
HAL Id: hal-01095123
https://hal.inria.fr/hal-01095123

Submitted on 18 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicate-aware, makespan-preserving software
pipelining of scheduling tables
Thomas Carle, Dumitru Potop-Butucaru

To cite this version:
Thomas Carle, Dumitru Potop-Butucaru. Predicate-aware, makespan-preserving software pipelining
of scheduling tables. ACM Transactions on Architecture and Code Optimization, Association for
Computing Machinery, 2014, 11, pp.1 - 26. �10.1145/2579676�. �hal-01095123�

https://hal.inria.fr/hal-01095123
https://hal.archives-ouvertes.fr

A

Predicate-aware, makespan-preserving
software pipelining of scheduling tables1

Thomas Carle, INRIA Paris-Rocquencourt

Dumitru Potop-Butucaru, INRIA Paris-Rocquencourt

We propose a software pipelining technique adapted to specific hard real-time scheduling problems. Our
technique optimizes both computation throughput and execution cycle makespan, with makespan being
prioritary. It also takes advantage of the predicated execution mechanisms of our embedded execution plat-
form. To do so, it uses a reservation table formalism allowing the manipulation of the execution conditions
of operations. Our reservation tables allow the double reservation of a resource at the same dates by two
different operations, if the operations have exclusive execution conditions. Our analyses can determine when
double reservation is possible even for operations belonging to different iterations.

1. INTRODUCTION

In this paper, we take inspiration from a classical compilation technique, namely software
pipelining, in order to improve the system-level task scheduling of a specific class of embed-
ded systems.

Software pipelining. Compilers are expected to improve code speed by taking advantage
of micro-architectural instruction level parallelism [Hennessy and Patterson 2007]. Pipelin-
ing compilers usually rely on reservation tables to represent an efficient (possibly optimal)
static allocation of the computing resources (execution units and/or registers) with a tim-
ing precision equal to that of the hardware clock. Executable code is then generated that
enforces this allocation, possibly with some timing flexibility. But on VLIW architectures,
where each instruction word may start several operations, this flexibility is very limited,
and generated code is virtually identical to the reservation table. The scheduling burden is
mostly supported here by the compilers, which include software pipelining techniques [Rau
and Glaeser 1981; Allan et al. 1995] designed to increase the throughput of loops by allowing
one loop cycle to start before the completion of the previous one.

Static (offline) real-time scheduling. A very similar picture can be seen in the system-level
design of safety-critical real-time embedded control systems with distributed (parallel, multi-
core) hardware platforms. The timing precision is here coarser, both for starting dates,
which are typically given by timers, and for durations, which are characterized with worst-
case execution times (WCET). However, safety and efficiency arguments[Fohler et al. 2008]
lead to the increasing use of tightly synchronized time-triggered architectures and execu-
tion mechanisms, defined in well-established standards such as TTA, FlexRay[Rushby 2001],
ARINC653[ARINC653], or AUTOSAR[AUTOSAR]. Systems based on these platforms typ-
ically have hard real-time constraints, and their correct functioning must be guaranteed by
a schedulability analysis. In this paper, we are interested in statically scheduled systems
where resource allocation can be described under the form of a reservation/scheduling table
which constitutes, by itself, a proof of schedulability. Such systems include:

—Periodic time-triggered systems [Caspi et al. 2003; Zheng et al. 2005; Monot et al. 2010;
Eles et al. 2000; Potop-Butucaru et al. 2010] that are naturally mapped over ARINC653,
AUTOSAR, TTA, or FlexRay.

—Systems where the scheduling table describes the reaction to some sporadic input event
(meaning that the table must fit inside the period of the sporadic event). Such systems

1This work was partially funded by the FUI PARSEC project. Preliminary results of this work are also
available online as the Chalmers’ master thesis of the first author http://publications.lib.chalmers.se/
records/fulltext/146444.pdf.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

This paper

scheduling table
(non-pipelined)

Pipelining
(throughput
optimization)

scheduling table
(pipelined)(data-flow

specification)
(makespan

Scheduling tool

optimization)

control algorithm

Existing work

Fig. 1. Proposed pipelined scheduling flow

can be specified in AUTOSAR, allowing, for instance, the modeling of computations syn-
chronized with engine rotation events [André et al. 2007].

— Some systems with a mixed event-driven/time-driven execution model, such as those syn-
thesized by SynDEx[Grandpierre and Sorel 2003].

Synthesis of such systems starts from specifications written in domain-specific formalisms
such as Simulink or SCADE[Caspi et al. 2003]. These formalisms allow the description of
concurrent data computations and communications that are conditionally activated at each
cycle of the embedded control algorithm depending on the current input and state of the
system.

The problem. The optimal scheduling of such specifications onto platforms with multiple,
heterogenous execution and communication resources (distributed, parallel, multi-core) is
NP-hard regardless of the optimality criterion (throughput, makespan, etc.) [Garey and
Johnson 1979]. Existing scheduling techniques and tools [Caspi et al. 2003; Zheng et al. 2005;
Grandpierre and Sorel 2003; Potop-Butucaru et al. 2010; Eles et al. 2000] heuristically solve
the simpler problem of synthesizing a scheduling table of minimal length which implements
one generic cycle of the embedded control algorithm. In a hard real-time context, minimizing
table length (i.e. the makespan, as defined in the glossary of Fig. 2) is often a good idea,
because in many applications it bounds the response time after a stimulus.
But optimizing makespan alone relies on an execution model where execution cycles can-

not overlap in time (no pipelining is possible), even if resource availability allows it. At the
same time, most real-time applications have both makespan and throughput requirements,
and in some cases achieving the required throughput is only possible if a new execution
cycle is started before the previous one has completed.
This is the case in the electronic control units (ECU) of combustion engines. Starting

from the acquisition of data for a cylinder in one engine cycle, an ECU must compute
the ignition parameters before the ignition point of the same cylinder in the next engine
cycle (a makespan constraint). It must also initiate one such computation for each cylinder
in each engine cycle (a throughput constraint). On modern multiprocessor ECUs, meeting
both constraints requires the use of pipelining[André et al. 2007]. Another example is that
of systems where a faster rate of sensor data acquisition results in better precision and
improved control, but optimizing this rate must not lead to the non-respect of requirements
on the latency between sensor acquisition and actuation. To allow the scheduling of such
systems we consider here the static scheduling problem of optimizing both makespan and
throughput, with makespan being prioritary.

Contribution. To (heuristically) solve this optimization problem, we use a two-phase
scheduling flow that can be seen as a form of decomposed software pipelining [Wang and
Eisenbeis 1993; Gasperoni and Schwiegelshohn 1994; Calland et al. 1998]. As pictured in
Fig. 1, the first phase of this flow consists in applying one of the previously-mentioned
makespan-optimizing tools. The result is a scheduling table describing the execution of one
generic execution cycle of the embedded control algorithm with no pipelining.
The second phase uses a novel software pipelining algorithm, introduced in this paper,

to significantly improve the throughput without changing the makespan and while preserv-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

Concept Description

scheduling table These are essentially modulo reservation tables [Lam 1988], ex-
tended to allow the representation of conditional/multiple reser-
vations. We use a different name to identify our specific internal
formalism where reservations are the complex scheduled opera-
tions defined below.

initiation interval The length of a schedule table is also called its initiation interval
(II).

execution cycle One iteration of either a scheduling table or the control algorithm
before scheduling.

non-pipelined vs.
pipelined

In classical software pipelining, reservation tables are used to rep-
resent the pipelined schedule. In our case, a reservation table
is also used to represent the input of the pipelining algorithm.
To avoid ambiguity, uses of “scheduling table”, “initiation inter-
val”, “throughput”, etc. will be qualified with “non-pipelined”
or “pipelined” whenever necessary. For instance, the pipelined
scheduling table is usually known in software pipelining as the
kernel.

makespan Worst-case duration of one execution cycle of the control algo-
rithm, from the start of its first operation, to the end of its last
operation. In our approach, by construction, it is the same in both
the non-pipelined and pipelined scheduling tables. It is equal to
the initiation interval of the non-pipelined scheduling table.

throughput The number of execution cycles of the control algorithm executed
per time unit. It is defined as the inverse of the initiation interval.

inter-cycle depen-
dency

Data dependencies between operations of different execution cy-
cles of the non-pipelined scheduling table.

scheduled opera-
tion

Complex data structure defining a resource reservation in a
scheduling table (a time interval on one or several resources), but
providing at the same time information on the operation (real-
time task) to be executed inside this reservation (input and output
variables, execution condition).

