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Genericity of weakly computable objects

Mathieu Hoyrup

October 12, 2016

Abstract

In computability theory many results state the existence of objects
that in many respects lack algorithmic structure but at the same time
are effective in some sense. Friedberg and Muchnik’s answer to Post’s
problem is one of the most celebrated results in this form. The main
goal of the paper is to develop a general result that embodies a large
number of these particular constructions, capturing the essential idea
that is common to all of them, and expressing it in topological terms.

To do so, we introduce the effective topological notions of irre-
versible function and directional genericity and provide two main re-
sults that identify situations when such constructions are possible,
clarifying the role of topology in many arguments from computabil-
ity theory. We apply these abstract results to particular situations,
illustrating their strength and deriving new results.

This paper is an extended version of the conference paper [Hoy14]
with detailed proofs and new results.
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1 Introduction

One of the main goals of computability theory is to understand and classify
the algorithmic content of infinite objects, which can be expressed as the
difficulty of computing them or as their ability to help solving problems.
In establishing this classification one is often led to separate classes of al-
gorithmic complexity and the construction of counter-examples is usually
a hard task that requires the use of advanced techniques, one of the sim-
plest being the so-called priority method with finite injury. The difficulty
in carrying out such constructions is that the built object should meet two
types of requirements going in opposite directions: (i) it should lack algo-
rithmic content but at the same time (ii) it should be constructible in some
way. In other words, these objects live somewhere between generic objects
(objects with no structure) and computable objects (the most constructible
objects). While computability theory provides formal notions of genericity,
these ones are always incompatible with computability, so the two prescrip-
tions are conflicting.

In this paper we propose an abstract view on this topic by providing gen-
eral results that, when applied properly, implement the sought constructions,
and provide a shortcut for producing objects with prescribed properties. We
expect that checking the conditions of these theorems is much easier than
writing down the complete construction which is often merely an adaptation
of known techniques to new situations.

The first main result (Theorem 3.3.1) enables one to construct objects
that (i) are not computable, but (ii) have a computable image under some
given function. As an illustration, we prove a negative result about the com-
putability of the ergodic decomposition. This part is developed in Section
3 and is the version with detailed proofs of the results already presented in
[Hoy14].

The second main result (Theorem 4.1.1) enables one to construct objects
that (i) are generic in some sense, but (ii) are computable in a weak sense. It
is done by introducing a new notion of genericity, called directional generic-
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ity, that has two advantages: (i) it is formally close to plain genericity, being
defined as a slight variation of 1-genericity, and (ii) it is compatible with var-
ious weak forms of computability. For instance for subsets of N, directional
genericity is called genericity from above and we prove the existence of c.e.
sets that are generic from above. Such sets are in particular solutions to
Friedberg-Muchnik’s theorem. Theorem 4.1.1 has important consequences:

• It subsumes and unifies many ad hoc existing constructions,

• It can be applied to obtain new results,

• It clarifies the role of topology in computability theory.

We then illustrate these notions of genericity in several contexts, showing
evidence that they clarify existing results, and we apply our main theorem
to derive a separation result. This part is developed in Section 4 and is a
significant extension of what appears in [Hoy14].

The proofs of our main results use the priority method with finite in-
jury. We observe that while this technique has been massively used in many
situations, no result has convincingly clarified its scope and the contexts
in which it can be applied, and each particular construction is yet another
adaptation of the same argument, based on the same idea. We hope that
the results presented here shed light on this subject.

The paper is organized as follows. In Section 2 we present the needed
background on computable analysis, providing along the way a few results
of independent interest on effective Polish spaces. In Section 3 we introduce
the notion of irreversible function and prove the first main result: if a com-
putable function is effectively irreversible then it maps a non-computable
point to a computable image. The results of this section come from [Hoy14],
we present here their detailed proofs. In Section 4 we introduce a notion of
genericity. We prove the second main result of the paper: under suitable
assumptions, a point exists that is at the same time “generic” and “weakly
computable”. We then apply this result to four classes of objects: c.e. sets,
left-c.e. reals, Π0

1-classes and regular Π0
1-classes.

