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Minimal time problem for a fed-batch bioreactor with a non admissible
singular arc

Terence Bayen1,2 and Francis Mairet3 and Marc Mazade1

Abstract— In this paper, we consider an optimal control
problem for a system describing a fed-batch bioreactor with
one species and one substrate. Our aim is to find an optimal
feedback control in order to steer the system to a given target in
minimal time. The growth function is of Haldane type implying
the existence of a singular arc. Unlike many studies on the
minimal time problem governed by an affine system w.r.t. the
control with one input, we assume that the singular arc is
non-necessary controllable. This brings interesting issues in
terms of optimal synthesis. Thanks to the Pontryagin Maximum
Principle, we provide the optimal synthesis of the problem,
It turns out that singular extremal trajectories are no longer
optimal on a subset of the singular arc.

I. I NTRODUCTION

The study of the minimal time control problem for affine
systems with one input:

ẋ = f(x) + ug(x), x ∈ R
n, |u| ≤ 1, (1)

has been investigated a lot in the literature, see [6] for
n = 2 and references herein. One often encounters singular
trajectories which appear when the switching function of the
system is vanishing on a sub-interval. In order to find an issue
to an optimal control problem governed by (1), studies often
require that the singular arc is controllable which means that
the singular controlus allowing the trajectory to stay on the
singular arc is supposed to verify the inequality:

|us| ≤ 1. (2)

However, one cannot in general show that this assumption
holds. In fact, if the singular arc is of first order, the expres-
sion of the singular controlus is in general complicated as it
depends both on the state and the adjoint state. The objective
of this work is to study a minimal time control problem in
the plane, that isn = 2 where the singular control is not
always admissible i.e. (2) is not always satisfied.

We consider a fed-batch bioreactor with one species and
one substrate. Our aim is to find an optimal feedback control
that steers the system in minimal time to a given target
where the substrate concentration is less than a prescribed
value, see [11]. Finding an optimal feeding strategy can
significantly increase the performance of the system and has
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several advantages from a practical point of view (see e.g.
[1], [2], [7], [8], [9], [11]).

Whenever the growth function is of Monod type, then
one can prove that the optimal feeding strategy is bang-bang
[11]. This means that the reactor is filled until its maximum
volume with the maximum input flow rate. Then, micro-
organisms consume the substrate until reaching a reference
value. In the case where the growth function is of Haldane
type (in case of substrate inhibition), this strategy is notopti-
mal. In fact, one can prove (see [11]) that the optimal strategy
is singular. It consists in reaching a substrate concentrations̄
(corresponding to the maximum of the growth rate function)
in minimal time. Then, the substrate concentration is kept
constant to this value until reaching the maximal volume.
This can be proved by using either the Pontryagin Maximum
Principle (PMP) or the clock form [5], [10].

In the present work, we are interested in studying the opti-
mal synthesis for Haldane-type growth function whenever the
singular arc is no longer admissible from a certain volume
value. This happens when the singular control is larger than
the maximal input flow rate which is allowed in the system.
It follows that there exists a volume value above which
singular extremal trajectories are no longer optimal. Whereas
in [11], [2], [1], we suppose that the maximal volume value
can be reached by the singular arc, there exists a volume
value above which it is not possible to keep the substrate
concentration equal tōs in the system. The main issue of
the paper is the following. We aim at determining an optimal
feedback control whenever the the singular arc becomes non
admissible (i.e. the singular control saturates one of the two
bounds on the control).

First, one cannot apply the clock form [5] (that allows a
direct comparison between the cost of two trajectories) as
we do not have a natural candidate for optimality in this
case. In particular, optimal strategies developed in [2], [1]
are no longer admissible. Thanks to Pontryagin’s principle,
we show that the optimal synthesis of the problem is rather
different as in [11]. We introduce solutions of the system
backward in time with the maximum control that allow
to determine where the switching time occurs for optimal
trajectories. Our main result is that a singular extremal
trajectory stops to be optimal before reaching the maximal
admissible value (this is rather non-intuitive and is slightly
different as the controllable case). We show that there exists
a maximal volume value above which a singular trajectory is
not optimal. We also provide numerical switching curves for
the control which allow to determine an optimal feedback
control of the problem.