Fig. 2. Glossary of terms used in this paper. All notions are formally defined later

ing the periodic nature of the system. The approach has the advantage of simplicity and
generality, allowing the use of existing makespan-optimizing tools.
The proposed software pipelining algorithm is a very specific and constrained form ofmod-

ulo scheduling [Rau 1996]. Like all modulo scheduling algorithms, it determines a shorter
initiation interval for the execution cycles (iterations) of the control algorithm, subject to
resource and inter-cycle data dependency constraints. Unlike previous modulo scheduling
algorithms, however, it starts from an already scheduled code (the non-pipelined scheduling
table), and preserves all the intra-cycle scheduling decisions made at phase 1, in order to
preserve the makespan unchanged. In other words, our algorithm computes the best initi-
ation interval for the non-pipelined scheduling table and re-organizes resource reservations
into a pipelined scheduling table, whose length is equal to the new initiation interval, and
which accounts for the changes in memory allocation.
We have implemented our algorithm into a pipelining tool that is used, as we desired, in

conjunction with an existing makespan-optimizing scheduling tool. The resulting two-phase
flow gives good results on architectures without temporal partitioning [ARINC653], like
the previously-mentioned AUTOSAR or SynDEx-generated applications and, to a certain
extent, applications using the FlexRay dynamic segment.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

For applications mapped onto partitioned architectures (ARINC 653, TTA, or FlexRay,
the static segment) or where the non-functional specification includes multiple release date,
end-to-end latency, or periodicity constraints, separating the implementation process in
two phases (scheduling followed by pipelining) is not a good idea. We therefore developed
a single-phase pipelined scheduling technique documented elsewhere [Carle et al. 2012],
but which uses (with good results) the same internal representation based on scheduling
tables to allow a simple mapping of applications with execution modes onto heterogenous
architectures with multiple processors and buses.

Outline

The remainder of the paper is structured as follows. Section 2 reviews related work. Section 3
formally defines scheduling tables. Sections 4 and 5 present the pipelining technique and
provide and provide a complex example. Section 5 deals with data dependency analysis.
Section 6 gives experimental results, and Section 7 concludes.

2. RELATED WORK AND ORIGINALITY

This section reviews related work and details the originality points of our paper. Perform-
ing this comparison required us to relate concepts and techniques belonging to two fields:
software pipelining and real-time scheduling. To avoid ambiguities when the same notion
has different names depending on the field, we define in Fig. 2 a glossary of terms that will
be used throughout the paper.

2.1. Decomposed software pipelining.

Closest to our work are previous results on decomposed software pipelining [Wang and Eisen-
beis 1993; Gasperoni and Schwiegelshohn 1994; Calland et al. 1998]. In these papers, the
software pipelining of a sequential loop is realized using two-phase heuristic approaches with
good practical results. Two main approaches are proposed in these papers.
In the first approach, used in all 3 cited papers, the first phase consists in solving the loop

scheduling problem while ignoring resource constraints. As noted in [Calland et al. 1998],
existing decomposed software pipelining approaches solve this loop scheduling problem by
using retiming algorithms. Retiming [Leiserson and Saxe 1991] can therefore be seen as
a very specialized form of pipelining targeted at cyclic (synchronous) systems where each
operation has its own execution unit. Retiming has significant restrictions when compared
with full-fledged software pipelining:

— It is oblivious of resource allocation. As a side-effect, it cannot take into account execution
conditions to improve allocation, being defined in a purely data-flow context.

— It requires that the execution cycles of the system do not overlap in time, so that one
operation must be completely executed inside the cycle where it was started.

Retiming can only change the execution order of the operations inside an execution cycle.
A typical retiming transformation is to move one operation from the end to the beginning
of the execution cycle in order to shorten the duration (critical path) of the execution cycle,
and thus improve system throughput. The transformation cannot decrease the makespan
but may increase it.
Once retiming is done, the second transformation phase takes into account resource con-

straints. To do so, it considers the acyclic code of one generic execution cycle (after re-
timing). A list scheduling technique ignoring inter-cycle dependences is used to map this
acyclic code (which is actually represented with a directed acyclic graph, or DAG) over the
available resources.
The second technique for decomposed software pipelining, presented in [Wang and Eisen-

beis 1993], basically switches the two phases presented above. Resource constraints are
considered here in the first phase, through the same technique used above: list scheduling of

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

DAGs. The DAG used as input is obtained from the cyclic loop specification by preserving
only some of the data dependences. This scheduling phase decides the resource allocation
and the operation order inside an execution cycle. The second phase takes into account the
data dependences that were discarded in the first phase. It basically determines the fastest
way a specification-level execution cycle can be executed by several successive pipelined ex-
ecution cycles without changing the operation scheduling determined in phase 1 (preserving
the throughput unchanged). Minimizing the makespan is important here because it results
in a minimization of the memory/register use.

2.2. Originality.

In this paper, we propose a third decomposed software pipelining technique with two sig-
nificant originality points, detailed below.

2.2.1. Optimization of both makespan and throughput. Existing software pipelining techniques
are tailored for optimizing only one real-time performance metric: the processing throughput
of loops [Yun et al. 2003] (sometimes besides other criteria such as register usage [Govindara-
jan et al. 1994; Zalamea et al. 2004; Huff 1993] or code size [Zhuge et al. 2002]). In addition
to throughput, we also seek to optimize makespan, with makespan being prioritary. Recall
that throughput and latency (makespan) are antagonistic optimization objectives during
scheduling [Benôıt et al. 2007], meaning that resulting schedules can be quite different (an
example will be provided in Section 4.1.2).
To optimize makespan we employ in the first phase of our approach existing schedul-

ing techniques that were specifically designed for this purpose [Caspi et al. 2003; Zheng
et al. 2005; Grandpierre and Sorel 2003; Potop-Butucaru et al. 2010; Eles et al. 2000]. But
the main contribution of this paper concerns the second phase of our flow, which takes
the scheduling table computed in phase 1 and optimizes its throughput while keeping its
makespan unchanged. This is done using a new algorithm that conserves all the allocation
and intra-cycle scheduling choices made in phase 1 (thus conserving makespan guarantees),
but allowing the optimization of the throughput by increasing (if possible) the frequency
with which execution cycles are started.
Like retiming, this transformation is a very restricted form of modulo scheduling software

pipelining. In our case, it can only change the initiation interval (changes in memory alloca-
tion and in the scheduling table are only consequences). By comparison, classical software
pipelining algorithms, such as the iterative modulo scheduling of [Rau 1996], perform a full
mapping of the code involving both execution unit allocation and scheduling. Our choice of
transformation is motivated by three factors:

— It preserves makespan guarantees.
— It gives good practical results for throughput optimization.
— It has low complexity.

It is important to note that our transformation is not a form of retiming. Indeed, it allows
for a given operation to span over several cycles of the pipelined implementation, and it can
take advantage of conditional execution to improve pipelining, whereas retiming techniques
work in a pure data-flow context, without predication (an example will be provided in
Section 4.1.2).

2.2.2. Predication. For an efficient mapping of our conditional specifications, it is important
to allow an independent, predicated (conditional) control of the various computing resources.
However, most existing techniques for software pipelining [Allan et al. 1995; Warter et al.
1993; Yun et al. 2003] use hardware models that significantly constrain or simply prohibit
predicated resource control. This is due to limitations in the target hardware itself. One
common problem is that two different operations cannot be scheduled at the same date on
a given resource (functional unit), even if they have exclusive predicates (like the branches

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

of a test). The only exception we know to this rule is predicate-aware scheduling (PAS)
[Smelyanskyi et al. 2003].
By comparison, the computing resources of our target architectures are not a mere func-

tional units of a CPU (as in classical predicated pipelining), but full-fledged processors such
as PowerPC, ARM, etc. The operations executed by these computing resources are large
sequential functions, and not simple CPU instructions. Thus, each computing resource al-
lows unrestricted predication control by means of conditional instructions, and the timing
overhead of predicated control is negligible with respect to the duration of the operations.
This means that our architectures satisfy the PAS requirements. The drawback of PAS
is that sharing the same resource at the same date is only possible for operations of the
same cycle, due to limitations in the dependency analysis phase. Our technique removes
this limitation (an example will be provided in Section 4.1.3).
To exploit the full predicated control of our platform we rely on a new intermediate

representation, namely predicated and pipelined scheduling tables. By comparison to the
modulo reservation tables of [Lam 1988; Rau 1996], our scheduling tables allow the explicit
representation of the execution conditions (predicates) of the operations. In turn, this allows
the double reservation of a given resource by two operations with exclusive predicates.

2.3. Other aspects

A significant amount of work exists on applying software pipelining or retiming techniques
for the efficient scheduling of tasks onto coarser-grain architectures, such as multi-processors
[Kim et al. 2012; Yang and Ha 2009; Chatha and Vemuri 2002; Chiu et al. 2011; Caspi et al.
2003; Morel 2005]. To our best knowledge, these results share the two fundamental limi-
tations of other software pipelining algorithms: Optimizing for only one real-time metric
(throughput) and not fully taking advantage of conditional execution to allow double allo-
cation of resources.
Minor originality points of our technique, concerning code generation and dependency

analysis will be discussed and compared with previous work in Sections 4.4 and 5.

3. SCHEDULING TABLES

This section defines the formalism used to represent the non-pipelined static schedules
produced by phase 1 of our scheduling flow and taken as input by phase 2. Inspired from
[Potop-Butucaru et al. 2010; Grandpierre and Sorel 2003], our scheduling table formalism
remains at a significantly lower abstraction level. The models of [Potop-Butucaru et al.
2010; Grandpierre and Sorel 2003] are fully synchronous: Each variable has at most one
value at each execution cycle, and moving one value from a cycle to the next can only be
done through explicit delay constructs. In our model, each variable (called a memory cell)
can be assigned several times during a cycle, and values are by default passed from one
execution cycle to the next.
The lower abstraction level means that time-triggered executable code generated by any

of the previously-mentioned scheduling tools can directly be used as input for the pipelining
phase. Integration between the scheduling tools and the pipelining algorithm defined next is
thus facilitated. The downside is that the pipelining technique is more complex, as detailed
in Section 4.4.2.