2 Background and notations

We assume familiarity with basic computability theory on the natural num-
bers. We implicitly use Weihrauch’s notions of computability on effective
topological spaces, based on the standard representation (see [Wei00] for
more details), however we do not express them in terms of representations.
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2.1 Notations

In a metric space (X, d), if x ∈ X and r ∈ (0,+∞) then we denote the open
ball with center x and radius r by B(x, r) = {x′ ∈ X : d(x, x′) < r}. We
denote the corresponding closed ball by B(x, r) = {x′ ∈ X : d(x, x′) ≤ r}.
The Cantor space of infinite binary sequences, or equivalently subsets of N,
is denoted by 2N. The halting set, denoted ∅′, is the set of numbers of Turing
machines that halt upon input of their own number. It is a noncomputable
set that is computably enumerable (c.e.).

2.2 Effective topology

An effective topological space (X, τ,B) consists of a topological space1 (X, τ)
together with a countable basis B = {B0, B1, . . .} numbered in such a way
that the finite intersection operator is computable: for each i, j there exists
a set W ⊆ N that is c.e. uniformly in (i, j), such that Bi ∩ Bj =

⋃
k∈W Bk.

An open subset U ⊆ X is effectively open if U =
⋃
k∈W Bk for some c.e.

set W ⊆ N.
To a point x ∈ X we associate N(x) = {n ∈ N : x ∈ Bn}. By an

enumeration of N(x) we mean a total function f : N → N whose range
is N(x). A point x is computable if N(x) is c.e., i.e. if N(x) has a com-
putable enumeration.

Given points x, y in effective topological spaces X,Y respectively, we say
that y is computable relative to x if there is an oracle Turing machine M
that, given any enumeration of N(x) as an oracle, outputs an enumeration
of N(y). We denote it by Mx = y. In other words, y is computable relative
to x if N(y) is enumeration reducible to N(x). As proved by Selman [Sel71]
and pointed out by Miller [Mil04], y is computable relative to x if and only
if every enumeration of N(x) computes an enumeration of N(y) (uniformity
is not explicitly required, but is a consequence).

A (possibly partial) function f : X → Y is computable if there is a
machine M such that for every x ∈ dom(f), Mx = f(x). A computable
function is always continuous.

2.3 Effective Polish spaces

An effective Polish space is a topological space such that there exists
a dense sequence s0, s1, . . . of points, called simple points and a complete
metric d inducing the topology, such that all the reals numbers d(si, sj) are

1Such spaces are usually assumed to be T0, however this assumption is not necessary.
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computable uniformly in (i, j). Every effective Polish space can be made an
effective topological space, taking as canonical basis the open balls B(s, r)
with s as a simple point and with r as a positive rational number together
with a standard effective numbering. It is sometimes useful to use another
basis: we say that a family B = {Bi}i∈N of open sets is an effective basis
if the identity between the effective topological spaces induced by B and by
the canonical basis is computable in the two directions. For instance,

Proposition 2.3.1. There always exists an effective basis B that makes the
predicate si ∈ Bj computable in i, j.

Proof. By a standard diagonalization there exists a computable dense se-
quence of positive real numbers rn such that d(si, sj) 6= rn for all n. Take
the basis of metric balls centered at simple points with radii in the se-
quence rn.

In an effective Polish space, a point x is computable if and only if
for every ε > 0 a simple point s can be computed, uniformly in ε, such
that d(s, x) < ε.

We present a few simple observations on effective Polish spaces which
seem to be new and are of independent interest. Let X be an effective Polish
space. X ′ ⊆ X is an effective Polish subspace if it is an effective Polish
space under the induced topology and such that the canonical injection
from X ′ to X is a computable homeomorphism between X ′ as a space and
X ′ as a subset of X. Alexandrov’s theorem gives a way to obtain Polish
subspaces of a Polish space, and has an effective version, which we present
now.

