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Abstract. Linked Open Data (LOD) constitute a unique dataset that
is in a standard format, partially integrated, and facilitates connections
with domain knowledge represented within semantic web ontologies. In-
creasing amounts of biomedical data provided as LOD consequently offer
novel opportunities for knowledge discovery in biomedicine. However,
most data mining methods are neither adapted to LOD format, nor
adapted to consider domain knowledge. We propose in this paper an
approach for selecting, integrating, and mining LOD with the goal of
discovering genes responsible for a disease. Selection step relies on a set
of choices made by a domain expert to isolate relevant pieces of LOD.
Because these pieces are potentially not linked, an integration step is re-
quired to connect unlinked pieces. Resulting graph is subsequently mined
using Inductive Logic Programming (ILP) that presents two main advan-
tages. First, the input format compliant with ILP is close to the format
of LOD. Second, domain knowledge can be added to this input and be
considered by ILP. We have implemented and applied this approach to
the characterisation of genes responsible for intellectual disability. On the
basis of this real world use case, we present an evaluation of our mining
approach and discuss its advantages and drawbacks for the mining of
biomedical LOD.

1 Introduction

Linked Open Data (LOD) is part of a community effort to build a semantic web,
where web resources can be interpreted both by humans and machines. LOD
is a large and growing collection of datasets represented in a standard format
(that includes the use of RDF and URIs), partially connected to each others and
to domain knowledge represented within semantic web ontologies [1]. For these
reasons, LOD offers novel opportunities for the development of successful data
integration and knowledge discovery approaches.



It can be particularly beneficial to the life sciences, where relevant data are
spread over various data resources with no agreement on a unique representation
of biological entities [2]. Consequently, data integration is an initial challenge
one faces if he wants to mine life science data considering several data sources.
Various initiatives such as Bio2RDF, LOD drug data, PDBj or the EBI platform
aim at pushing life sciences data into the LOD with the idea of facilitating their
integration [3, 4, 5, 6]. It results from these initiatives a large collection of life-
science data unequally connected but in a standard format and free of use for
mining. In addition to their integrated dimension, LOD may be connected to
domain knowledge represented within ontologies such as the Gene Ontology
[7]. Ontologies provide a formal representation of a particular domain that can
be used to support automatic reasoning. We have investigated that ontologies
and their associated reasoning mechanisms can be coupled with data mining to
facilitate the process of knowledge discovery [8, 9]. We would like to extend this
investigation to the context of LOD. Despite good will and emerging standard
practices for publishing data as LOD, several drawbacks make their use still
challenging [10, 11]. Among existing difficulties we can list the limited amount
of links between datasets, the lack of update on published datasets, the unequal
rationales of systems that enable querying LOD.

We propose here an approach that is schematized in Figure 1 and that en-
ables to (1) select, (2) integrate and then (3) mine LOD with Inductive Logic
Programming (ILP). (1) The selection of LOD is achieved with respect to a con-
ceptualization of data related to a biomedical question. This conceptualization
is driven by a biomedical expert and, in this paper, is motivated by our will
to characterize genes responsible for intellectual disability. (2) The integration
of LOD is made possible both by the use of existing links from the LOD and
by the manual definition of mappings between our conceptualisation and LOD.
Links and mappings enable to automatically build SPARQL queries and subse-
quently to retrieve, from the LOD, triples to mine. In addition, our mappings
enable the generation of unpublished links between LOD entities, consequently
contributing to the community effort. (3) Finally, triples are mined using ILP
that is particularly adapted to the format of LOD and capable of taking into
account domain knowledge defined in ontologies.

The next section presents a state of the art of data mining applied to LOD and
then presents ILP. The third section presents the LOD selection and integration
made in preparation for the mining. The fourth section reports about mining
experiments with ILP on selected triples. Last section concludes on experiments
and presents perspectives of this initial work.