3.1. Architecture model

We model our multi-processor (distributed, parallel) execution architectures using a very
simple language defining sequential execution resources, memory blocks, and their intercon-
nections. Formally, an architecture model is a bipartite undirected graph A =< P ,M, C >,
with C ⊆ P ×M. The elements of P are called processors, but they model all the computa-
tion and communication devices capable of independent execution (CPU cores, accelerators,
DMA and bus controllers, etc.). We assume that each processor can execute only one oper-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

v2v1

P1 M1 P2 M2 P3

Fig. 3. Simple architecture

ation at a time. We also assume that each processor has its own sequential or time-triggered
program. This last assumption is natural on actual CPU cores. On devices such as DMAs
and accelerators, it models the assumption that the cost of control by some other processor
is negligible.2

The elements of M are RAM blocks. We assume each RAM block is structured as a set
of disjoint cells. We denote with Cells the set of all memory cells in the system, and with
CellsM the set of cells on RAM block M . Our model does not explicitly specify memory
size limits. To limit memory usage in the pipelined code we rely instead on the mechanism
detailed in Section 4.4.3.
The elements of C are the interconnections. Processor P has direct access to memory

block M whenever (P,M) ∈ C. All processors directly connected to a memory block M can
access M at the same time. Therefore, care must be taken to prohibit concurrent read-write
or write-write access by two or more processors to a single memory cell, in order to preserve
functional determinism (we will assume this is ensured by the input scheduling table, and
will be preserved by the pipelined one).
The simple architecture of Fig. 3 has 3 processors (P1, P2, and P3) and 2 memory blocks

(M1 and M2). Each of the Mi blocks has only one memory cell vi.

3.2. Scheduling tables

On such architectures, Phase 1 scheduling algorithms perform static (offline) allocation and
scheduling of embedded control applications under a periodic execution model. The result
is represented with scheduling tables, which are finite time-triggered activation patterns.
This pattern defines the computation of one period (also called execution cycle) of the
control algorithm. The infinite execution of the embedded system is the infinite succession
of periodically-triggered execution cycles. Execution cycles do not overlap in time (there is
no pipelining).
Formally, a scheduling table is a triple S =< p,O, Init >, where p is the activation period

of execution cycles, O is the set of scheduled operations, and Init is the initial state of the
memory.
The activation period gives the (fixed) duration of the execution cycles. All the operations

of one execution cycle must be completed before the following execution cycle starts. The
activation period thus sets the length of the scheduling table, and is denoted by len(S).
The set O defines the operations of the scheduling table. Each scheduled operation o ∈ O

is a tuple defining:

— In(o) ⊆ Cells is the set of memory cells read by o.
—Out(o) ⊆ Cells is the set of cells written by o.
—Guard(o) is the execution condition of o, defined as a predicate over the values of memory

cells.
—We denote with GuardIn(o) the set of memory cells used in the computation of Guard(o).

There is no relation between GuardIn(o) and In(o).
—Res(o) ⊆ P is the set of processors used during the execution of o.
— t(o) is the start date of o.

2This assumption is common for coarse-grain real-time applications.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

CA B

time

0

P2P1 P3

1

2

A@true

B@true

C@true

Processor

(a) (b)

Fig. 4. Simple dataflow specification (a) and (non-pipelined) scheduling table for this specification (b)

— d(o) is the duration of o. The duration is viewed here as a time budget the operation must
not exceed. This can be statically ensured through a worst-case execution time analysis.

All the resources of Res(o) are exclusively used by o after t(o) and for a duration of d(o)
in cycles where Guard(o) is true. The sets In(o) and Out(o) are not necessarily disjoint, to
model variables that are both read and updated by an operation. For lifetime analysis pur-
poses, we assume that input and output cells are used for all the duration of the operation.
The cells of GuardIn(o) are all read at the beginning of the operation, but we assume the
duration of the computation of the guard is negligible (zero time).3

To cover cases where a memory cell is used by one operation before being updated by
another, each memory cell can have an initial value. For a memory cell m, Init(m) is either
nil, or some constant.

3.2.1. A simple example. To exemplify, we consider the simple data-flow synchronous spec-
ification of Fig. 4(a), which we map onto the architecture of Fig. 3. Depending on the
non-functional requirements given as input to the scheduling tool of Phase 1 (allocation
constraints, WCETs, etc.) one possible result is the scheduling table pictured in Fig. 4. We
assumed here that A is must be mapped onto P1 (e.g. because it uses a sensor peripheral
connected to P1), that B must be mapped onto P2, that C must be mapped onto P3 and
that A, B, and C have all duration 1.
This table has a length of 3 and contains the 3 operations of the data-flow specification

(A, B, and C). Operation A reads no memory cell, but writes v1, so that In(A) = ∅ and
Out(A) = {v1}. Similarly, In(B) = {v1}, Out(B) = In(C) = {v2}, and Out(C) = ∅. All
3 operations are executed at every cycle, so their guard is true (guards are graphically
represented with “@true”). The 3 operations are each allocated on one processor: Res(A) =
{P1}, Res(B) = {P2}, Res(C) = {P3}. Finally, t(A) = 0, t(B) = 1, t(C) = 2, and d(A) =
d(B) = d(C) = 1. No initialization of the memory cells is needed (the initial values are all
nil).

3.3. Well-formed properties

The formalism above provides the syntax of scheduling tables, and allows the definition
of operational semantics. However, not all syntactically correct tables represent correct
implementations. Some of them are non-deterministic due to data races or due to operations
exceeding their time budgets. Others are simply un-implementable, for instance because an
operation is scheduled on processor P , but accesses memory cells on a RAM block not
connected to P . A set of correctness properties is therefore necessary to define the well-
formed scheduling tables.
However, some of these properties are not important in this paper, because we assume

that the input of our pipelining technique, synthesized by a scheduling tool, is already
correct. For instance, we assume that all schedules are implementable, with data used by a

3The memory access model where an operation reads its inputs at start time, writes its outputs upon
completion, and where guard computations take time can be represented on top of our model.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

P1 P2 P3

A@true
iteration 10

A@true
iteration 2
A@true

iteration 3
A@true

iteration 4

B@true
iteration 1
B@true

iteration 2
B@true

iteration 3

C@true
iteration 1
C@true

iteration 2

1

2

3

Prologue

Steady
state

.

time

Fig. 5. Pipelined execution trace for the example of Fig. 4

fst(C) = 2

time P1 P2 P3

0
A@true B@true C@true

fst(A) = 0 fst(B) = 1

Fig. 6. Pipelined scheduling table (kernel) for the example of Fig. 4

processor being allocated in adjacent memory banks. This is why we only formalize here two
correctness properties that will need attention in the following sections because pipelining
transformations can affect them.
We say that two operations o1 and o2 are non-concurrent, denoted o1⊥o2, if either their

executions do not overlap in time (t(o1)+ d(o1) ≤ t(o2) or t(o2)+ d(o2) ≤ t(o1)), or if they
have exclusive guards (Guard(o1) ∧ Guard(o2) = false). With this notation, the following
correctness properties are assumed respected by input (non-pipelined) scheduling tables,
and must be respected by the output (pipelined) ones:

Sequential processors. No two operations can use a processor at the same time. Formally,
for all o1, o2 ∈ O, if Res(o1) ∩Res(o2) 6= ∅ then o1⊥o2.
No data races. If some memory cell m is written by o1 (m ∈ Out(o1)) and is used by o2
(m ∈ In(o2) ∪Out(o2)), then o1⊥o2.

4. PIPELINING TECHNIQUE OVERVIEW

4.1. Pipelined scheduling tables

4.1.1. A simple example. For the example in Fig. 4, an execution where successive cycles do
not overlap in time is clearly sub-optimal. Our objective is to allow the pipelined execution
of Fig. 5, which ensures a maximal use of the computing resources.
In the pipelined execution, a new instance of operation A starts as soon as the previous

one has completed, and the same is true for B and C. The first two time units of the
execution are the prologue which fills the pipeline. In the steady state the pipeline is full and
has a throughput of one computation cycle (of the non-pipelined system) per time unit. If
the system is allowed to terminate, then completion is realized by the epilogue, not pictured
in our example, which empties the pipeline.
We represent the pipelined system schedule using the pipelined scheduling table pictured

in Fig. 6. Its length is 1, corresponding to the throughput of the pipelined system. The
operation set contains the same operations A, B, and C, but there are significant changes.
The start dates of B and C are now 0, as the 3 operations are started at the same time in
each pipelined execution cycle. A non-pipelined execution cycle spans over several pipelined
cycles, and each pipelined cycle starts one non-pipelined cycle.
To account for the prologue phase, where operations progressively start to execute, each

operation is assigned a start index fst(o). If an operation o has fst(o) = n, it will first be
executed in the pipelined cycle of index n (indices start at 0). Due to pipelining, the instance

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

y
A C

B

D
x

P2P1 M1 M2Bus

(a) (b)

Fig. 7. Example 2: Dataflow specification (a) and a bus-based implementation architecture (b)

x@true

5

6

time

0

1

2

P1

A@true

3

Bus P2

B@true

C@true

D@true

4

x@true

fst(C) = 0

fst(D) = 1

time

0

1

2

P1

3

Bus P2

4

C@true

D@true

A@true

B@true

C@true
fst(A) = 0

fst(B) = 0
fst(SND)=0

fst(C) = 1

(a) (b)

Fig. 8. Example 2: Non-pipelined scheduling table produced by phase 1 of our technique (a) and pipelined
table produced by phase 2 (b) for the example of Fig. 7

of o executed in the pipelined cycle m belongs to the non-pipelined cycle of index m− fst(o).
For instance, operation C with fst(C) = 2 is first executed in the 3rd pipelined cycle (of
index 2), but belongs to the first non-pipelined cycle (of index 0).