A set A is an effective Gδ-set if there exists a family of uniformly
effective open sets Un such that A =

⋂
n Un. The following result unifies

two known results: every closed set whose hit set (see statement below)
is c.e. contains a dense computable sequence; every dense effective Gδ-set
contains a dense computable sequence (computable Baire Category theorem
[YMT99, Bra01]).

Proposition 2.3.2. Let A be an effective Gδ-subset of an effective Polish
space. The hit set {i ∈ N : Bi ∩ A 6= ∅} is c.e. if and only if A contains a
computable sequence dense in A. We then say that A is c.e.

Proof. We prove the non-trivial direction. Let Un be uniformly effective
open sets and A =

⋂
n Un, such that {i ∈ N : Bi ∩ A 6= ∅} is c.e. Given

a ball B0 intersecting A, one can compute a sequence of balls Bn of ra-
dius < 2−n such that Bn+1 ⊆ Bn ⊆ Un (Bn+1 is the closed ball rather
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than the closure of Bn+1). The intersection
⋂
nBn contains one point that

is computable and belongs to A. The induction hypothesis on Bn is that
it intersects A. Once Bn has been built, there must be some ball B of ra-
dius < 2−n−1 such that B ⊆ Bn ∩ Un and B intersects A, and such a B
can be effectively computed. Let Bn+1 = B. To obtain a dense computable
sequence, start from any ball B0 intersecting A.

We will often use the same technic to build a point, by means of a
shrinking sequence of balls. A sequence Bn of balls is shrinking if the radius
of Bn converges to 0 and Bn+1 ⊆ Bn. By completeness of the metric,

⋂
nBn

always contains a point.

Proposition 2.3.3 (Effective Alexandrov Theorem). Let X be an effective
Polish space. Every c.e. effective Gδ-set is an effective Polish subspace of X.

Proof. The proof is a simple effective version of the proof that can be found
in [HY61] (Theorem 2-76 therein). Let A =

⋂
n Un be a c.e. effective Gδ-set.

Let d be a complete computable metric on X. Let dn : X → [0,+∞) be
uniformly computable functions such that dn(x) > 0 ⇐⇒ x ∈ Un. One
can think of dn as a computable version of the distance to the complement
of Un. If Un =

⋃
iB(xi, ri) then one can define dn as dn(x) =

∑
i 2−i max(1−

d(x, xi)/ri, 0). For x ∈ Un, let fn(x) = 1
dn(x)

. For x, y ∈ A, let

d′(x, y) = d(x, y) +
∑
n

2−n
|fn(x)− fn(y)|

1 + |fn(x)− fn(y)|
.

The function d′ : A × A → R is computable. On A it is a complete
metric that induces the same topology as d. The computable sequence
which is dense in A can serve as special points in A. The canonical injection
is 1-Lipschitz, hence has a computable modulus of uniform continuity and
is computable on the special points of A, so it is computable.

The statement in the theorem can actually be extended to an equiva-
lence.

We will be concerned with computability and Baire category, so we will
naturally meet the notion of a 1-generic point: a point that does not belong
to any “effectively meager set” in the following sense.

Definition 2.1. x ∈ X is 1-generic if x does not belong to the boundary
of any effective open set. In other words, for every effective open set U ,
either x ∈ U or there exists a neighborhood B of x disjoint from U .
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By the Baire category theorem, every Polish space is a Baire space so 1-
generic points exist and form a co-meager set. One can relativize this notion
by considering all the open sets that are effective relative to a given oracle.

A weaker notion of genericity is useful.

Definition 2.2. x ∈ X is weakly 1-generic if x belongs to every dense
effective open set.

3 Irreversible functions

3.1 A non-uniform result

Let X be an effective Polish space, Y an effective topological space and f :
X → Y a (total) computable function.