2 State of the Art

2.1 Preparing LOD for Mining

The complexity of LOD has motivated several studies about the preparation
(i.e., selection, integration, formatting) of data before mining. For instance, we
proposed a system that guides the selection of LOD by structuring data within
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Fig. 1. Outline of the methodology used for preparing and mining Linked Open Data
(LOD). a: Conceptualization in term of entities and binary relationships; b: Mapping
onto various LOD datasets; c: Retrieval of triples using SPARQL queries; d : Relational
learning with Inductive Logic Programming (ILP).

a lattice that provides insight about which type of entities are related and how
[12]. Callahan et al. proposed to map LOD from various datasets to an upper-
level ontology named SIO. This ontology serves consequently as a global schema
and its terms are used to write federated queries over LOD datasets [13]. SADI
is a general framework to facilitate the discovery and use of web services [14].
Because it has been developed with semantic web technologies, SADI is well
adapted to define pipelines that can query SPARQL endpoints and integrate
their results. The COEUS platform follows a similar rationale but includes a
federation layer that facilitates data integration [15].

Any of these solutions are well adapted when either entities have a unique
URI over distinct datasets, or when links have been defined between datasets.
Unfortunately, these two prerequisites are not guaranteed in LOD. In this work,
we want to be able to use any dataset of the LOD, even if this requires to
define novel mappings between datasets, using various relationship types. For
this reason we propose a simple but generic way for selecting and integrating
LOD to be mined.
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2.2 Mining LOD

The emergence of several workshops about the mining of LOD illustrates the gain
of interest for this topic, both in the semantic web and data mining communities
[16, 17].

A first type of contribution in this domain aims at completing or correcting
the LOD. In that vein, Gangemi et al. proposed an approach to type automati-
cally DBpedia entities using graph patterns and disambiguation techniques [18].
Other authors studied how to propose automatically missing links, particularly
between unrelated datasets [19, 20]. For example, Brenninkmeijer et al. devel-
oped a tool for proposing owl:sameAs links between unrelated drugs of LOD
datasets [21].

A second group of works explores how some particularities of LOD can help
data mining. For example, Percha et al. used paths between distinct drugs in
linked data to predict novel drug-drug interactions [22]. Here, the fact that rela-
tionships and entities are typed in LOD enabled to define features that charac-
terise possible paths between drugs and consequently to train a random forest
classifier. Pathak et al. proposed a study on how federated queries over Elec-
tronic Health Records and drug related LOD could enable the discovery of novel
drug-drug interactions [23].

To our knowledge, only few seminal works have explored how LOD mining
can take advantages of knowledge representation [24, 25]. In this work we propose
to explore this direction using ILP.

2.3 Inductive Logic Programming

ILP Principles. Inductive Logic Programming (ILP) allows to learn a concept
definition from observations, i.e., a set of positive examples (E+) and a set of
negative examples (E−), and background knowledge (B) [26]. Given E+, E−,
and B the goal of concept learning by ILP is to induce a set of rules or a theory
T that is consistent (T ∪B covers or explains each positive example in E+), and
complete (T ∪B does not cover or contradicts any negative example in E−).

In most ILP systems both B and T are represented as definite clauses (or
prolog programs) in First-Order Logic (FOL), i.e., a disjunction of literals with
one positive literal. A rule has the form “head :- body” and is interpreted
as: if the conditions in the body are true then the head is true as a logical
consequence. The background knowledge B includes (i) the relational description
of the examples using a set of relevant n-ary predicates such as

protein pathway(‘insulin’, ‘insulin signaling pathway’)

and (ii) a priori domain knowledge, i.e., a set of rules and facts which don’t refer
to any example but express what is known about the elements which describe
the examples, for instance

subClass(‘insulin receptor binding’, ‘receptor binding’).
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The theory T is a set of rules which cover as many of the positive examples as
possible and the fewest negative examples. The head of each rule is the concept to
learn whereas the body contains the induced description of the concept (based on
a generalization of examples). An example of rule when studying gene responsible
for a disease will have the form

is responsible(X) :- gene protein(X, Y), protein mf(Y, ‘receptor binding’).