4.1.2. Example 2: makespan vs. throughput optimization . The example of Fig. 7 showcases how
the different optimization objectives of our technique lead to different scheduling results,
when compared with existing software pipelining techniques.
The architecture is here more complex, involving a communication bus that connects the

two identical processors. Communications over the bus are synthesized during the scheduling
process, as needed. Note that the bus is modeled as a processor performing communication
operations. This level of description, defined in Section 3.1, is accurate enough to support
our pipelining algorithms. The makespan-optimizing scheduling algorithms used in phase 1
use more detailed architecture descriptions (outside the scope of this paper).
The functional specification is also more complex, involving parallelism and different

durations for the computation and communication operations. The durations of A, B, C,
and D on the two processors are respectively 1, 2, 4, and 1, and transmitting over the bus
any of the data produced by A or C takes 1 time unit.
Fig. 8(a) provides the non-pipelined scheduling table produced for this example by the

makespan-optimizing heuristics of [Potop-Butucaru et al. 2009]. Operations A and B have
been allocated on processor P1 and operations C and D have been allocated on P2. One
communication is needed to transmit data x from P1 to P2. The makespan is here equal
to the table length, which is 7. The throughput is the inverse of the makespan (1/7).
When this scheduling table is given to our pipelining algorithm, the output is the pipelined

scheduling table of Fig. 8(b). The makespan remains unchanged (7), but the table length
is now 5, so the throughput is 1/5. Note that the execution of operation C starts in one

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

x@true

P2

5

time

0

1

2

P1

3

Bus

4

C@true

A@true

B@true

fst(A) = 0

fst(B) = 0
fst(SND)=0

fst(C) = 0

fst(D) = 1
D@true

fst(D) = 1

fst(x)=0
y@true
fst(y)=1

time

0

1

2

P1

3

Bus

A@true

B@true

fst(A) = 0

fst(B) = 0

P2

C@true
fst(C) = 0

C@true

D@true

fst(C) = 1x@true

(a) (b)

Fig. 9. Example 2: At left, the result of retiming the scheduling table of Fig. 8(a). At right, the result of
directly applying throughput-optimizing modulo scheduling onto the specification of Fig. 7.

old m

@(m=1)
F1

@(m=2)
F2

@(m=3)
F3∆

@true
init=1

@true
MC m

@true
G

m = 1 m = 2 m = 3

(a) (b)

Fig. 10. Example 3: Dataflow specification with conditional execution (a) and possible mode transitions
(b)

pipelined execution cycle (at date 2), but ends in the next, at date 1. Thus, operation C
has two reservations, one with fst(C) = 0, and one with fst(C) = 1.
Operations spanning over multiple execution cycles are not allowed in retiming-based

techniques. Thus, if we apply retiming to the scheduling table of Fig. 8(a), we obtain the
pipelined scheduling table of Fig. 9(a). For this example, the makespan is not changed, but
the throughput is worse than the one produced by our technique (1/6).
But the most interesting comparison is between the output of our pipelining technique

and the result of throughput-only optimization. Fig. 9(b) provides a pipelined scheduling
table that has optimal throughput. In this table, operation D is executed by processor P1,
so that the bus must perform 2 communications. The throughput is better than in our case
(1/4 vs. 1/5), but the makespan is worse (8 vs. 7), even though we chose a schedule with
the best makespan among those with optimal throughput.

4.1.3. Example 3: Predication handling. To explain how predication is handled in our ap-
proach, consider the example of Fig. 10. We only picture here the functional specification.
As architecture, we consider two processors P1 and P2 connected to a shared memory M1
(a 2-processor version of the architecture in Fig. 3(b)).
Example 3 introduces new constructs. First of all, it features a delay, labeled ∆. Delays

are used in our data-flow formalism to represent the system state, and are a source of inter-
iteration dependences. Each delay has an initial value, which is given as output in the first
execution cycle, and then outputs at each cycle the value received as input at the previous
cycle. The data-flow formalism, including delays, is formally defined in [Potop-Butucaru
et al. 2009].
The functional specification also makes use of conditional (predicated) execution. Oper-

ations F1, F2, and F3 (of length 3, 2, and 1, respectively) are executed in those execution

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

MC@true

time

0

1

P1 P2

2

3

4

5

6

F1
F2

F3

G

G

G
@m=1

@m=2
@m=3

@m=3

@m=2

@m=1

Fig. 11. Example 3: non-pipelined scheduling table

cycles where the output m of operation MC equals respectively 1, 2, or 3. Operations MC
and G are executed in all cycles.
The output m of operation MC (for mode computation) is used here to represent the exe-

cution mode of our application. This mode is recomputed in the beginning of each execution
cycle by MC, based on the previous mode and on unspecified inputs directly acquired by
MC. We assume that the application has only 3 possible modes (1, 2, and 3), and that
transition between these modes is only posible as specified by the transitions of Fig. 10(b).
This constraint is specified with a predicate over the inputs and outputs of operation MC.
All data-flow operations can be associated such predicates, which will be used in the anal-
yses of the next sections. Assuming that the input port of operation MC is called old m
and that the output port is called m, the predicate associated to MC is:

(old m = m) or (old m = 1 and m = 2) or (old m = 2) or (old m = 3 and m = 2)

This predicate states that either there is no state change (old m = m), or there is a transition
from state 1 to state 2 (old m = 1 and m = 2), or that the old state is 2, so the new state
can be any of the 3 (old m = 2), or that there is a transition from state 3 to state 2
(old m = 3 and m = 2).
We assume that operations MC, F1, F2, and F3 are executed on processor P1, and

that G is executed on P2. Under these conditions, one possible non-pipelined schedule
produced by Phase 1 is the one pictured in Fig. 11. Note that this table features 3 conditional
reservations for operation G, even if G does not have an execution condition in the data-flow
graph. This allows G to start as early as possible in every given mode.
This table clearly features the reservation of the same resource, at the same time, by

multiple operations. For instance, operations F1, F2, and F3 share P1 at date 1. Of course,
each time this happens the operations must have exclusive predicates, meaning that there
is no conflict at runtime.
Pipelining this table using the algorithms of the following sections produces the schedul-

ing table of Fig. 12. The most interesting aspect of this table is that the reservations
G@m=1,fst=1 and G@m=3,fst=0, which belong to different execution cycles of the non-
pipelined table, are allowed to overlap in time. This is possible because the dependency
analysis of Section 5 determined that the two operations have exclusive execution condi-
tions. In our case, this is due to the fact that m cannot change its value directly from 1 to
3 when moving from one non-pipelined cycle to the next.
When relations between execution conditions of operations belonging to different exe-

cution cycles are not taken into account, the resulting pipelining is that of Fig. 13. Here,
reservations for G cannot overlap in time if they have different fst values.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

time

0

1

P1 P2

2

3

MC@true

F3
@m=3
fst = 0

G
@m=3
fst=1

G
@m=2
fst = 0

F1
@m=1
fst = 0

F2
@m=2
fst = 0

G
@m=1
fst=1

G
@m=2
fst=1

G
@m=3
fst = 0

Fig. 12. Example 3: Pipelined scheduling table pro-
duced by our technique

time

0

1

P1 P2

2

3

4

fst=1
@m=2MC@true

@m=1
fst=1

G
G

F1
@m=1
fst=0

F2
@m=2
fst=0

F3
@m=3
fst=0

G
@m=2
fst=0

G
@m=1
fst=0

G
@m=3
fst=0

Fig. 13. Example 3: Pipelined scheduling table
where inter-cycle execution condition analysis has
not been used to improve sharing.

The current implementation of our algorithms can only analyze predicates with Boolean
arguments. Thus, our 3-valued mode variablem needs re-encoding with 2 Boolean variables.
In other words, in the version of Example 3 that can be processed by our tool, the operation
MC actually has 2 Boolean inputs and 2 Boolean outputs, and the predicate above is defined
using these 4 variables.

4.2. Construction of the pipelined scheduling table

The prologues of our pipelined executions are obtained by incremental activation of the
steady state operations, as specified by the fst indices (this is a classical feature of modulo
scheduling pipelining approaches). Then, the pipelined scheduling table can be fully built
using Algorithm 1 starting from the non-pipelined table and from the pipelined initiation
interval. The algorithm first determines the start index and new start date of each operation
by folding the non-pipelined table onto the new period. Algorithm AssembleSchedule then
determines which memory cells need to be replicated due to pipelining, using the technique
provided in Section 4.4.