To introduce the results of this section informally, assume temporarily
that f is one-to-one. If f−1 is computable, i.e. if every x is computable
relative to f(x) uniformly in f(x), then f−1 is continuous. As mentioned
earlier uniformity is crucial here: that some x is computable relative to f(x)
does not imply in general that f−1 is continuous at f(x). Theorem 3.1.1
below surprisingly shows that a non-uniform version can still be obtained,
valid at most points.

Let us now make it precise and formal. We do not assume anymore
that f is one-to-one.

When focusing on the problem of inverting a function, one comes natu-
rally to the following basic notions:

• f is invertible at x if x is the only pre-image of f(x),

• f is locally invertible at x if x is isolated in the pre-image of f(x).

If one has access to x via its image only, then x is determined unam-
biguously in the first case, with the help of a discrete advice (a basic open
set isolating x) in the second case. However, “being uniquely determined” is
not sufficient in practice: physically or computationally, one cannot entirely
know f(x) in one step, but progressively as a limit of finite approximations.
We need to consider stronger, topological versions of the two basic notions
of invertibility, expressing that x can be recovered from the knowledge of its
image given by finer and finer neighborhoods.

Definition 3.1. Let f : X → Y be a function.
We say that f is continuously invertible at x if the pre-images of the

neighborhoods of f(x) form a neighborhood basis of x, i.e. for every neigh-
borhood U of x there exists a neighborhood V of f(x) such that f−1(V ) ⊆ U .
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We say that f is locally continuously invertible at x if there exists
a neighborhood B of x such that the restriction of f to B is continuously
invertible at x, i.e. for every neighborhood U of x there exists a neighbor-
hood V of f(x) such that B ∩ f−1(V ) ⊆ U .

Observe that these notions are very natural when investigating the prob-
lem of inverting a function: we think that they are not technical ad hoc
conditions.

Every effective topological space Y has a countable basis hence is sequen-
tial, i.e. continuity notions can be expressed in terms of sequences, which
may be more intuitive. We will be particularly interested in the negations
of these notions, which we characterize now, using any metric d generating
the topology.

Proposition 3.1.1. f is not continuously invertible at x if and only if there
exists δ > 0 and a sequence xn such that d(x, xn) > δ and f(xn) converges
to f(x).

f is not locally continuously invertible at x if and only if for every ε > 0
there exists δ > 0 and a sequence xn such that ε > d(x, xn) > δ and f(xn)
converges to f(x).

We now come to our first result.

Theorem 3.1.1 (Computability implies continuity, pointwise). Let f : X →
Y be a computable function and x ∈ X a 1-generic point.

If x is computable relative to f(x) then f is locally continuously invertible
at x.

Proof. Assume that x is computable relative to f(x) and f is not locally
continuously invertible at x. We show that x belongs to the boundary of an
effective open set U , i.e. that x is not 1-generic.

Intuitively, for a point y, there are two possible ways in which a Turing
machine M may fail to compute y from f(y): either it diverges, or it outputs
something that is incompatible with y. The latter can be recognized in finite
time: we then say that Mf(y) positively fails to compute y. Our effective
open set U will be the set of points y such that Mf(y) positively fails to
compute y.

Let us make it more precise. As x is computable relative to f(x), there
exist uniformly effective open sets Vn ⊆ Y such that for all n, x ∈ Bn ⇐⇒
f(x) ∈ Vn, where Bn is the canonical basis induced by a complete effective
metric on X. We then define

U =
⋃
n

f−1(Vn) \Bn
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which is an effective open set (if Bn = B(x, r) then Bn = B(x, r) is the
corresponding closed ball). By definition of Vn, x does not belong to U .

Let us show that x belongs to the closure of U . Let B be a neighborhood
of x and UB another neighborhood coming from the fact that f is not locally
continuously invertible at x. Let Bn be a neighborhood of x such that Bn ⊆
UB. The set Vn is a neighborhood of f(x), so f−1(Vn) intersects B \ UB ⊆
B \Bn. As a result, B intersects U . This is true for every neighborhood B
of x, so x belongs to the closure of U .