The rule search is performed in a clause space where the clause subsumption
allows building generalizations or specializations of the clauses [27]. As the clause
space is too large to be exhaustively explored, heuristic mechanisms exist to
reduce its size. These mechanisms called learning biases allow the user to define
which kind of rules (s)he wants to get by setting some parameters that influence
the rule search strategy.

The Aleph Program. The experiments reported in this paper were conducted
with the Aleph program whose basic algorithm is described in four steps [28]:

– Select a seed example to be generalized. If none exists, stop.
– Construct the most specific clause that entails the example selected, and is

compliant with the language restrictions provided. This is usually a definite
clause with many literals. It is called the“bottom clause”.

– Find a clause more general than the bottom clause. This is done by searching
for some subset of the literals in the bottom clause that has the “best”
evaluation score.

– The clause with the best score is added as a rule to the current theory, and
all examples made redundant are removed. Return to Step 1.

Many parameters can be set for tuning some aspect of the theory construction
with Aleph. For instance, the rule evaluation function can be chosen and the
default one is based on the difference between the number of covered positive
examples and the number of covered negative examples. The noise parameter
is the maximum negative examples that an acceptable rule may cover (default
value is 0). This parameter can be set to higher values in case of noisy data (in
our study, one is never sure that a gene is not responsible for a disease). The
min-pos parameter is the minimal number of positive examples that a rule must
cover (default value is 1). Aleph also requires other learning biases to be defined
as (i) a set of determinations defining the predicate to learn and the predicates
which can appear in the rules; (ii) a set of modes defining the types of predicate
arguments and the way they can be chained in a rule.

As the algorithm suggests, Aleph iterates on the positive examples of the
learning set for building the most specific clause of a chosen seed example which
is compliant with the defined bias and covers the maximum number of positive
examples and the minimum number of negative ones. When finding the best
rule, the examples covered by the best rule are removed from the seed set and
from the learning set (used for rule evaluation).
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3 LOD Selection and Integration

3.1 Conceptualization

In our approach, the first step is to build an entity-relationship (ER) model
decribing the entities to consider for a given study. The goal of the ER model
is to provide an abstract model of data that are relevant to mine. This step is
realized with an expert of the domain, and does not require any knowledge of
what data is available in LOD and how it is structured. An ER model consists
in a conceptualization usually made of entities, relationships and attributes. We
use only a subset of those: entities and binary relationships without attributes
(similarly to RDF properties). In our case, n-ary relationships and relationships
with attributes are represented with a composition of binary relationships using
the reification mechanism. Figure 2 presents the ER model defined for our study
of genes responsible for Intellectual Disability (ID).

Fig. 2. ER model of data on genes responsible for Intellectual Disability (ID). For the
sake of clarity, we have not represented gene location, which is composed of chromo-
some, arm, region, band, sub-band and sub-sub-band.
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Table 1. Sources and count of distinct collected individuals that instantiate each entity
of our ER model