Input: S : non-pipelined scheduling table
p̂ : pipelined initiation interval

Output: Ŝ : pipelined schedule table
for all o in O do
fst(o) := ⌊ t(o)

p̂
⌋

t̂(o) := t(o)− fst(o) ∗ p̂
end for
Ŝ := AssembleSchedule(S, p̂, fst, t̂)

Algorithm 1: BuildSchedule

4.3. Dependency graph and maximal throughput

The period of the pipelined system is determined by the data dependences between suc-
cessive execution cycles and by the resource constraints. If we follow the classification of
[Hennessy and Patterson 2007], we are interested here in true data dependences, and not
in name dependences such as anti-dependences and output dependences. A true data depen-
dency exists between two operations when one uses as input the value computed by the
other. Name dependencies are related to the reuse of variables, and can be eliminated by
variable renaming. For instance, consider the following C code fragment:

x := y + z; y := 10; z := y;

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Here, there is a true data dependence (on variable y) between statements 2 and 3. There
is also an anti-dependence (on variable y) between statements 1 and 2 (they cannot be re-
ordered without changing the result of the execution). Renaming variable y in statements
2 and 3 removes this anti-dependence and allows re-ordering of statements 1 and 2:

x := y + z; y2:= 10; z := y2;

In our case, not needing the analysis of name dependences is due to the use of the rotating
register files (detailed in Section 4.4) which remove anti-dependences, and to the fact that
output dependences are not semantically meaningful in our systems whose execution is
meant to be infinite.
We represent data dependences as a Data Dependency Graph (DDG) – a formalism that

is classical in software pipelining based on modulo scheduling techniques[Allan et al. 1995].
In this section we define DDGs and we explain how the new period is computed from them.
The computation of DDGs is detailed in Section 5.
Given a scheduling table S =< p,O, Init >, the DDG associated to S is a directed graph

DG =< O,V > where V ⊆ O × O × N. Ideally, V contains all the triples (o1, o2, n) such
that there exists an execution of the scheduling table and a computation cycle k such that
operation o1 is executed in cycle k, operation o2 is executed in cycle k + n, and o2 uses
a value produced by o1. In practice, any V including all the arcs defined above (any over-
approximation) will be acceptable, leading to correct (but possibly sub-optimal) pipelinings.
The DDG represents all possible dependences between operations, both inside a compu-

tation cycle (when n = 0) and between successive cycles at distance n ≥ 1. Given the static
scheduling approach, with fixed dates for each operation, the pipelined scheduling table
must respect unconditionally all these dependences.
For each operation o ∈ O, we denote with tn(o) the date where operation o is executed

in cycle n, if its guard is true. By construction, we have tn(o) = t(o) + n ∗ p. In the

pipelined scheduling table of period p̂, this date is changed to t̂n(o) = t(o) + n ∗ p̂. Then,
for all (o1, o2, n) ∈ V and k ≥ 0, the pipelined scheduling table must satisfy t̂k+n(o2) ≥
t̂k(o1) + d(o1), which implies:

p̂ ≥ max
(o1,o2,n)∈V,n6=0

⌈
t(o1) + d(o1)− t(o2)

n
⌉

Our objective is to build pipelined scheduling tables satisfying this lower bound constraint
and which are well-formed in the sense of Section 3.3.

4.4. Memory management issues

Our pipelining technique allows multiple instances of a given variable, belonging to succes-
sive non-pipelined execution cycles, to be simultaneously live. For instance, in the example
of Figures 4 and 5 both A and B use memory cell v1 at each cycle. In the pipelined table,
A and B work in parallel, so they must use two different copies of v1. In other words, we
must provide an implementation of the expanded virtual registers of [Rau 1996].
The traditional software solution to this problem is the modulo variable expansion of

[Lam 1988]. However, this solution requires loop unrolling, which would increase the size
of our scheduling tables. Instead, we rely on a purely software implementation of rotating
register files [Rau et al. 1992], which requires no loop unrolling, nor special hardware sup-
port. Our implementation of rotating register files includes an extension for identifying the
good register to read in the presence of predication. To our best knowledge, this extension
(detailed in Section 4.4.2) is an original contribution.

4.4.1. Rotating register files for stateless systems. Assuming that Ŝ is the pipelined version

of S, we denote with max par = ⌈len(S)/len(Ŝ)⌉ the maximal number of simultaneously-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

active computation cycles of the pipelined scheduling table. Note that max par = 1 +
maxo∈O fst(o).
In the example of Figures 4 and 5 we must use two different copies of v1. We will say that

the replication factor of v1 is rep(v1) = 2. Each memory cell v is assigned its own replication
factor, which must allow concurrent non-pipelined execution cycles using different copies
of v to work without interference. Obviously, we can bound rep(v) by max par. We use a
tighter margin, based on the observation that most variables (memory cells) have a limited
lifetime inside a non-pipelined execution cycle. We set rep(v) = 1 + lst(v)− fst(v), where:

fst(v) = minv∈In(o)∪Out(o) fst(o) lst(v) = maxv∈In(o)∪Out(o) fst(o)

Through replication, each memory cell v of the non-pipelined scheduling table is replaced
by rep(v) memory cells, allocated on the same memory block as v, and organized in an array
v, whose elements are v[0], . . . , v[rep(v)−1]. These new memory cells are allocated cyclically,
in a static fashion, to the successive non-pipelined cycles. More precisely, the non-pipelined
cycle of index n is assigned the replicas v[n mod rep(v)] for all v. The computation of rep(v)
ensures that if n1 and n2 are equal modulo rep(v), but n1 6= n2, then computation cycles
n1 and n2 cannot access v at the same time.
To exploit replication, the code generation scheme must be modified by replacing v with

v[(cid − fst(o)) mod rep(v)] in the input and output parameter lists of every operation o
that uses v. Here, cid is the index of the current pipelined cycle. It is represented in the
generated code by an integer. When execution starts, cid is initialized with 0. At the start
of each subsequent pipelined cycle, it is updated to (cid + 1) mod R, where R is the least
common multiple of all the values rep(v).
This simple implementation of rotating register files allows code generation for systems

where no information is passed from one non-pipelined execution cycle to the next (no
inter-cycle dependences). Such systems, such as the example in Figures 4 and 5, are also
called state-less.

4.4.2. Extension to stateful predicated systems. In stateful systems, one (non-pipelined) ex-
ecution cycle may use values produced in previous execution cycles. In these cases, code
generation is more complicated, because an execution cycle must access memory cells that
are not its own.
For certain classes of applications (such as systems without conditional control or affine

loop nests), the cells to access can be statically identified by offsets with respect to the
current execution cycle. For instance, the MC mode change function of Example 3 (Sec-
tion 4.1.3) always reads the variable m produced in the previous execution cycle.
But in the general case, in the presence of predicated execution, it is impossible to stat-

ically determine which cell to read, as the value may have been produced at an arbitrary
distance in the past. This is the case if, for instance, the data production operation is itself
predicated. One solution to this problem is to allow the copying of one memory cell onto
another in the beginning of pipelined cycles. But we cannot accept this solution due to
the nature of our data, which can be large tables for which copying implies large timing
penalties.
Instead, we modify the rotating register file as follows: Storage is still ensured by the v

circular buffer, which has the same length. However, its elements are not directly addressed
through the modulo counter (cid − fst(v)) mod rep(v) used above. Instead, this counter
points in an array srcv whose cells are integer indices pointing towards cells of v. This
allows operations from several non-pipelined execution cycles (with different cid and fst(o))
to read the same cell of v, eliminating the need for copying.
The full implementation of our register file requires two more variables: An integer nextv

and an array of Booleans write flagv of length rep(v). Since v is no longer directly addressed
through the modulo counter, nextv is needed to implement the circular buffer policy of v

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

by pointing to the cell where a newly-produced value can be stored next. One cell of v is
allocated (and nextv incremented) whenever a non-pipelined execution cycle writes v for
the first time. Subsequent writes of v from the same non-pipelined cycle use the already
allocated cell. Determining whether a write is the first from a given non-pipelined execution
cycle is realized using the flags of write flagv. Note that the use of these flags is not needed
when a variable can be written at most once per execution cycle. This is often the case for
code used in embedded systems design, such as the output of the Scade language compiler,
or the output of the makespan-optimizing scheduling tool used for evaluation. If a given
execution cycle does not write v, then it must read the same memory cell of nextv that was
used by the previous execution cycle.
The resulting code generation scheme is precisely described by the following rules:

(1) At application start, for every every memory cell (variable) v of the initial specification,
srcv[0], write flagv[0], nextv are initialized respectively with 0, false, and 1. If Init(v) 6=
nil then v[0] (instead of v) is initialized with this value.

(2) At the start of each pipelined cycle, for memory cell (variable) v of the initial scheduling
table, assign to srcv[(cid − fst(v)) mod rep(v)] the value of srcv[(cid − fst(v) − 1) mod
rep(v)], and set write flagv[(cid − fst(v)) mod rep(v)] to false.

(3) In all operations o replace each input and output cell v with v[srcv[(cid − fst(o)) mod
rep(v)]]. The same must be done for all cells used in the computation of execution
conditions.