In the sequel we introduce a condition on f which roughly means that f
is “almost nowhere” locally continuously invertible and that entails (i) the
existence of an x that is not computable relative to f(x) (Theorem 3.2.1)
and, better, (ii) the existence of a non-computable x such that f(x) is com-
putable (Theorem 3.3.1).

3.2 Irreversible functions

We now consider the following notion: an irreversible function is locally
continuously invertible at almost no point, in the sense of Baire category.

Definition 3.2. f : X → Y is irreversible if for every non-empty open
set B ⊆ X there exists a non-empty open set UB ⊆ B such that there is no
open set V ⊂ Y satisfying ∅ 6= f−1(V ) ∩B ⊆ UB.

In other words, if the pre-image of an open set intersects B then it
intersects B \ UB.

Intuitively, in a game between a player progressively describing f(x) for
some x ∈ UB and an opponent trying to progressively guess x, the opponent
can never guess that x ∈ UB even knowing that x ∈ B.

An application of an irreversible function f to x comes with a loss of
information about x, that can hardly be recovered. Being irreversible is
orthogonal to not being one-to-one: the function x 7→ x2 is not one-to-
one but not irreversible: x can be (continuously or computably) recovered
from x2; a one-to-one function can be irreversible if its inverse is dramatically
discontinuous (examples of such functions will be encountered in the sequel).

In terms of sequences, f is irreversible if and only if for every B there
exists a non-empty open set UB ⊆ B such that for every x ∈ UB there is a
sequence xn ∈ B \ UB such that f(xn) converges to f(x).

As announced, the set of points at which an irreversible function is locally
continuously invertible is small in the sense of Baire category.
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Proposition 3.2.1. Let f be irreversible. There is a dense Gδ-set D such
that f is not locally continuously invertible at any x ∈ D.

Proof. Let Wn be the union of UB for all basic open sets B of radius <
2−n. Wn is a dense open set. Let x ∈ D :=

⋂
nWn. For each n there is

a ball B of radius < 2−n such that x ∈ UB. For every neighborhood V
of f(x), x ∈ f−1(V ) ∩B 6= ∅ so f−1(V ) ∩B * UB.

In other words, for almost every x the application of f to x comes with
a “topological information” loss.

The preceding proposition does not rule out the possibility that the
restriction of f to a “large” set have a continuous inverse (for instance, the
characteristic function of the rational numbers is nowhere continuous, but
its restriction to the co-meager set of irrational numbers is continuous). The
next assertion shows that this is not possible.

Proposition 3.2.2. Let f be irreversible and C ⊆ X be such that f|C : C →
f(C) is a homeomorphism. Then C is nowhere dense.

Proof. Assume that the closure of C contains a ball B. Let x ∈ UB ∩ C.
There exists a sequence xn ∈ B \ UB such that f(xn) converges to f(x).
By density of C in B, xn can be taken in C. As f|C is a homeomorphism
and f(xn) converges to f(x), xn should converge to x and eventually en-
ter UB, which gives a contradiction.

In the definition of an irreversible function (Definition 3.2), B and UB
can be assumed w.l.o.g. to be basic balls, in some fixed effective basis. We
can make Definition 3.2 effective by requiring that given an index for B in
the numbered basis, one can compute an index for UB.

Definition 3.3. f is effectively irreversible if an index for UB can be
computed from an index for B in Definition 3.2.

Proposition 3.2.3. Being effectively irreversible does not depend on the
effective basis.