Entity SPARQL endpoint #Individuals

Gene
cu.gene.bio2rdf.org/sparql

cu.kegg.bio2rdf.org/sparql
549

Protein beta.sparql.uniprot.org/sparql 1257

Pathway
cu.kegg.bio2rdf.org/sparql

www.ebi.ac.uk/rdf/services/reactome/sparql
580

Reaction cu.kegg.bio2rdf.org/sparql 433

Compound cu.kegg.bio2rdf.org/sparql 628

GOterm
cu.goa.bio2rdf.org/sparql

sparql.bioontology.org/sparql
7770

Domain cu.interpro.bio2rdf.org/sparql 262

Family cu.interpro.bio2rdf.org/sparql 781

Total 12260

3.2 Mapping the ER Model onto LOD and Individual Identification

Mapping Definition. LOD integration consists primarily in mapping our expert-
defined ER model onto LOD types of entities and of relationships. This mapping
is materialized by defining correspondances from each entity of the model to one
or many RDF entity types of LOD; and from each relationship to RDF proper-
ties. Indeed, distinct LOD datasets may use distinct entity types to refer to a
single entity of our model. For instance, the entity Gene of the model is mapped to
two entity types: <http://bio2rdf.org/geneid:vocabulary:Gene> and
<http://bio2rdf.org/kegg vocabulary:Gene> respectively used in two
datasets of Bio2RDF: NCBI Gene and KEGG. Each entity is mapped to a con-
cept definition that can either be a RDF entity type, the domain or range of
a property, or an union, intersection or negation of another concept definition.
Similarly, the relationships of the ER model can be mapped to one property or
a composition of properties (or inverse properties), or to an artificial property
subsuming them. For instance, the relationship gene reaction between a gene
and a reaction (which represents the fact that the gene produces an enzyme that
catalyzes the reaction) can be mapped to kegg:xGene− ○ kegg:xEnzyme− 1. Ta-
ble 1 and Table 2 list entities and relationships of our ER model and the datasets
they are mapped to.

Individual Identification. Because the mapping can associate one entity with two
datasets, it can cause redundancy. To guarantee the consistency of data related
by our mapping, we need additional information on individual identity.

1 The property kegg:xGene relates genes to enzymes, and kegg:xEnzyme relates en-
zymes to reactions. Since gene reaction relates reactions to genes, we need to use
their inverse properties denoted by −. The symbol ○ denotes the composition of
properties.
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Table 2. Sources and count of distinct collected instances for each relationship of our
ER model

Relationship SPARQL endpoint #Individuals

gene protein beta.sparql.uniprot.org/sparql 819

gene reaction cu.kegg.bio2rdf.org/sparql 500

pp interaction cu.irefindex.bio2rdf.org/sparql 742

pathway protein www.ebi.ac.uk/rdf/services/reactome/sparql 767

protein domain cu.interpro.bio2rdf.org/sparql 262

pathway reaction cu.interpro.bio2rdf.org/sparql 706

substrate cu.kegg.bio2rdf.org/sparql 938

product cu.kegg.bio2rdf.org/sparql 960

protein bp cu.goa.bio2rdf.org/sparql 10242

protein cc cu.goa.bio2rdf.org/sparql 4358

protein mf cu.goa.bio2rdf.org/sparql 4063

subClass sparql.bioontology.org/sparql 12779

domain family cu.interpro.bio2rdf.org/sparql 1238

gene chromosome cu.gene.bio2rdf.org/sparql 538

gene chromosome arm cu.gene.bio2rdf.org/sparql 538

gene chromosome region cu.gene.bio2rdf.org/sparql 538

gene chromosome band cu.gene.bio2rdf.org/sparql 538

gene chromosome subband cu.gene.bio2rdf.org/sparql 311

gene chromosome subsubband cu.gene.bio2rdf.org/sparql 63

Total 40900

Individuals are identified in LOD by their URIs. The main issue in mining
LOD from several datasets is that two distinct URIs from different LOD datasets
may refer to the same real world object. Individuals’ URIs links from one LOD
dataset to another may be available, ideally using the property owl:sameAs,
although sometimes a less precise link, such as rdfs:seeAlso or a dataset de-
pendent predicate is used. For entity types that map to concepts from several
LOD datasets, an automatic way of resolving identity of individuals needs to be
established. This can be achieved through several means, such as:

– Using when available in LOD, links that express equivalence between alter-
native URIs of an individual.

– Using data from LOD associated with individuals to assess the identity:
● URIs itselves sometimes embed enough data to assess that two individ-

uals are identical. For example, in some datasets, gene URIs contain the
NCBI Gene ID: the human gene with Gene ID 5091 is represented by the
URI <http://bio2rdf.org/geneid:5091> in Bio2RDF NCBI Gene,
and <http://bio2rdf.org/kegg vocabulary:hsa:5091> in Bio2RDF
KEGG. An obvious link between the two URIs can be made on the
basis of the Gene ID.