(4) When an operation o has v as an output parameter, then some code must be added
before the operation (inside its execution condition). There are two cases. If v is not an
input parameter of o, then the code is the following:

1: if not write flagv[(cid − fst(o)) mod rep(v)] then
2: write flagv[(cid − fst(o)) mod rep(v)] = true
3: srcv[(cid − fst(o)) mod rep(v)] = nextv
4: nextv = (nextv + 1) mod rep(v)
5: end if

If v is also an input parameter of o, then only line 2 is needed from the previous code.

4.4.3. Accounting for book keeping costs. The software implementation of the rotating register
files induces a timing overhead of its own. This overhead is formed of two components:

—Per operation costs, which can be conservatively accounted for in the WCET of the
operations, as it is provided to the Phase 1 of our scheduling flow:
—For each operation and for each input and output parameter, the cost of the indirection

of point (3) above. This amounts to 2 indirections, one addition, and one modulo
operation.

— For each operation and for each output parameter, the cost of the bookkeeping oper-
ations defined at point (4) above.

—Per iteration costs, associated to point (2) above, and which must be added to the length
of the pipelined scheduling table. This amounts to updating the srcv and write flagv
data structures for all v. These costs are also bounded and can be accounted for with
worst-case figures in Phase 1.

One important remark here is that our operations are large-grain tasks, meaning that these
costs are often considered negligible, even for hard real-time applications.
The use of rotating registers also results in memory usage overheads. These overheads

come from the replication of memory cells and from the pointer arrays srcv which must be
stored on the same memory bank as v for all memory cell v. We will assume that the cost
of src is negligible, and only be concerned with the cost of replication, especially for large
data.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

time

0

P2P1 P3

1

2

A@true

B@true

C@true

D@true3

Fig. 14. Dependency analysis example, non-
pipelined

1

time P1 P2 P3

0
A@true C@true

fst(A) = 0
B@true

fst(D) = 1
D@true

fst(B) = 0

fst(C) = 1

Fig. 15. Dependency analysis example,
pipelined

If the replication of a large piece of data is a concern, then we can prohibit it altogether
by requiring that all accesses to that memory cell are sequenced. This is done by adding a
“sequencer” processor to the architecture model, and requiring all accesses to that memory
cell to use the sequencer processor (this requires modifications to both the architecture and
the functional specification). The introduction of sequencers may limit the efficiency of our
pipelining algorithms. However, being able to target specific memory cells means that we
can limit efficiency loss to what is really necessary on our memory-constrained embedded
platforms. This simple approach satisfies our current needs.

5. DEPENDENCY ANALYSIS AND MAIN ROUTINE

Dependency analysis is a mature discipline, and powerful algorithms have been used in
practice for decades [Muchnick 1997]. However, previous research on inter-iteration depen-
dency analysis has mostly focused on exploiting the regularity of code such as affine loop
nests. To the best of our knowledge, existing algorithms are unable to analyze specifications
such as our Example 3 (Section 4.1.3) with the precision we seek. Doing this requires that
inter-iteration dependency analysis deals with data-dependent mode changes (which are a
common feature in embedded systems design).
Performing our precise inter-iteration dependency analysis requires the (potentially infi-

nite) unrolling of the non-pipelined scheduling table. But our specific pipelining technique
allows us to bound the unrolling, and thus limit the complexity of dependency analysis. By
comparison, existing pipelining and predicate-aware scheduling techniques either assume
that the dependency graph is fully generated before starting the pipelining algorithm [Rau
and Glaeser 1981], or use the predicates for the analysis of a single cycle[Warter et al. 1993].
The core of our dependency analysis consists in the lines 1-10 of Algorithm 3, which act

as a driver for Algorithm 2. The remainder of Algorithm 3 uses DDG-derived information
to drive the pipelining routine (Algorithm 1).
Both the data dependency analysis and pipelining driver take as input a flag that chooses

between two pipelining modes with different complexities and capabilities. To understand
the difference, consider the non-pipelined scheduling table of Fig. 14. Resource P1 has an
idle period between operations A and D where a new instance of A can be started. However,
to preserve a periodic execution model, A should not be restarted just after its first instance
(at date 1). Indeed, this would imply a pipelined throughput of 1, but the fourth instance
of A cannot be started at date 3 (only at date 6). The correct pipelining starts A at date
2, and results in the pipelined scheduling table of Fig. 15.
Determining if the reuse of idle spaces between operations is possible consists in deter-

mining the smallest integer n greater than the lower bound of Section 4.3, smaller than
the length of the initial table, and such that a well-formed pipelined table of length n can
be constructed. This computation is performed by lines 14-19 of Algorithm 3. We do not
provide here the code of function WellFormed, which checks the respect of the well-formed
properties of Section 3.3.
This complex computation can be avoided when idle spaces between two operations are

excluded from use at pipelining time. This can be done by creating a dependency between

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

any two operations of successive cycles that use a same resource and have non-exclusive
execution conditions. In this case, the pipelined system period is exactly the lower bound
of Section 4.3, and the output scheduling table is produced with a single call to Algorithm
1 (BuildSchedule) in line 12 of Algorithm 3. Of course, Algorithm 2 needs to consider (in
lines 10-16) the extra dependences.
Excluding the idle spaces from pipelining also has the advantage of supporting a sporadic

execution model. In sporadic systems the successive computation cycles can be executed
with the maximal throughput specified by the pipelined table, but can also be triggered
arbitrarily less often, for instance to tolerate timing variations, or to minimize power con-
sumption in systems where the demand for computing power varies. On the contrary, using
the idle spaces during pipelining imposes synchronization constraints between successive
execution cycles. For instance, in the pipelined system of Fig. 15, the computation cycle of
index n cannot complete before operation A of cycle n+ 1 is completed.
The remainder of this section details the dependency analysis phase. The output of this

analysis is the lower bound defined in Section 4.3, computed as period lbound. The analysis
is organized around the repeat loop which incrementally computes, for cycle ≥ 1, the DDG
dependences of the type (o1, o2, cycle). The computation of the DDG is not complete: We
bound it using a loop termination condition derived from our knowledge of the pipelining
algorithm. This condition is based on the observation that if period lbound∗k ≥ len(S) then
execution cycles n and n+ k cannot overlap in time (for all n).
The DDG computation works by incrementally unrolling the non-pipelined scheduling

table. At each unrolling step, the result is put in the SSA4-like data structure S that allows
the computation of (an over-approximation of) the dependency set. Unrolling is done by
annotating each instance of an operation o with the cycle n in which it has been instantiated.
The notation is on. Putting in SSA-like form is based on splitting each memory cell v into
one version per operation instance producing it (vno , if v ∈ Out(o)), and one version for the
initial value (vinit). Annotation and variable splitting is done on a per-cycle basis by the
Annotate routine (not provided here) which changes for each operation o its name to on,
and replaces Out(o) with {vno | v ∈ Out(o)} (n is here the cycle index parameter). Instances
of S produced by Annotate are then assembled into S by the Concat function which simply
adds to the date of every operation in the second argument the length of its first argument.
Recall that we are only interested in dependences between operations in different cycles.

Then, in each call to Algorithm 2 we determine the dependences between operations of
cycle 0 and operations of cycle n, where n is the current cycle. To determine them, we rely
on a symbolic execution of the newly-added part of S, i.e. the operations ok with k = n.
Symbolic execution is done through a traversal of list l, which contains all operation start
and end events of S, and therefore S, ordered by increasing date. For each operation o of
S, l contains two elements labeled start(o) and end(o). The list is ordered by increasing
event date using the convention that the date of start(o) is t(o), and the date of end(o) is
t(o) + d(o). Moreover, if start(o) and end(o′) have the same date, the start(o) event comes
first in the list.
At each point of the symbolic execution, the data structure curr identifies the possible

producers of each memory cell. For each cell v of the initial table, curr(v) is a set of pairs
w@C, where w is a version of v of the form vko or vinit, and C is a predicate over memory
cell versions. In the pair w@C, C gives the condition on which the value of v is the one
corresponding to its versionw at the condidered point in the symbolic simulation. Intuitively,
if vko@C ∈ curr(v), and we symbolically execute cycle n, then C gives the condition under
which in any real execution of the system v holds the value produced by o, n − k cycles
before. The predicates of the elements in curr(v) provide a partition of true. Initially, curr(v)

4SSA stands for Static Single Assignement representation form [Muchnick 1997].

