nP 0 2nP nP -
Integral of features 0 3nF 4nF nF -
Integral of products 0 3nP 4nP nP -

Total nP 3(nP + nF ) 6nP + 4nF 2nP + nF -
Total withnP = nF (nF + 1)/2 2n2

F + 5nF 4n2
F + 9nF ∼ 0.5

AoS version + loop fusion with 1 loop
Integral of features 0 2nF 2nF nF -

Integral product of features nP 2nP nP nP -
Total nP 2(nP + nF ) nP + 2nF nP + nF -

Total withnP = nF (nF + 1)/2 1.5n2
F + 3.5nF n2

F + 4nF ∼ 1.5

Table 6 Complexity, memory accesses, and arithmetic intensity of scalar/SIMD versions
with/without loop-fusion: numerical results for nF = 7 andnF = 8

Version Without loop-fusion With loop-fusion
SIMD nF Arith Mem AI Arith Mem AI
Scalar 7 133 259 0.51 98 105 0.93
Scalar 8 168 328 0.51 124 132 0.94
SSE 7 49 66 0.74 40 27 1.48
SSE 8 59 82 0.72 48 33 1.45
Neon 7 65 66 0.98 56 27 2.07
Neon 8 77 82 0.94 66 33 2.00
AVX 7 27 37 0.73 22 15 1.47
AVX 8 33 45 0.73 27 18 1.50

For a given version, loop-fusion divides the complexity by 1.2 and memory accesses by 2.5.

Concerning OpenMP, the point is to evaluateSOA + OpenMPversusAoS + SIMD. Indeed, for a common
4-core General Purpose Processor (GPP), the degree of parallelism with a multi-threaded version and



with a SIMDized version is the same, i.e., four. Results are provided in cyclesper point (cpp) versus
the data amount (image size). The cpp is a normalized metric thats help to detectcache overflow(when
data do not fit in the cache): the curve of cpp increases significantly.

The three versions (SoA + OpenMP, AoS, AoS + SIMD) have been benchmarked on three generations
of Intel processors: Penryn, Nehalem, and SandyBridge for image sizes varying from128 × 128 up to
1024 × 1024. It appears (Figure 5) that a 4-threaded version is always slower than a 1-threaded SIMD
version. Eight threads are required on the Nehalem to be faster. The reason is the low AI inducing a high
stress on the architecture’s buses and also because manipulating SoA requiresnP = 28 active references
in the cache; that is more than the usual L2 or L3 associativity (24 on the Intelprocessor). In the next
steps of this article, SIMDization is the only architectural optimization being considered as realistic.

Figure 5 Performance in cpp of a1×4-core Penryn (top),2×4-core Nehalem (middle),1×4-core
SandyBridge (bottom) for image sizes∈ [128..1024].

4.3 Loop fusion

We have tested three versions withloop-fusionin order to increase the AI ratio by reducing the amount
of memory accesses. But for that, we first have to rewrite the integral image computation. As integral
image computation is known as beingmemory bound, but also a very simple algorithm (3 LOADs, 1
STORE, and 3 ADDs), it is quite impossible to reduce its complexity. Nevertheless, one can remove
2 LOADs by using a register that holds the accumulation along a line. Algorithm 5 implementsthis
optimization for basic integral image computation.

Algorithm 5: Integral image - computationin placewith anaccumulator
1 x← I[0][0], s← x

2 foreach j ∈ [1..w − 1] do
3 x← I[0][j], s← s+ x, I[0][j]← s

4 foreach i ∈ [0..h− 1] do
5 x← I[i][0], s← x

6 foreach j ∈ [1..w − 1] do
7 x← I[i][0], s← s+ x, I[i][j]← s+ I[i− 1][j]

The first one is a scalar parametric version (withnF ) that fuses the externali-loop and keeps the three
j-loops unchanged. The second one is a specialized version withnF = 7 where the three internal loops
are fused together. The third one is the SIMDized version of the second one. The internal loop fusion
allows to save the LOAD/STORE instructions in order to write a product of features into memory and
to read it afterwards to compute the integral image of products. The loop-fusion has been done by hand,
but some tools like PIPS [24] can do such a kind of transformation automatically [25]. The complexity
of scalar and SIMD versions are provided in Table 5. The numerical valueof these expressions is given
in Table 6.