The paper is organized as follows. The first section states
the optimal control problem. We also recall the optimality
result of [11] and we apply the PMP. The second section
is devoted to the optimal synthesis of the problem when
the singular is not admissible everywhere. We first describe
the curves that are solution of the system backward in time
and that allow to determine properties of optimal trajectories.
Then, we state our main results in the case where the singular
arc is never controllable (Proposition 2) and whenever it
is controllable until a certain volume (Proposition 3). The
last section is devoted to numerical simulations. We exhibit
a numerical switching curve for the study that allows to
provide an optimal feedback control of the problem.

II. GENERAL RESULTS

In this section, we state the optimal control problem, we
make a review of the standard optimality result in [11] when
the singular arc is controllable, and we apply the Pontryagin
Maximum Principle (see [12]) that will be used in the next
section.

A. Statement of the problem

We consider a system describing a fed-batch bioreactor
with one species and one substrate:











ẋ = x
(

µ(s)− u
v

)

,

ṡ = −µ(s)x+ u
v
(sin − s),

v̇ = u,

(3)

wherex represents the concentration of micro-organisms,s
the concentration of substrate, andv is the volume of the
tank. The input substrate concentration is denoted bysin >
0, andu is the input flow rate in the system. For convenience,
we have taken yield coefficient equal to one (by rescaling the
equation). The functions 7−→ µ(s) is the growth function
of Monod or Haldane type (see [13]). In the following, we
consider thatu takes values within the set:

U := {u : [0,+∞) → [0, umax] | u meas.}. (4)

Here umax denotes the maximum input flow rate in the
system. In the following, we can take by time scaling
umax = 1. The target we consider is defined by:

T = R
∗
+ × [0, sref ]× {vm}. (5)

For u ∈ U , let tξ0(u) the time to steer (3) from an initial
condition ξ0 := (x0, s0, v0) ∈ R

∗
+ × [0, sin] × [0, vm]. The

optimal control problem becomes:

inf
u∈U

tξ0(u), s.t. ξ(t(u)) ∈ T , (6)

whereξ(·) denotes the unique solution of (3) for the control
u that starts atξ0. One essential feature in the system (3) is
that the quantity

M := v(x+ s− sin), (7)

is conserved along any trajectory of (3), henceM is constant
and equal tov0(x0 + s0 − sin). From (7), we obtain:

x =
M

v
+ sin − s, (8)

and system (3) can be put into a two-dimensional system:
{

ṡ = −µ(s)(M
v
+ sin − s) + u

v
(sin − s),

v̇ = u,
(9)

On can easily show that the set[0, sin]×R
∗
+ is invariant by

(9). Notice that if we definex by (8), the micro-organisms
concentration may not be positive. This may happen when
M ≤ 0 which means that initial conditions of micro-
organisms and substrate are low. Therefore, we consider
initial conditions for (9) in the domainD defined by:

D :=

{

(s, v) ∈ [0, sin]× (0, vm] |
M

v
+ sin − s > 0

}

.

(10)
In the rest of the paper, we writeu(·) a control in open loop
andu[·] a feedback control depending on the state(s, v).

B. Optimal synthesis when the singular arc is admissible

In this part, we review the result of [11] on optimal trajec-
tories for problem (6) that will allow to introduce the problem
without supposing that the singular arc is admissible.

Next, we say that the growth functionµ is of Monod
type if µ(s) = µ̄s

k+s
with µ̄ > 0 andk > 0.