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Inputs: S : non-pipelined scheduling table
l : the list of events of S
n : integer (cycle index)
fast pipelining flag : boolean

InputOutputs: S : annotated scheduling table
curr : current variable assignments
DDG : Data Dependency Graph

1: S := Concat(S,Annotate(S, n))
2: while l not empty do
3: e := head(l) ; l := tail(l)
4: if e = start(o) then
5: Replace Guard(on) by

∨
wi@Ci∈curr(vi),i=1,k

(C1 ∧ . . . ∧ Ck) ∧ go(w1, . . . , wk)

where Guard(o) = go(v1, . . . , vk).
6: for all p operation in S, u ∈ Out(p), v ∈ In(o) do
7: if u0

p@C ∈ curr(v) and ¬Exclusive(C,Guard(on)) then
8: DDG := DDG ∪ {(p, o, n)}
9: end if
10: if fast pipelining flag then
11: if Res(o) ∩ Res(p) 6= ∅ then
12: if ¬Exclusive(Guard(on),Guard(p0)) then
13: DDG := DDG ∪ {(p, o, n)}
14: end if
15: end if
16: end if
17: end for
18: else
19: /* e = end(o) */
20: for all v ∈ Out(o) do
21: new curr := {vno@Guard(on)}
22: for all vkp@C ∈ curr(v) do
23: C′ := C ∧ ¬Guard(on)
24: if ¬Exclusive(C,Guard(on)) then
25: new curr := new curr ∪ {vkp@C′}
26: end if
27: end for
28: curr(v) := new curr
29: end for
30: end if
31: end while

Algorithm 2: DependencyAnalysisStep

is set to {vinit@true} for all v. This is changed by Algorithm 2 (lines 20-29), and by the
call to InitCurr in Algorithm 3. We do not provide this last function, which performs the
symbolic execution of the nodes of S annotated with 0. Its code is virtually identical to that
of Algorithm 2, lines 1 and 6-17 being excluded.
At each operation start step of the symbolic execution, curr allows us to complete the SSA

transformation by recomputing the guard of the current operation over the split variables
(line 5 of Algorithm 2). In turn, this allows the computation of the dependences (lines 6-17).
Guard comparisons are translated into predicates that are analyzed by a SAT solver. This
translation into predicates also considers the predicates relating inputs and outputs of the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

data-flow operations, as intuitively explained in Section 4.1.3. The translation and the call
to SAT are realized by the Exclusive function, not provided here.

Input: S : non-pipelined schedule table
fast pipelining flag : boolean

Output: Ŝ : pipelined schedule table
1: l := BuildEventList(S)
2: period lbound := 0
3: cycle := 0
4: S := Annotate(S, cycle)
5: curr := InitCurr(S)
6: repeat
7: cycle:=cycle+ 1
8: (S, curr,DDG) := DependencyAnalysisStep(S, l,

cycle,fast pipelining flag,S, curr,DDG)

9: period lbound := max(period lbound, max(o1,o2,cycle)∈DDG⌈
t(o1)+d(o1)−t(o2)

cycle
⌉)

10: until period lbound ∗ cycle ≥ len(S)
11: if fast pipelining flag then

12: Ŝ := BuildSchedule(S, period lbound)
13: else
14: for new period := period lbound to len(S) do

15: Ŝ := BuildSchedule(S, new period)

16: if WellFormed(Ŝ) then
17: goto 21
18: end if
19: end for
20: end if
21: return

Algorithm 3: PipeliningDriver

5.1. Complexity considerations

The pipelining algorithm per se consists in Algorithm 1 and its driver (lines 11-20 of Al-
gorithm 3). The complexity of Algorithm 1 is linear in the number of operations in the
scheduling table. As explained above, the complexity of the driver routine (lines 11-20 of
Algorithm 3) depends on the value of fast pipelining flag. When it is set to true, a single
call to Algorithm 1 is performed. When it is set to false, the number of calls to Algorithm 1
is bounded by len(S).
In our experiments, fast pipelining flag is set for all examples, and the pipelining time is

negligible.
But the main source of theoretical complexity in our pipelining technique is hidden in the

dependency analysis implemented by Algorithm 2 and its driver (lines 1-10 or Algorithm 3).
In Algorithm 3, the number of iterations in the construction of the DDG is up-bounded
by len(S) (which can be large). Algorithm 2 is polynomial (quadratic) in the number of
operations of the scheduling table, but involves comparisons of predicates with Boolean
arguments (instances of the Boolean satisfiability problem SAT). Hence, our algorithm is
overall NP-complete.
In practice, however, DDG construction time is negligible for all examples, real-life and

synthesized. There are 2 reasons to this:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

—In examples featuring predicated execution, the predicates remain simple, so that SAT
instances are solved in negligible time.

—The number of iterations in the construction of the DDG is bounded by the condition in
line 10 of Algorithm 3. In our experiments the maximal number of iterations is 2.

6. EXPERIMENTAL RESULTS

We have implemented our pipelining algorithms in a prototype tool. We have integrated
this tool with an existing makespan-optimizing scheduling tool[Potop-Butucaru et al. 2009]
to form the full, two-phase flow of Fig. 1.
We have applied the resulting toolchain on 4 significant, real-life examples from the

testbench of the SynDEx scheduling tool[Grandpierre and Sorel 2003]. As no standard
benchmarks are available in the embedded world, we have also applied our toolchain on a
larger number of automatically synthesized dataflow graphs.
Our objective was to evaluate both the standalone pipelining algorithm, and the two-

phase flow as a whole. Comparing with optimal scheduling results was not possible.5 Instead,
we rely on comparisons with existing scheduling and pipelining heuristics:

(1) To evaluate the standalone algorithm, we measure the throughput gains obtained
through pipelining, by comparing the initiation intervals of our examples before and
after pipelining.

(2) To evaluate the two-phase flow as a whole, we compare its output to the output of a clas-
sical throughput-optimizing software pipelining technique, namely the FRLC algorithm
of [Wang and Eisenbeis 1993].

The testbench. The largest examples of our testbench (“cycab” and “robucar”) are em-
bedded control applications for the CyCab electric car [Pradalier et al. 2005]. The other
two applications are an adaptive equalizer and a simplified model of an automotive knock
control application [André et al. 2007].
We have used a script to automatically synthesize 30 examples (of which the first 10

are also presented individually in the result tables). For each example, synthesis is done as
follows: We start with a graph containing only one data-flow node and no dependency. We
apply a fixed number of expansion steps (3 steps for the examples in Fig. 17). At every step,
each node is replaced with either a parallel or a sequential composition of newly-created
nodes. The sequential and parallel choices are equiprobable. The number of nodes generated
through expansion is chosen with a uniform distribution in the interval [1..5]. Dependences
are also generated randomly at each step, and all previously-existing dependences are pre-
served. We implement these data-flow graphs on an architecture containing 5 processors and
one broadcast bus. To model the fact that the architecture is not homogenous, the durations

5Providing optimal solutions to our scheduling problem proved intractable even for small systems with 10
blocks and 3 processors.

Example size Scheduling table length
(initiation interval)

example blocks processors initial pipelined gain
(makespan) (kernel)

cycab 40 3 1482 1083 27%
robucar 84 3 1093 1053 8%
ega 67 2 84 79 6%

knock 5 2 6 3 50%

Fig. 16. Pipelining gains for the real-life applications. Durations are in time units whose actual real-time
length depends on the application (e.g. milliseconds).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

of the data-flow blocks on the various processors are assigned randomly (uniform distribu-
tion in an interval), and we randomly create a small number of placement constraints. We
also assume that one of the processors performs input acquisition and another processor
controls actuators. This implies placement constraints on data-flow blocks with no inputs
and no outputs, respectively.

Example size Scheduling table length
(initiation interval)

Example blocks processors initial pipelined gain
(makespan) (kernel)

synth1 34 5 463 430 7%
synth2 35 5 315 290 7.9%
synth3 11 5 171 142 16.9%
synth4 52 5 840 793 5%
synth5 23 5 375 348 7%
synth6 46 5 433 310 28%
synth7 14 5 212 191 9.9%
synth8 40 5 622 594 4%
synth9 15 5 351 320 8.8%
synth10 29 5 318 291 8%
Average for 30 examples 9.31%

Fig. 17. Pipelining gains for the synthesized examples

Pipelining gains. The pipelining gains for the real-life and synthesized examples are sum-
marized in Fig. 16 and Fig. 17, respectively. The figures show improvements on all examples,
with a reduction of 27% in cycle time for the large “cycab” example, and an average re-
duction of 9.31% on the synthesized examples. We conclude that a pipelining stage such as
ours should be part of any static scheduling flow.
At the same time, improvement varies greatly among the examples, from 50% for the

knock control to 4% for one of the generated examples. We inspected the examples showing
poor performance. Some of them, like “ega” have very tight schedules with little idle CPU
time, and therefore little opportunity for pipelining. More interesting was “robucar”, which
has significant idle time, but where a critical path in the scheduling table blocks pipelining.
For such cases, more powerful pipelining algorithms are needed (as part of future work),
able to modify the scheduling of the non-pipelined execution cycles, but without lengthening
the makespan.