● Individuals can be associated with literals that identify them across
datasets, such as the HGNC gene symbol for genes.
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Using these methods, given a URI of a given dataset, we can find the cor-
responding URI in another dataset. Links we generated this way are available on-
line at http://www.loria.fr/~coulet/dils14/individual_identities.html.

3.3 Triple Retrieval and Storage

For the purpose of ILP mining, a set of positive examples and a set of negative
examples must be provided. In our study, positives examples are genes respon-
sible for ID, while negative examples are genes that are not responsible for it.
Positive examples are genes from a state of the art study about genes responsible
for ID by Inlow and Restifo [29]. We selected negative examples among genes re-
sponsible for diseases other than ID. To this aim, we first selected phenotypes in
OMIM which do not contain ID as a symptom. From this large set of phenotypes,
biomedical experts advised the selection of a subset of phenotypes clearly dis-
tinct from ID. Genes responsible for these phenotypes, were then retrieved from
OMIM. The final set of negative examples is selected from stratified sampling
with respect to the overall number of genes associated with each phenotype.

Given the ER model and its mapping to LOD entity types and roles,
SPARQL queries can be built in a systematic way to retrieve the data from LOD.
As an illustration, for building a SPARQL query to retrieve the families of pro-
tein domains (domain family relationship in Table 2) the following mapping was
used: the Domain entity is mapped to the entity type
<http://bio2rdf.org/interpro vocabulary:Domain>; Family is mapped to
<http://bio2rdf.org/interpro vocabulary:Family>; and the
domain family relationship is mapped to the property
<http://bio2rdf.org/interpro vocabulary:contains−>. On this basis, the
following query is built:

SELECT ?x ?y

WHERE {

?x a <http://bio2rdf.org/interpro_vocabulary:Domain>.

?y a <http://bio2rdf.org/interpro_vocabulary:Family>.

?y <http://bio2rdf.org/interpro_vocabulary:contains> ?x.

FILTER(?x = ...)

}

The FILTER statement of the query is used to retrieve only triples associated
with genes reponsible/not responsible for ID.

SPARQL queries are generated and executed, then retrieved data is automat-
ically stored in a triple store. Our triple store relies on a simple relational databse
built upon the ER model. To each entity corresponds a table whose columns are
a local identifier and URIs from each dataset mapped to that entity. To each
relationship corresponds a table whose columns are the local identifiers of its
subject and its object. The number of individuals collected with this method
starting from a list of 549 genes (282 positive and 267 negative examples) are
indicated in Table 1 and Table 2 (last column).

9

http://www.loria.fr/~coulet/dils14/individual_identities.html


4 ILP Mining of LOD

4.1 ILP Experiments and Results

The aim of the mining step is to learn by ILP the concept of genes responsible for
Intellectual Disability (ID) from the set of integrated triples relative to positive
and negative examples of genes. The experiments were conducted with the Aleph
program by setting the parameters rule size, minpos, noise, minacc respectively
to 6, 5, 3 and 85%. As the noise value is set to 3, the minacc parameter allows
us to ensure that the ratio between numbers of positive examples and negative
examples covered by a rule is not below 85%.

The outcome of the mining experiment is used both for predictive and de-
scriptive purposes. The predictive power of the first-order logic (FOL) rules is
evaluated by cross validation whereas their descriptive power is analysed quali-
tatively.

Our first experiment applies to the genes and their background knowledge
(i.e., proteins, pathways, etc.) including their GO annotations plus their direct
parents using the is-a relationship (denoted by subClass1) between GO-terms.
Then we wanted to assess the contribution of domain knowledge by allowing 2 to
4 generalisation inferences on the is-a GO structure, which is a rooted directed
acyclic graph. For n generalization steps, we add 2 × n inference rules in the .b
file (one of the three inputs of the Aleph program) as follows:

One inference rule for each i in 2 . . . n ∶
subClassi(X,Z) :- subClassi−1(X,Y), subClass1(Y,Z).