Proof. Let B and B′ be effective bases, and assume that f is effectively
irreversible w.r.t. B. Let us show that f is effectively irreversible w.r.t. B′.
Given i, we want to compute j such that B′j plays the role of UB′i , i.e. B′j ⊆ B′i
and no open set V ⊆ Y satisfies ∅ 6= f−1(V )∩B′i ⊆ B′j . First, B′i is effectively
open in the basis B so one can find k such that Bk ⊆ B′i. As f is effectively
irreversible w.r.t. B one can compute l such that Bl plays the role of UBk

.
As Bl is effectively open in the basis B′ one can find j such that B′j ⊆
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Bl. This is the sought j. Indeed, if there is an open set V ⊆ Y such
that ∅ 6= f−1(V ) ∩ B′i ⊆ B′j , then as B′j ⊆ Bl ⊆ Bk, ∅ 6= f−1(V ) ∩ Bk ⊆ Bl
contradicting the choice of Bl.

The following result is the effective version of Proposition 3.2.2.

Theorem 3.2.1. If f is computable and effectively irreversible then for
every 1-generic x, x is not computable relative to f(x).

Proof. The dense Gδ-set provided by Proposition 3.2.1 is effective when f
is effectively irreversible so it contains every 1-generic point (even every
weakly-1-generic point). Hence for every 1-generic x, f is not locally con-
tinuously invertible at x. We now apply Theorem 3.1.1.

In other words, if x is 1-generic then the application of f to x comes
with an “algorithmic information” loss. So if f is effectively irreversible
then there exists some x that is not computable relative to f(x).

3.3 The constructive result

We now present the main result of the paper. It is the constructive version
of Theorem 3.2.1 as it makes f(x) computable. The construction uses a
priority argument with finite injury.

Theorem 3.3.1. If f is computable and effectively irreversible then there
exists a non-computable x such that f(x) is computable.

The proof uses the priority method with finite injury, which can be seen
as a game between a player, computing f(x), and infinitely many opponents
(all the Turing machines) trying to compute x. The remainder of this section
is devoted to the detailed proof of Theorem 3.3.1.

Here we take as effective basis the balls induced by a complete effective
metric of X, so that every shrinking sequence of open sets has non-empty
intersection. We fix a one-to-one computable enumeration n0, n1, . . . of the
halting set ∅′. We construct x ∈ X such that f(x) is computable and ∅′
is computable relative to x. We construct a shrinking sequence of metric
balls Bn and define x as the unique member of their intersection. Of course,
the sequence Bn must not be computable otherwise x would be computable.
The sequence Bn is constructed in stages: at stage s we define Bn[s] and
for each n the sequence Bn[s] is eventually constant, with limit Bn. For
each s, the sequence Bn[s] is shrinking, so the limiting sequence Bn will be
shrinking as well. One may imagine, for each s, the sequence Bn[s] as an
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infinite path in a tree. At stage s + 1, ns is enumerated into ∅′ and the
current path branches at depth ns.

In order to make f(x) computable we enumerate along the construction
the indices of all its basic neighborhoods into a list L ⊆ N. L is the union
of a computable growing sequence of finite lists Ls. At stage s, the current
neighborhood of f(x), denoted by Vs, is the (finite) intersection of the basic
open sets indexed by Ls. As Ls ⊆ Ls+1, Vs+1 ⊆ Vs.

We need to consider two technical points. First we use a particular set
of special points, induced by the effective irreversibility of f , obtained as
follows. We can assume w.l.o.g. that the radius of UB is at most half the
radius of B, that the closure of UB is contained in B and that there is no
open set V ⊆ Y such that ∅ 6= f−1(V ) ∩ B ⊆ UB (if UB = B(x, r) then
replace it by B(x, r/2)). Given a basic ball B, consider the computable

sequence U
(n)
B defined inductively by U

(0)
B = B and U

(n+1)
B = U

U
(n)
B

. U
(n)
B

is a computable shrinking sequence and the unique member a of
⋂
n U

(n)
B is

computable, uniformly in B. The canonical enumeration Bj of basic balls
induces a computable dense sequence aj , which will serve as simple points.