Theorem 1:Assume thatµ is of Monod type. Then, the
optimal feedback controluM steering any initial condition
in D to the targetT is:

uM [s, v] :=

{

1 if v < vm,

0 if v = vm.
(11)

In other words, the optimal strategy isfill and wait, and it
consists in filling the tank with maximum input flow rate
until v = vm, and then we letu = 0 until s reaches the
valuesref (if necessary).

In the rest of the paper, we will consider only the case
where the growth functionµ is of Haldane typei.e.

µ(s) =
µ̄s

gs2 + s+ k
,

with µ̄ > 0, g > 0, andk > 0. In this case,µ has exactly
one maximum overR+, that we denotēs, and we suppose
that s̄ > sref (which means that the reference concentration
to achieve is sufficiently small). The optimal synthesis in
this case is rather different as for Monod growth function.

Theorem 2:Assume thatµ is of Haldane type and that
the following assumption holds:

µ(s)

[

M

sin − s
+ vm

]

≤ 1. (12)

Then, the optimal feedback controluH to reach the target is
given by

uH [s, v] :=











0 if v = vm or s > s,

1 if s < s and v < vm,

us(v) if s = s and v < vm,
(13)



where

us(v) := µ(s)

[

M

sin − s
+ v

]

. (14)

This result can be proved via the clock form, see e.g. [11].
This tool is based on Green’s Theorem and allows a direct
comparison of the cost between two trajectories steering an
initial point to the same target point.

Here we have emphasized the assumption (12) ensuring
the system to stay on the singular arc (see e.g. [7], [1]). The
controlus is singular(see section II-C). It allows to maintain
the substrate concentration equal tos. It can be written
us(v) = µ(s)x

v(sin−s) so thatus ≥ 0. Therefore, assumption
(12) is essential to ensure thatus(v) satisfies the upper bound
us(v) ≤ 1 for all v ≤ vm.

The objective of this paper is to provide an optimal
synthesis of the problem whenever (12) is non-necessarily
satisfied. Note that in practice, one should start the fed-batch
with a high biomass concentration (i.e. highM ) in order to
speed up the process, so that condition (12) can no longer
be satisfied.

C. Pontryagin maximum principle

In this part we apply Pontryagin maximum principle on
(6). Let H := H(s, v, λs, λv, λ0, u) the Hamiltonian of the
system defined by:

H := −λsµ(s)

[

M

v
− (s− sin)

]

+ u

[

λs(sin − s)

v
+ λv

]

+ λ0. (15)

If u is an optimal control and(s, v) the corresponding
solution of (9), there existstf > 0, λ0 ≤ 0, and an absolutely
continuous mapλ = (λs, λv) : [0, tf ] → R

2 such that
(λ0, λ) 6= 0, λ̇s = −∂H

∂s
, λ̇v = −∂H

∂v
, that is:

{

λ̇s = λs

(

µ′(s)x− µ(s) + u
v

)

,

λ̇v = λs

(

−µ(s)M+u(sin−s)
v2

)

,
(16)

and we have the maximality condition:

u(t) ∈ argmaxω∈[0,1]H(s(t), v(t), λs(t), λv(t), λ0, ω),
(17)

for almost everyt ∈ [0, tf ]. We call extremal trajectory
a sextuplet(s(·), v(·), λs(·), λv(·), λ0, u(·)) satisfying (9)-
(16)-(17), andextremal controlthe controlu associated to
this extremal trajectory. Astf is free, the Hamiltonian is zero
along an extremal trajectory. Following [1], one can prove
that λs is always non-zero (it is therefore of constant sign
from the adjoint equation), and thatλ0 < 0 (hence we take
λ0 = −1 in the following). Next, let us define theswitching
functionφ associated to the controlu by:

φ :=
λs(sin − s)

v
+ λv. (18)

We obtain from (17) that any extremal control satisfies the
following control law: for a.e.t ∈ [0, tf ], we have











φ(t) < 0 =⇒ u(t) = 0 (No feeding),

φ(t) > 0 =⇒ u(t) = 1 (Maximal feeding),

φ(t) = 0 =⇒ u(t) ∈ [0, 1].