One inference rule for each i in 1 . . . n ∶
subClass(X,Y) :- subClassi(X,Y).

One rule expressing the reflexivity of the subClass relationship ∶
subClass(X,X) :- goterm(X).

In this study the mining experiment was executed with n varying from 1 to
4, leading to a maximum of 1 (G1 experiment), 2 (G2 experiment), 3 (G3 ex-
periment), and 4 (G4 experiment) generalization steps respectively. Examina-
tion of the resulting 4 theories revealed that the produced rules mostly contain
predicates related to GO-terms. Other predicates representing pathways or in-
teractions between proteins occur very rarely. This can be explained by the
fact that GO annotations are plethoric compared to data on pathways, protein
domains or protein-protein interactions. This motivated us to run a fifth ex-
periment (named no −GO) for analyzing all predicates excepting the GO-term
facts. Complete theories produced in the five experiments are accessible online
at http://www.loria.fr/~coulet/dils14/theories.pdf. Table 3 shows sev-
eral metrics calculated for monitoring the effect of adding GO-term facts and
increasing the number of generalization steps. The number of rules in the theory
doubles when adding GO-term facts (from no−GO to G1) and the average num-
ber of covered examples increases from 8.4 to 14, with the maximum increasing
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Table 3. Statistics on the theories produced by our five experiments. avg/max/min
pos covered: Average/maximum/minimum number of positive examples covered by the
rules of each theory.

Experiment #rules avg pos covered max pos covered min pos covered

no −GO 11 8.4 15 5
G1 22 14 35 6
G2 19 15.5 38 6
G3 18 15.1 39 6
G4 16 16.2 42 5

from 15 to 35. This indicates that GO-term facts play a very positive role in
the ILP process during learning. As the number of generalization steps increases
from 1 to 4 the number of rules decreases (from 22 to 16) whereas the average
number of covered examples slightly increases from 14 to 16.2, with a increase
of the maximum (from 35 to 42). These results confirm the intuition that with
more generalization steps, theories tend to become more compact with less rules,
each of them covering more examples. However it is important at that stage to
compare the predictive power of each theory.

4.2 Evaluation of the Results

We first evaluate the outcome of the mining step from a predictive point of
view using cross-validation. Dedicated Knime workflows were used for that pur-
pose [30, 31]. During cross-validation, a gene is predicted as responsible for in-
tellectual disability if it is covered by at least one rule of the theory. Otherwise,
it is predicted as not responsible for intellectual disability.

Table 4 reports the results of the 100-fold cross validation of ILP learning
for the experiments no − GO and G1 to G4. The results show that without
GO-term facts (no −GO), the prediction accuracy is rather low (57.6%) with a
high specificity but a very low sensitivity. When using GO-terms the prediction
indicators are better. They improve up to an accuracy of 72.6% as we allow
Aleph to use more domain knowledge (by performing more generalization).

Table 4. Results of the 100-fold cross validation the theories produced by the 5 experi-
ments. TP/FP: True/False Positives, TN/FN: True/False Negatives, Sens.: Sensitivity,
Spec.: Specificity, Acc: Accuracy.

Experiment TP FP TN FN Sens.(%) Spec.(%) Acc.(%)

no −GO 67 19 248 213 23.9 92.9 57.6
G1 154 42 225 126 55 84.3 69.3
G2 162 54 213 118 57.9 78.9 68.6
G3 156 44 223 124 55.79 83.5 69.3
G4 166 36 231 114 59.3 86.5 72.6
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4.3 Qualitative Analysis and Discussion

We analyze here the obtained theories from the concept-to-learn point of view,
i.e., how well do the rules characterize genes responsible for ID? In the absence
of GO-term facts (no − GO experiment), we observe several rules containing
predicates related to chromosomal localization such as rule 4 and 5 pointing to
chromosomes 1 and X as possible reservoirs of genes for ID. In addition, rule 8:

is responsible(A) :- gene ch band(A, ‘22q13’).

points to a more constraint location on chromosome 22. Other rules contain
pathway predicates (rules 6, 7, 9, 10, 11) in which one can mostly recognize
pathways involved in the metabolism of the cell. Indeed inherited metabolic
disorders are considered as an important etiology for intellectual disability [32].