We then come to the second technical point. Let (B′k)k∈N be the canoni-
cal enumeration of the basic open subsets of Y . We assume that the effective
open sets f−1(B′k) come with growing enumerations f−1(B′k)[s] such that
the predicate ai ∈ f−1(B′k)[s] is decidable in i, k, s (use the effective basis
given by Proposition 2.3.1).

We now proceed to the construction of the sequence Bn[s] for each
stage s. For each s, Bn[s] will be a shrinking sequence, x[s] will be de-
fined as the unique member of their intersection and will be one of the
points {aj : j ∈ N}.
Stage 0. We start with a ball B0[0] of radius 1, Bn+1[0] = UBn[0] and {x[0]} =⋂
nBn[0]. Start with L0 = ∅ and V0 = Y . Observe that for each n, Bn[0] ∩

f−1(V0) is non-empty as it contains x[0].

Stage s+ 1. First, Ls+1 is obtained by adding to Ls all the numbers k ≤ s
such that x[s] ∈ f−1(B′k)[s]. Let Vs+1 be the intersection of the open sets B′k
with k ∈ Ls+1.

Let n = ns be the next element enumerated into the halting set. LetBn+1[s+
1] be a ball satisfying Bn+1[s+1] ⊆ f−1(Vs+1)∩Bn[s]\Bn+1[s]. Such a ball
exists: f−1(Vs+1)∩Bn+1[s] is non-empty as it contains x[s], f is irreversible
and Bn+1[s] = UBn[s]. For n′ ≤ n, let Bn′ [s+ 1] = Bn′ [s]. For n′ > n define
by induction Bn′+1[s+ 1] = UBn′ [s+1]. Let {x[s+ 1]} =

⋂
nBn[s+ 1].

Verification. By construction one has Bn+1[s] ⊆ Bn[s] and Bn+1[s] = UBn[s]

12



for sufficiently large n so Bn[s] is a shrinking sequence.
We call the settling time of n the minimal number s such that ns′ ≥ n

for all s′ ≥ s.
We say that n ∈ ∅′ is a forward element if no element m < n is enumer-

ated into ∅′ after the enumeration stage of n: in other words, the settling
time of n coincides with its enumeration stage. As ∅′ is infinite, it has
infinitely many forward elements.

Claim 1. For each n, Bn[s] is eventually constant.

Proof. Let s0 be the settling time of n: Bn[s] = Bn[s0] for all s ≥ s0.

Let Bn be its limit. Bn is a shrinking sequence as well, let x be the
member of its intersection. Observe that the sequence x[s] converges to x.
Indeed, given ε, let n be such that Bn has radius < ε and s0 be the settling
time of n: for all s ≥ s0, x[s] ∈ Bn[s] = Bn so d(x[s], x) ≤ ε.
Claim 2. f(x) is computable.

Proof. We prove that a basic open set B′k contains f(x) if and only if k is
enumerated into the list L =

⋃
s Ls.

If k ∈ Ls for some s, let n be a forward element which is enumerated
at some stage s′ ≥ s. x ∈ Bn+1 = Bn+1[s

′ + 1] ⊆ f−1(Vs′+1) ⊆ f−1(Vs) ⊆
f−1(B′k).

Now let B′k be a basic neighborhood of f(x). Let i0 be such that x ∈
f−1(B′k)[i0]. As x[s] converges to x there is s such that x[s] ∈ f−1(B′k)[i0]
for all s′ ≥ s. Let t = max(s, i0): x[t] ∈ f−1(B′k)[i0] ⊆ f−1(B′k)[t] so k must
be added to the list at stage t+ 1 or earlier.

Claim 3. ∅′ is computable relative to x.

Proof. Let (pi)i∈N be the increasing sequence of forward elements. ∅′ can be
computed from the sequence pi and the (computable) enumeration of ∅′.

From x one can inductively compute the sequence pi. First, p0 is the
minimal n such that x /∈ Bn+1[0]. Once pi is known, let s be the stage at
which pi is enumerated into ∅′, i.e. ns = pi. pi+1 is the minimal n > pi such
that x /∈ Bn+1[s+ 1].