We say thatt0 is a switching point if the control u is
non-constant in any neighborhood oft0 which implies that
φ(t0) = 0. In this case, the control isbang-bangaroundt0,
that isu switches either from0 to 1 or from 1 to 0 at time
t0. Wheneverφ is zero on a non-trivial intervalI ⊂ [0, tf ],
we say thatu is a singular control, and that the trajectory
contains asingular arc. The sign ofφ̇ is fundamental in order
to obtain the optimal synthesis. By taking the derivative of
φ, we get:

φ̇ =
λsx(sin − s)µ′(s)

v
. (19)

Moreover, we can show thatλs < 0 (see e.g. [7], [1]). This
implies that any extremal trajectory satisfies the property:

s(t) > s =⇒ φ̇(t) > 0 ; s(t) < s =⇒ φ̇(t) < 0.

Now, if an extremal trajectory contains a singular arc on
some time intervalI := [t1, t2], then we haveφ = φ̇ = 0
on I, hence we haveµ′(s) = 0 ands = s on I. Therefore,
by solving ṡ = 0, we obtain easily the expression of the
singular control given by (14), see e.g. [2].

Moreover, we can estimate the time of a singular trajectory
as follows (see e.g. [1]):

t2 − t1 =
1

µ(s)
ln

(

M + v(t2)[sin − s]

M + v(t1)[sin − s]

)

, (20)

III. O PTIMAL SYNTHESIS WITHOUT CONTROLLABILITY

ASSUMPTION

In this part, we provide a description of optimal trajecto-
ries for problem (6) when (12) is not satisfied. To this end,
we introduce solutions of the system backward in time that
will allow us to describe where optimal trajectories have a
switching point.

A. Study of the domainD

In view of (12), we introduce a mappingη : (0, sin) → R

by

η(s) :=
1

µ(s)
−

M

sin − s
. (21)

By definition of η, we have:

us(v) = 1 ⇐⇒ v = η(s).

Now, we setv∗ := η(s) so that the singular arc is controllable
provided thatv∗ ≥ vm. Therefore, we assume throughout
this section thatv∗ satisfies:

v∗ < vm. (22)

It follows that the singular arc is controllable only provided
that the volume is less thanv∗. Indeed, forv > v∗ equality
(14) no longer defines an admissible control in[0, 1]. Next,
we will consider the two following cases:



• Case 1:v∗ ≤ 0,
• Case 2:0 < v∗ < vm.

Remark 1:Case 1 means that the singular arc is never
controllable over(0, vm]. As the functionη can take negative
values,v∗ can be negative.

We now define the curvêC (resp. Č) whose graph is the
mappingv ∈ (0, vm] 7−→ γ̂(v) (resp.v ∈ (0, vm] 7−→ γ̌(v))
as follows. The mappinĝγ (resp.γ̌) is the unique solution
of the equation:

ds

dv
= −µ(s)

[

M

v
+ sin − s

]

+
sin − s

v
, (23)

which passes through the point(s, vm) (resp. (s, v∗)). In
other words,̂γ(v) and γ̌(v) are solution of (9) backward in
time with a constant controlu = 1. These curves will play a
major role in our optimal synthesis contrary to the case where
the singular arc is controllable (see Figure 2 and Table I for
parameter values). In fact, they will indicate sub-domains
where optimal trajectories have a switching point.

Let v̂ (resp. v̌) the first volume value such that̂γ(v̂) /∈
(0, sin) (resp. γ̌(v̌) /∈ (0, sin)). The next proposition is
concerned with monotonicity properties ofγ̂ and γ̌.

