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Several regularization terms are used to constrain the Magnetoencephalography (MEG) and the Electroencephalography (EEG) inverse problem. It has been shown that
the brain can be divided into several regions[1] with functional homogeneity inside each one of them. To locate these regions, we use the structural information coming
from the diffusion Magnetic Resonance (dMRI) and more specifically, the anatomical connectivity of the distributed sources computed from dMRI. To iInvistigate the
importance of the dMRI In the source reconstruction, we compare the solution based on dMRI-based parcellation to random parcellation.
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number of observations (MEG,EEG) and the unknowns, i.e the source inten- 3.1 Synthetic data Subject 1 Subject 2 Subject 3

In the first line we activate one dMRI patch, and in the second a random region

sities. This ill-posed problem has to be constained by prior knowledge on the that intersects with three dMRI regions

source space.

Let M be a vector of length m of the MEG/EEG data, G the lead field g
matrix, and S be the source activation on the cortex. &y | | |

It is common to use the L2 norm as a regularization parameter. The distributed
sources minimum-norm (MNE) solutions have over-smoothed magnitude pat-
terns and do not respect specific brain anatomical constrains like sulcus borders,

so we further use of the dMRI information as a regularization term.
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Fig.1: The different pre-clustering approaches used to cluster the cortex
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Let’s define the similarity, SM, between two clustering results S;and 53 as: i
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S(i) is a cortex region and n, m are the total number of reglons in cortex
segmentation S; and Sy respectively. Table.1 shows the resulting number of
MethOds: regions for different threshold values, C;,, pre-parcellation, and subjects. The

1- Parcellation: number of regions are relatively similar across subjects for a given threshold
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Due to the large number /N of sources on the cortex, we parcellate the cortex value.
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Where ); is the it" eigenvalue of (1 — |C/|) and C,y, is a threshold defined by the Fig.2 shows the SM values between the random cortex segmenation (with simi- Conclusion
user. The whole cortex is then divided into P regions. lar number of parcels) and the 3 atlases shown in Fig.1. These values are smaller B G 1o eh sl I8 GgnlEGUIerE eres N BTG ERERIoNE Liglelliis (he

noise. Variance is higher around the activated patch for PSS than PC, when
random clustering is used. PSS works well for small patchs when the activity

2_ Hard COHStraIHt SOluth,Il (PSS)°[3] . , S e e is constant over the patch. The random clustering was not geometrically con-
In this approach, we assume a constant intensity inside each cortical region. = 1 sox3iee | | Subject Id | SM(DX.DK) | SM(DXML) | SM(DK ML) strained like the dMRI parcellation. The effect of these atlas boundaries should
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This allows us to reduce the source space from N to P (P <N ) The function UL b B e | e 1 0.17 079 0.76 be invistigated. Cortex parcellations based on the geometrical pre-parcellation
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than thoseobtained between atlases (Fig.2 table).

_e-_ .- -
.85k e Te- 1 o085t Y 1 ossf

to be optimized can be written as: E e T s P ) o |0 | 0T (DX, DL, and ML) and k-means are more similar to each other than random
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o PR P | e ; 080 |08 | 0B parcellations. Future work will be looking in using a mixed norm for the reduced
where Gp =G x Hp and S = Hp X s. N |7l A : 4 079 | om0 | 0T source space.
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Soft constraint solution (PC):[3] o O S O References
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