To be efficient loop-fusion is combined to full loop-unwinding (onk1 andk2) and scalarisation (to store
temporary results within a register instead of a memory cell of an array). The behavior of the code is the
following, for a given pixel(i, j):

• all the features associated to point(i, j) are loaded intonF registers:f0, f1, · · · fnF−1,

• the integral image computation of features is done on the fly andin place with Algorithm 5
with nF accumulatorssf0, sf1 · · · sfnF−1. The pointfmat(i,j,k) that previously holdsnF

features is replaced by the sums stored in thenF accumulator,



• thenP products are then calculated innP registers:p00, p01, ...pk1k2, · · · pnF−1nF−1

• the integral image computation of the product of features is done in the same way,with nP accu-
mulators. The pointprmat(i,j,k) is filled with thenP accumulators of products.

The code is quite big (as internal loops are unwound) but very efficient(see next section), but it can be
easily generated automatically by a C program, as it is very systematic: load features do accumulation
of features, store accumulations, and compute products and do accumulation of products and store
accumulations. It is relevant for a bigger value ofnF to avoid bugs. The complexity of these new
versions are given in the second part of Tables 5 and 6.

We can observe that without loop-fusion has the lowest AI of 0.5. We can notice that, for a given version,
loop-fusion divides the complexity by a factor 1.2 (by rewriting image integral steps) and memory
accesses by a factor 2.5 by avoiding LOADs and STOREs of temporary results.

4.4 Embedded systems

Let us now focus on moreembeddedprocessors like the Intel ULV (ultra low voltage) family and ARM
processors. In order to observe the performance evolution for each family, two processors were bench-
marked: Penryn-M U9300 (1.2GHz, 10 W, SSSE3), Haswell-M 4650U (1.7 GHz, 15 W, AVX2), ARM
Cortex A9 (1.2 GHz, 1.2 W, Neon), and ARM Cortex A15 (1.7 GHz, 1.7 W, Neon). For Penryn-M
and Haswell-M, the power consumption is the thermal dissipation power (TDP) provided by Intel; for
ARM, these processors are part of SoC (Pandaboard OMAP4 from Texas Instruments and Samsung
Chromebook with Exynos5 from Samsung) and it is very difficult to find outany figures from ARM or
Samsung. So these figures were collected on the internet and cross-validated ontrustablewebsites.

Figures 6 and 7 provide the cpp of the processor for image size varying from 64 to 1024 for Intel
processors and from 64 to 512 for ARM processors.

Figure 6 Performance of Penryn-M and Haswell-M.

Figure 7 Performance of Cortex-A9 and Cortex-A15.

Firstly, for all processors, the SoA version is very inefficient compared tothe best one (AoS+T+SIMD).
The SIMDization alone is also inefficient: around×1.5 instead of×4 the ideal speedup for 128-bit
SIMD and×2.5 instead of×8 for 256-bit SIMD. The reason is that SIMD is really efficient only (a
speedup close to the SIMD register cardinal) when data fit in the cache [23]. Here the cache overflow
appears for image size around150 × 150 for ARM and 200 × 200 for Intel. As a matter of fact, a
512 × 512 image requires a cache of size of 36 MB, while a640 × 480 needs 43 MB. If the biggest
server processors just start to have such large cache (IBM Power7+, Intel Xeon Ivy bridge), such an
amount of cache is far from the embedded ARM and Intel laptop processor (from 1 to 4 MB). The
important fact, also common to the four processors, is that the cpp of AoS + Tversion remains constant,
unlike SoA and AoS versions. So the execution time can be predicted.

Secondly, there is one big difference between them: the cpp values. The Intel cpp’s are up to×4.5
smaller than ARM ones that comes from higher latency instructions.

Cortex-A15 is faster than A9 for two reasons: a faster cache and a faster external memory (same for
Haswell-M versus Penryn-M) and because A15 can execute one Neoninstruction every cycle instead of
every two cycles: the SIMD throughput has been multiplied by two.



Regarding the impact of loop-fusion, Table 7 shows that the speedup with AoS version is from×1.6 up
to×1.7 for ARM and Intel processor and for scalar and SIMD version, respectively. So the loop-fusion
is as efficient as SIMDization. The total speedup is from×3.8 up to×4.9 for ARM and Penryn-M
processor, respectively, but reaches×7.9 for Haswell-M (with SSE instructions).