Proposition 1: (i) The curve γ̂ is either decreasing on
[v̂, vm], either there exists a uniquev1 ∈ (v̂, vm) such that
γ̂(v1) ∈ (0, sin) and dγ̂

dv
(v1) = 0. Moreover, in the latter

case,̂γ is increasing on[v̂, v1] and is decreasing on[v1, vm].
(ii) The mappingγ̌ is increasing on(v̌, v∗] and decreasing
on [v∗, vm] and dγ̂

dv
(v∗) = 0.

Proof: We omit the proof that can be found in [3].

Remark 2:The previous proposition implies that the
backward curveČ leaves the domainD through the line-
segment{0}× [0, sin] whereasĈ leaves the domainD either
through the line-segment{0} × [0, sin] or through the line-
segment{sin} × [0, sin], see Figure 1.
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Fig. 1. The curvêC leaves the domain through{0}×[0, sin] whenM = 1,
and through{sin} × [0, sin] whenM = 25.

In the second case of Proposition 1 (i), we can show that
there exists values ofM such that there exists a uniquev∗ ∈
(0, v∗) such that:

γ̂(v∗) = s, (24)

see Fig. 2.

B. Optimal synthesis when the singular arc is never admis-
sible

In the case wherev∗ ≤ 0 (case 1), we have the following
optimality result (see also Fig. 2).

Proposition 2: Assume thatv∗ ≤ 0. Then, optimal con-
trols satisfy the following:

• If s0 ≤ s, then, there existst0 > 0 such thatu = 1 on
[0, t0], u = 0 on [t0, tf ] wheret0 is such thatv(t0) =
vm ands(tf ) = sref .

• If s < s0 < γ̂(v0), then, there existst0 > 0 such
that u = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on
[t1, tf ] wheret0 ≥ 0, s < s(t0) < s0, v(t1) = vm, and
s(tf ) = sref .

• If s0 ≥ γ̂(v0), then, there existst0 > 0 such thatu = 0
on [0, t0], u = 1 on [t0, t1], u = 0 on [t1, tf ] with t0 >
0, s < s(t0) < γ̂(v0), v(t1) = vm, ands(tf ) = sref .
Proof: We omit the proof that can be found in [3].

Remark 3: In the second case of proposition 2, the switch-
ing time t0 from u = 0 to u = 1 may be zero and it can be
found numerically, see section IV.

Next, we consider the second case where0 < v∗ < vm.
It is easy to see that for initial conditions such thatv0 >
v∗, optimal controls are given by proposition 2 (indeed, the
singular arc is defined only forv0 ≤ v∗). Therefore, we only
deal withv0 < v∗. The next Proposition is illustrated on Fig.
2.

Proposition 3: Assume thatv0 < v∗ and that there exists
0 < v∗ < v∗ such thatγ̂(v∗) = s. Then, optimal controls
satisfy the following:

• If s0 ≤ γ̌(v0), then, there existst0 > 0 such that we
haveu = 1 on [0, t0], u = 0 on [t0, tf ] wheret0 is such
that v(t0) = vm.

• If γ̌(v0) < s0 < γ̂(v0) and s0 ≤ s, then, there exists
t0 > 0 such that we haveu = 1 on [0, t0], u = us

on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ], where
s(t0) = s, t1 − t0 ≥ 0, v(t1) < v∗, andv(t2) = vm.

• If γ̂(v0) ≤ s0 < s, then, there exists0 < t0 < t1 < t2
such that we haveu = 1 on [0, t0], u = us on [t0, t1],
u = 1 on [t1, t2], u = 0 on [t2, tf ] wheres(t0) = s,
v(t1) ∈ (v∗, v

∗), v(t2) = vm.
• If s0 ≥ s and v0 ≤ v∗, then, there exists0 < t0 <

t1 < t2 such that we haveu = 0 on [0, t0], u = us

on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ] where
s(t0) = s, v(t1) ∈ (v∗, v

∗), andv(t2) = vm.
• If s0 ≥ s, andv0 > v∗, then, the optimal control is one

of the following types:

- eitheru = 0 on [0, t0], u = us on [t0, t1], u = 1
on [t1, t2], u = 0 on [t2, tf ] wheres(t0) = s and
0 < t0 < t1, v(t2) = vm,

- eitheru = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on
[t1, tf ] wheret0 ≥ 0, s < s(t0) < γ̂(v0), v(t1) =
vm.