In the presence of GO-term facts (experiments G1 to G4), the repertoire of
GO-terms appearing in the predicates either as direct protein annotation or as
common ancestor after generalization varies with the experiment and the gener-
alization degree. In total we counted 47, 7 and 14 distinct GO-terms pertainining
from the Biological Process (BP), Molecular Function (MF) and Cellular Com-
ponent (CC) aspects of the GO ontology respectively. Among the BP-terms of
GO we could again recognize terms describing metabolic processes of the cell, but
also terms related to gene expression mechanisms and to nervous system devel-
opment which make sense when dealing with ID. Interesting rules are combining
protein bp and protein mf predicates such as rule 16 in the G4 theory:

is responsible(A) :- gene protein(A, B), protein mf(B, C),
subClass(C, ‘ion binding’),
protein bp(B, ‘carbohydrate metabolic process’).

Such rules suggest that the descriptive power of the theories increases when do-
main knowledge is taken into account. The value of adding generalization can
be illustrated on rules sharing subClass predicates concerning organonitrogen
compound metabolism. Rules 3 from G1 and 7 from G2 theories both contain
the subClass(C, ‘organonitrogen compound metabolic process’) predicate and
each of them covers 23 positive examples. Rules 4 from G3 and 4 from G4 theories
both contain the subClass(C, ‘organonitrogen compound catabolic process’)
predicate which refers to a more specific GO-term than in G1 and G2 (catabolism
is one aspect of metabolism) but these rules cover 39 positive samples in the G3
and 42 positive samples in the G4 theories. Thus allowing for more generalization
steps has helped to increase the coverage of the rule but also to better specify
the feature shared by the positive samples. Several other examples similar to
this one are found across the G1 to G4 theories. In our hands, the limitation for
generalization is yet the execution time. It becomes very long when the generali-
sation level increases, because the number of inferred facts to consider increases.
Parallel computing becomes necessary especially for cross-validation.
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5 Conclusion and Perspectives

One current limit of using LOD is that some datasets are outdated, as most
of them are built punctually from non-LOD resources. Thus, LOD may be in-
complete or may contain data no longer endorsed by its original publisher. For
instance, the KEGG pathway <http://bio2rdf.org/path:hsa00252> found in
Bio2RDF no longer exists in the KEGG Pathway database (hsa00252 is not as-
sociated to a pathway anymore). This may cause conflitcs when one wants to
integrate LOD data.

The imbalance between GO-term facts and other facts in the learning dataset
leads to a majority of predicates referring to GO-terms in the theories. One way
to avoid the overwhelming effect of the GO-term is be to limit their number
on the basis of the evidence code associated with GO annotations. These codes
specify the way an annotation has been assigned to a protein. Filtering out
annotations with IEA (Inferred from Electronic Annotation) code would decrease
the volume of GO annotations and restrain the study to well established ones.
Another solution is to run two separate experiments on two complementary
datasets composed on the one hand of GO-term facts and on the other hand,
and of other predicates. This would lead to two separate theories that would then
be combined by designing and evaluating a global prediction model as proposed
in [33, 34]. This will require a selection of the best rules from each theory. Indeed,
the theory rules could be evaluated with respect to their statistical significance,
for instance by evaluating how specific they are to the genes responsible for
intellectual disability when compared to all other known genes.

Experiments reported in this paper demonstrate the interest of ILP methods
for mining an integrated dataset derived from LOD. Other mining methods can
be tested such as graph-based ones, which are also adapted to graph representa-
tions. However ILP methods allow to take into account valuable knowledge that
is available within biomedical ontologies.
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