Table 7 Impact of memory layout and loop-fusion transform
Penryn-M Haswell-M Cortex-A9 Cortex-A15

cpp
SoA 447 300 830 646
AoS 207 178 836 520

AoS + T 126 66 503 238
AoS + SIMD 165 69 476 325

AoS + T SIMD 92 38 201 169
speedups

SoA/AoS ×2.2 ×1.7 ×1.0 ×1.2

AoS/AoS + T ×1.6 ×2.7 ×1.7 ×2.2

SIMD/SIMD + T ×1.8 ×1.8 ×2.4 ×1.9

SoA/AoS+SIMD + T ×4.9 ×7.9 ×4.1 ×3.8

Execution time (ms) for512× 512 images
AoS+T SIMD 20.1 6.1 43.9 26.1

Estimated energy consumption (mJ) for512× 512 images
AoS+T SIMD 201 91.4 52.7 44.3

cpp and speedups, execution time, and energy consumption for Penryn-M, Haswell-M, Cortex-A9 and Cortex-A15.

Concerning execution time, the Penryn-M and the Haswell-M are, respectively, ×4.3 and×2.2 faster
than the A9 and the A15. If we compare the estimation energy consumption (based onapproximative
TDP as previously said), the A9 and the A15 are, respectively,×3.8 and×2.1 more efficient than the
Penryn-M and the Haswell-M. ARM embedded processors are still more efficient than Intel ones.

4.5 Impact of other parameters: SIMD width and nF value

The impact of a twice wider SIMD - 256 bits for AVX2 instead of 128 for SSE -has been evaluated
on a Haswell-M processor. It appears that there is quite no differencein performance between SSE and
AVX2. First, AVX (and AVX2) processors can pair two SSE instructions withinone AVX instruction,
thanks to theout-of-ordercapabilities of these processors. Once the SIMD are fetched and decoded into
the pipeline, they are put in the ‘instructions ready’ window before being dispatched to an execute unit
(namedport in Intel vocabulary). If the processor can find two SSE data-independent instructions that
are ready to be executed, it pairs them together and sends the new instruction to an execute unit.

The impact ofnF has been also evaluated for the four processors. The two specialized scalar and SIMD
versions AoS + T and AoS + T + SIMD have been instanced fornF = 8 SSE, AVX, and Neon. It
makes sense for AVX architecture as eight features 100% fills one AVX register (see Table 3). The cpp
ratio (cpp(nF = 8)/cpp(nF = 7)) varies from 1.11 up to 1.35 for ARM processors and 1.21 up to
1.27 for Intel processors. These values are very close to the theoretical ratios (1.27 and 1.25) of the
complexity and memory access amounts of Table 5. It means that the execution time of that part of the
global algorithm is predictable until we run out of register and generate spillcode.



5 Algorithm implementation

Two sequences have been used to evaluate the global performance on the four processors. Panda and
Pedxing for which the robustness of the algorithm have been evaluated in [11] and [18]. For both of
them, the execution times are given in cpp for each version of the algorithm: SoA isthe basic version,
and AoS++ stands for AoS transform + SIMDization + loop-fusion transform.

Two counter-intuitive results can be noticed. The first one is the featurescomputation cpp: it is lower
for SoA. The reason is obviously the memory layout of SoA (versus AoS) when computing the features
and storing them into a cube or a matrix. The second counter-intuitive resultis even more interesting: it
concerns the tracking part of the algorithm which is based on the computation of asimilarity criterion
that requires the computation of the generalized eigenvalues, inversions, and matrix logarithms (9). In
order to have the same behavior, we use GNU Scientific Library to performthese computations on both
platforms, but we can also use Intel MKL or Eigen libraries. The future position is chosen by evaluating
40 (in our case, but it is parameterizable) random positions in a research window, so matrix operations
represent a high percentage of the tracking part. It appears that the features used for tracking lead to a
‘more’ ill-conditioned matrix requiring more computations for Panda than for the Pedxing-3 sequence.