Proof: The proof that can be found in [3].
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Fig. 2. Optimal trajectories (in solid red lines) for various initial conditions
Top: case 1 (v∗ ≤ 0), see Proposition 2 for the optimal synthesis; bottom:
case 2 (0 < v∗ < vm), see Proposition 3. In blue dashed lines, trajectories
Ĉ and Č which pass through(s̄, v∗) and (s̄, vm). In green, the mapping
v0 7−→ sb(v0) (see Section IV).

Remark 4:For the last item of the previous Proposition,
the optimal trajectory is eitherB0−SA−B1−B0 or B0−
B1 − B0 whereB0 (resp.B1) denotes an arc Bangu = 0
(resp.u = 1), andSA denotes a singular arc.

The next section will clarify this remark from a numerical
point of view, and will provide an estimation of the switching
time t0 for items 2, 3, and 4 of Proposition 3.

IV. N UMERICAL SIMULATIONS

A. Determination of the maximal optimal volume

We will focus on the second case (0 < v∗ < vm). Our
aim in this part is to determine the optimal volume, denoted
va, above which it is not optimal to stay on the singular arc,
as follows.

For v0 ∈ [v∗, v
∗], consider the strategyu = us from v∗

to v0, u = 1 until vm and thenu = 0 until sref . The time

TABLE I

PARAMETER VALUES (ARBITRARY UNITS) OF SIMULATIONS FOR THE

OPTIMAL SYNTHESIS(SEEFIG. 2 AND 3)

vm sin sref M µ̄ k g

7 10 0.1 25 (case 1) 0.5 1 0.11
1 (case 2)

ta(v0) of this strategy is (recall (20), see also [1]):

ta(v0) =
ln
(

M+v0(sin−s)
M+v∗(sin−s)

)

µ(s)
+ vm − v0

+

∫ s†(v0)

sref

dσ

µ(σ)
(

M
vm

+ sin − σ
) , (25)

wheres†(v) is the substrate concentration when the trajec-
tory reachesv = vm. We now show thatτ admits a minimum
va ∈ [v∗, v

∗] that we will characterize hereafter. First, notice
that s†(v0) is obtained after integrating the ODE:

ds

dv
= −µ(s)

[

M

v
+ sin − s

]

+
sin − s

v
, s(v0) = s. (26)

Moreover, (26) can be equivalently written asds
dv

= g(v, s)
where g is the right hand-side of (26). By the classical
dependence of the solution of an ODE on parameters, we
denote by s(v, s, v0) the unique solution of (26). It is
standard thatv0 ∈ R

∗
+ 7−→ s(v, s, v0) is of classC1 for

all v > 0. It follows by composition thatv0 7−→ ta(v0) is of
classC1 on [v∗, v

∗]. Consequently, it admits a minimum on
this interval. By differentiatings(v, s, v0) w.r.t. v0, we get:

∂s

∂v0
(v, s, v0) = −g(v0, s)e

∫
v

v0

∂g
∂s

(s(w,v0,s),w)dw
,

hence ds†

dv0
(v0) = ∂s

∂v0
(vm, s, v0). We have used a classical

resul in ODE on the dependance of the trajectory w.r.t. initial
conditions.