Comparison with a classical software pipelining algorithm. To make this comparison, we
have implemented the classical FRLC algorithm of [Wang and Eisenbeis 1993]. We chose this
algorithm because of its flexibility. It is easy to extend it to cover aspects taken into account
by our tool, such as the presence of operations that have different durations on different
functional units, or communication costs. However, we have used here for comparisons its
baseline, restricted version. We therefore considered only the synthesized examples, which
have a simpler structure, and modified them by removing communication costs and by
choosing a single duration for each operation on all processors that can execute it.
On these modified examples we applied our two-phase flow and the FRLC method and

compared the results in Fig. 18. For each example and scheduling flow we provide the
makespan and the kernel length of the generated code. We have also computed the makespan
gain and throughput loss when moving from the FRLC technique to ours.
In these figures the makespan-throughput trade-off is clearly visible (as we expected). On

average, our method gains 63.63% in makespan while losing 38.33% in throughput. A less

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Our method [Wang and Eisenbeis 1993] Makespan Throughput
Example makespan kernel makespan kernel gain loss
synth1m 298 276 850 246 64% 12%
synth2m 277 263 570 190 51% 38%
synth3m 142 142 299 142 52% 0%
synth4m 347 328 2380 255 85% 28%
synth5m 155 155 651 155 76% 0%
synth6m 349 288 1774 288 80% 0%
synth7m 130 115 258 115 49% 0%
synth8m 376 357 610 290 38% 23%
synth9m 116 96 198 82 41% 17%
synth10m 300 273 1686 96 82% 184%
Average for 30 examples 63.63% 38.33%

Fig. 18. Comparison with a classical software pipelining algorithm

expected result is that this trade-off can be identified in each example, even though the algo-
rithms under comparison are heuristics. Indeed, our method is always better in makespan,
while the FRLC technique of [Wang and Eisenbeis 1993] is never worse in throughput.
Given our optimization objective (makespan first, throughput second), we consider that

our choice of two-phase optimization heuristic is justified.
Predication is present in 3 of our examples: Example 3, knock, and a variant of the cycab

example. In all these examples, predication is used to encode mode-dependent behavior,
and the examples showcase different situations where pipelining is necessary in embedded
systems design. Mode-dependent behavior is usually specified at the level of full systems or
large subsystems, meaning that the number of predicates is usually low, yet each predicate
controls a significant part of the operations of the system. Our examples have only two or
three predicates (two in knock and cycab, three in Example 3). To evaluate the contribution
of predication analysis to the pipelining results, we have also run our algorithms with the
predication analysis disabled. The use of predication does not improve pipelining result for
the cycab example. On the contrary, it results in significant gains for Example 3 and knock
(20% and 40%, respectively).

7. CONCLUSION

We have defined a new software pipelining technique adapted for the implementation of
hard real-time multi-processor embedded control systems. Our technique re-uses the basic
concepts of both modulo scheduling and decomposed software pipelining. At the same time,
our technique has two significant originality points, determined by the needs of our real-time
implementation problems:

— It is driven by a makespan optimization objective, with throughput as a secondary ob-
jective.

— It takes into account relations between (data-dependent) execution conditions of opera-
tions, including for operations belonging to different execution cycles.

These two points also require revisiting classical results on rotating register files and data
dependence analysis.
We have implemented our pipelining technique into a tool and we evaluated our technique,

with good results, on several real-life systems and generated scheduling problems.
The resulting flow satisfies the implementation needs for certain classes of embedded

systems. But in other cases (mentioned in Section 1), separating the implementation process
in two phases (scheduling followed by pipelining) is not a good idea. For such cases, we

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

are now developing single-phase scheduling techniques. First results in this direction are
documented elsewhere [Carle et al. 2012].

Acknowledgement. The insightful comments of Albert Cohen on early versions of this
paper have allowed us to significantly improve our work.

REFERENCES

V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM Computing
Surveys, 27(3), 1995.

C. André, F. Mallet, and M.-A. Peraldi-Frati. A multiform time approach to real-time
system modeling; application to an automotive system. In Proceedings SIES, Lisbon,
Portugal, July 2007.

ARINC653. Avionics application software standard interface, volumes 1-3. http://www.
arinc.org, 2005.

AUTOSAR. Automotive open system architecture, release 4. http://www.autosar.org/,
2009.

A. Benôıt, V. Rehn-Sonigo, and Y. Robert. Multi-criteria scheduling of pipeline workflows.
In Proceedings of the International Conference on Cluster Computing, Austin, TX, USA,
Sep 2007.

P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming applied to decomposed software
pipelining. Parallel and Distributed Systems, IEEE Transactions on, 9(1):24–35, 1998.

T. Carle, D. Potop-Butucaru, Y. Sorel, and D. Lesens. From dataflow specification to
multiprocessor partitioned time-triggered real-time implementation. Technical report,
INRIA, Oct. 2012. URL http://hal.inria.fr/hal-00742908.

P. Caspi, A. Curic, A. Magnan, C. Sofronis, S. Tripakis, and P. Niebert. From Simulink to
SCADE/Lustre to TTA: a layered approach for distributed embedded applications. In
Proceedings LCTES, San Diego, CA, USA, June 2003.

K. Chatha and R. Vemuri. Hardware-software partitioning and pipelined scheduling of
transformative applications. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, 10(3):193–208, 2002.

Y.-S. Chiu, C.-S. Shih, and S.-H. Hung. Pipeline schedule synthesis for real-time streaming
tasks with inter/intra-instance precedence constraints. In DATE, Grenoble, France, 2011.

P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access optimization for
distributed embedded systems. IEEE Transactions on VLSI Systems, 8(5), Oct 2000.

G. Fohler, A. Neundorf, K.-E. Årzén, C. Lucarz, M. Mattavelli, V. Noel, C. von Platen,
G. Butazzo, E. Bini, and C. Scordino. EU FP7 ACTORS project. Deliverable D7a:
State of the art assessment. Ch. 5: Resource reservation in real-time systems. http:
//www3.control.lth.se/user/karlerik/Actors/d7a-rev.pdf, 2008.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

F. Gasperoni and U. Schwiegelshohn. Generating close to optimum loop schedules on
parallel processors. Parallel Processing Letters, 4(4):391–404, December 1994.

R. Govindarajan, E. Altman, and G. Gao. Minimizing register requirements under resource-
constrained rate-optimal software pipelining. In Proceedings of the 27th annual interna-
tional symposium on Microarchitecture, MICRO 27, 1994.

T. Grandpierre and Y. Sorel. From algorithm and architecture specification to automatic
generation of distributed real-time executives. In Proceedings MEMOCODE, Mont St
Michel, France, 2003.

J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 4th edition, 2007.

R. Huff. Lifetime-sensitive modulo scheduling. In In Proc. of the ACM SIGPLAN ’93 Conf.
on Programming Language Design and Implementation, pages 258–267, 1993.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

W. Kim, D. Yoo, H. Park, and M. Ahn. Scc based modulo scheduling for coarse-grained
reconfigurable processors. In Field-Programmable Technology (FPT), 2012 International
Conference on, Seoul, Korea, 2012.

M. Lam. Software pipelining : An effective scheduling technique for vliw machines. In
Proceedings of the SIGPLAN 88 Conference on Programming Language Design and Im-
plementation, pages 318–328, 1988.

C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5–35, 1991.
A. Monot, N. Navet, F. Simonot, and B. Bavoux. Multicore scheduling in automotive ECUs.
In Proceedings ERTSS, Toulouse, France, 2010.

L. Morel. Exploitation des structures régulières et des spécifications locales pour le devel-
oppement correct de systèmes réactifs de grande taille. PhD thesis, Institut National
Polytechnique de Grenoble, 2005.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman, 1997.
D. Potop-Butucaru, R. D. Simone, Y. Sorel, and J.-P. Talpin. Clock-driven distributed real-
time implementation of endochronous synchronous programs. In ACM, editor, EMSOFT
’09 Proceedings of the seventh ACM international conference on Embedded software, pages
147–156, 2009.

D. Potop-Butucaru, A. Azim, and S. Fischmeister. Semantics-preserving implementation of
synchronous specifications over dynamic TDMA distributed architectures. In Proceedings
EMSOFT, Scottsdale, Arizona, USA, 2010.

C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier. The CyCab:
a car-like robot navigating autonomously and safely among pedestrians. Robotics and
Autonomous Systems, 50(1), 2005.

B. Rau. Iterative modulo scheduling. International Journal of Parallel Programming, 24
(1):3–64, 1996.

B. Rau and C. Glaeser. Some scheduling techniques and an easily schedulable horizontal
architecture for high performance scientific computing. In Proceedings of the 14th annual
workshop on Microprogramming, IEEE, 1981.

B. Rau, M. Lee, P. Tirumalai, and M. Schlansker. Register allocation for software pipelined
loops. In Proceedings PLDI’92, San Francisco, CA, USA, June 1992.

J. Rushby. Bus architectures for safety-critical embedded systems. In Proceedings EM-
SOFT’01, volume 2211 of LNCS, Tahoe City, CA, USA, 2001.

M. Smelyanskyi, S. Mahlke, E. Davidson, and H.-H. Lee. Predicate-aware scheduling: A
technique for reducing resource constraints. In Proceedings CGO, San Francisco, CA,
USA, March 2003.

J. Wang and C. Eisenbeis. Decomposed software pipelining. http://hal.inria.fr/
inria-00074834, 1993.

N. Warter, D. M. Lavery, and W. Hwu. The benefit of predicated execution for software
pipelining. In HICSS-26 Conference Proceedings, Houston, Texas, USA, 1993.

H. Yang and S. Ha. Pipelined data parallel task mapping/scheduling technique for mpsoc. In
Design, Automation Test in Europe Conference Exhibition (DATE), Nice, France, 2009.

H.-S. Yun, J. Kim, and S.-M. Moon. Time optimal software pipelining of loops with control
flows. International Journal of Parallel Programming, 31(5):339–391, October 2003.

J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Register constrained modulo scheduling.
Parallel and Distributed Systems, IEEE Transactions on, 15(5):417–430, 2004.

W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli. Extensible
and scalable time-triggered scheduling. In Proceedings ACSD, St. Malo, France, June
2005.

Q. Zhuge, Z. Shao, and E. Sha. Optimal code size reduction for software-pipelined loops on
dsp applications. In Proceedings of the International Conference on Parallel Processing,
2002.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