Concerning the acceleration, Tables 8 and 9 show that the optimization of the kernel provides a speedup
of ×2.8 to ×2.9 for Intel processors and×2.0 to ×2.6 for ARM ones that assets the need of all the
optimizations.

Table 8 cpp and execution time for Intel Penryn-M and Haswell-M
Sequence Panda Pedxing

Size 312× 233 640× 480

Intel Penryn-M
Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 128 150 128 150
Kernel computation (cpp) 599 87 618 91

Tracking (cpp) 23 23 11 11
Total (cpp) 738 248 769 264
Kernel/total 81% 35% 80% 34%

Total speedup ×2.9 ×2.8

1-C execution time (ms) 45 15 197 68
2-C execution time (ms) 36 9 158 38

Intel Haswell-M
Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 78 79 88 72
Kernel computation (cpp) 190 36 207 40

Tracking (cpp) 13 23 2 3
Total (cpp) 281 138 297 115
Kernel/total 67% 26% 69% 34%

Total speedup ×2.0 ×2.6

1-C execution time (ms) 12 5 54 21
2-C execution time (ms) 8 3 37 13



Table 9 cpp and execution time for ARM Cortex-A9 and Cortex-A15
Sequence Panda Pedxing

Size 312× 233 640× 480

ARM Cortex-A9
Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 461 461 486 486
Kernel computation (cpp) 1491 395 1600 415

Tracking (cpp) 96 96 19 19
Total (cpp) 2048 952 2106 921
Kernel/total 73% 42% 73% 45%

Total speedup ×2.2 ×2.3

1-C execution time (ms) 149 69 647 283
2-C execution time (ms) 108 36 492 149

ARM Cortex-A15
Algorithm version SoA AoS++ SoA AoS++

Features computation (cpp) 207 207 205 205
Kernel computation (cpp) 562 170 582 177

Tracking (cpp) 28 52 4 7
Total (cpp) 797 429 791 389
Kernel/total 70% 39% 73% 45%

Total speedup ×1.9 ×2.0

1-C execution time (ms) 38 20 161 79
2-C execution time (ms) 27 10 119 42

As both processors have two cores, all the processing parts can be done either on one core (the execution
time is the sum of all parts) or on two cores (the biggest part is on one core and the two other parts are
on the second core). With such a coarse grain thread distribution, the Penryn-M and the Haswell-M
can track targets in real time for640 × 480 images. The Haswell-M is even real time with only one
core. The Cortex-A9 can do it for image sizes up to320× 240 and the Cortex-A15 is close to real time
for 640 × 480 images. Once the kernel computation has been optimized, the biggest processing part
becomes the features computation. With the optimization of this part, the Cortex-A15 should be able to
reach real-time execution.

The performance ratio of the whole algorithm is close to the performance ratio of the kernel: the Penryn-
M and the Haswell-M are, respectively,×4.0 and×3.3 faster than the Cortex-A9 and the Cortex-A15.
We can also observe that the image size has quite no impact on the performanceratio. From an energy
point of view, the Cortex-A9 and the Cortex-A15 are, respectively,×2.1 and×2.7 more energy efficient
than the Penryn-M and the Haswell-M.

6 Conclusions

We have presented the implementation of a robust covariance tracking algorithm,with a parameterizable
complexity that can be adapted to trade-off between robustness and execution time. A study has been
made to qualitatively compare different covariance matrices in terms of number and nature of visual
features. Classical software and hardware optimizations have been applied: SIMDization and loop-
fusion transform combined with AoS-SoA transform to accelerate the kernel of the algorithm. These
optimizations allow a real-time execution (25 fps or about 40 ms per image) for320 × 240 image size
on ARM Cortex-A9 and for640× 480 on Intel Penryn-M and Haswell. ARM Cortex-A15 should also
reach real-time execution for such image size, once the other parts of the algorithm will be optimized.



Our future work will focus on (1) the optimization of the features computation and (2) the multi-
threading of the tracking in order to perform multi-target tracking with load balancing on the available
core. A more thorough study should also be made concerning the impact of the ill-conditioning of the
matrix on the execution time.

To the best of our knowledge, our implementation of the covariance tracking algorithm is the first real-
time implementation for embedded systems, while perfectly maintaining the quality of the tracking.

Endnotes

aK-Nearest Neighbours
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