Now, we know from the PMP thatv0 = v∗ and v0 =
v∗ are not admissible (see also Proposition 3), henceva
necessarily satisfiesdta

dv0
(va) = 0. So, if we putθ(v0) :=

∫ vm

v0

∂g
∂s
(w, s(w, s, v0))dw, we obtain by taking the derivative

of (25) w.r.t.v0:

dta
dv0

(v0) =
v∗ − v0
M

sin−s
+ v0

[

1−
µ(s)(M

v0
+ sin − s)

µ(s†)( M
vm

+ sin − s)
eθ(v0)

]

(27)
This equation allows to obtain numerically the volume
va ∈ (v∗, v

∗) above which extremal trajectories stop to be
singular. As an example, we findva ≃ 1.67 (see Fig. 3 and
Table I for the values of the parameters).

B. Determination of the switching curve

Now, we determine the optimal switching time for the
trajectoriesB0B1B0 starting withs0 > s̄.

For eachv0 ∈ (v∗, vm), we search numericallysb(v0) ∈
[s̄, γ̂(v0)] which minimizes the timetb(sb) to reach the target



starting from(γ̂(v0), v0) with the strategy:u = 0 until sb,
u = 1 until vm, u = 0 until sref . Assuming that for eachv0
there is a unique minimum, this allows us to define the curve
Cb whose graph is the mappingv0 7−→ sb(v0), represented in
green on Fig. 2. We find that forv0 < va, we havesb(v0) =
s̄, while sb(v0) > s̄ for v0 ∈ (va, vm). This result allows to
conclude numerically which structure is optimal whenever
s0 > s andv0 > v∗ (see the last case of Proposition 3):

• if v0 ≤ va, the optimal strategy isu = 0 on [0, t0],
u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ]
wheres(t0) = s, v(t1) = va, v(t2) = vm.

• if v0 > va, the optimal strategy isu = 0 on [0, t0],
u = 1 on [t0, t1], u = 0 on [t1, tf ] where t0 ≥ 0,
s(t0) = min(s(0), sb(v0)), v(t1) = vm.

To conclude, based on the optimal synthesis (Proposition
3) and the computations of the mappingv0 7−→ sb(v0) and
va, optimal trajectories for various initial conditions(s0, v0)
are represented on Fig. 2. We have shown that the optimal
synthesis is quite different as the one of Theorem 2. In
particular, we have pointed out that it is not optimal for a
trajectory to stay as long as possible on the singular arc.
Moreover, the curvev0 7−→ sb(v0) is the switching curve
for optimal trajectories and it will allow to give an optimal
feedback control.

We thus obtain the following optimal feedback control.
Proposition 4: The optimal feedback steering any initial

state inD to the target is given by:

u2[s, v] :=







































0 if v = vm,

0 if s > sb(v), v ≥ va,

1 if s ≤ sb(v), vm > v ≥ va,

0 if s > s̄, v < va,

1 if s < s̄, v < va,

us(v) if s = s̄, v < va,
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Fig. 3. Time ta(v) to reachT from (s̄, v∗) with the strategy: singular
arc until the switching volumev, u = 1 until vm, u = 0 until sref . We
find that ta(v) has a unique minimum forv = va (see Section IV)

V. CONCLUSION

We have studied an optimal control problem for a fed-
batch bioprocess in presence of a non-controllable singular

arc. This situation can arise for example when the initial
biomass concentration is high. Thanks to Pontryagin Maxi-
mum Principle and a careful study of the switching function,
we have obtained a characterization of optimal trajectories
of the problem. Our main result is that it is not optimal
for a trajectory to stay as long as possible on the singular
arc. Moreover, we have obtained switching curves that can
be used to determine an optimal feedback control of the
problem. A more detailed insight into the determination
of these switching curves (for instance using the theory
of conjugate points [4]) will deserve more investigation.
The analysis of the problem when the singular arc is non-
admissible everywhere is more delicate as in the standard
case. We believe that this kind of study can be also the
starting point to study optimal control problems in a more
general setting in presence of non-controllable singular arcs.

The implementation of the optimal strategy will also
deserve future works. Given that model parameters are gen-
erally poorly known, and that all the state variables cannot
be measured, it will be a key challenge to determine on-line
the switching points.
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