In the proof ∅′ is encoded into x. The argument relativizes: given a
set A ⊆ N, there exists xA such that A computes f(xA) and the pair (xA, A)
computes A′. All the reductions are uniform, so computing the Turing
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jump operator can be reduced to computing the inverse of f (when f is one-
to-one). The notion capturing this idea is Weihrauch reducibility [Wei92,
BG11].

Corollary 3.3.1. If f is one-to-one, computable and effectively irreversible
then the jump operator is Weihrauch reducible to f−1.

3.4 Application to the ergodic decomposition

We now present an application of Theorem 3.3.1. Let P be a Borel prob-
ability measure P over the Cantor space. P is computable if the real
numbers P [w] are uniformly computable. P is shift-invariant if P [w] =
P [0w] + P [1w] for each finite string w. P is ergodic if it cannot be written
as P = 1

2(P1 + P2) with P1 6= P2 both shift-invariant.
The ergodic decomposition theorem [Phe01] says that every shift-invariant

measure can be uniquely decomposed into a convex combination (possibly
uncountable) of ergodic measures. Our question is: given a computable shift-
invariant measure, can we compute in a sense its ergodic decomposition?
This question was implicitly addressed by V’yugin [V’y97] who constructed
a counter example: a countably infinite combination of ergodic measures
which is computable but not effectively decomposable. In [Hoy11] we raised
the following question: does the ergodic decomposition become computable
when restricting to finite combinations? As an application of Theorem 3.3.1,
we solve the problem and prove that it is already non-effective in the finite
case:

Theorem 3.4.1. There exist two ergodic shift-invariant measures P and Q
such that neither P nor Q is computable but P +Q is computable.

The strategy is as follows: the mapping (P,Q) 7→ P +Q is computable,
two-to-one on the space E × E of pairs of ergodic measures and we prove

Theorem 3.4.2. The function (P,Q) 7→ P+Q defined on E×E is effectively
irreversible.

which implies Theorem 3.4.1 by applying Theorem 3.3.1.
Before proving the theorem, we need some preliminaries so show that E×

E is an effective Polish space.
We consider the space P(2N) of Borel probability measures over the

Cantor space together with the complete metric

d(P,Q) =
∑

w∈{0,1}∗
2−|w||P [w]−Q[w]|.
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The finite rational combinations of Dirac measures are dense in P(2N) and d
is computable over them, so P(2N) is an effective Polish space. The subset I
of shift-invariant measures is closed so d is complete over I as well. I easily
contains a dense computable sequence (take the Markovian measures with
rational coefficients), so I is an effective Polish subspace of P(2N). Let E ⊆ I
be the set of ergodic shift-invariant measures. The metric d is no longer
complete over E , but E is an effective Gδ-set that is c.e., so Proposition 2.3.3
implies that E is an effective Polish subspace (see [Par61] for results on the
Baire category of the set of ergodic measures). We work with the basis given
by the intersection of the canonical metric basis of I with E , which is an
effective basis of E .

We now present the proof of Theorem 3.4.2.

Proof of Theorem 3.4.2. Let B ⊆ I × I be an open set and (P,Q) ∈ B
with P 6= Q. Let ε > 0 be such that d(P,Q) > ε and B(P, ε)×B(Q, ε) ⊆ B.
Let δ = ε/4 and UB = B(P, δ) × B(Q, δ) ⊆ B. Observe that UB can be
effectively obtained from B.

We now show that if V ⊆ I is open and f−1(V ) intersects B then it
intersects B \UB, where f : E × E → I is the sum mapping. Let (P1, Q1) ∈
f−1(V )∩B. If (P1, Q1) /∈ UB then we are done. Assume then that (P1, Q1) ∈
UB, which implies d(P1, Q1) > 2δ. For λ ∈ [0, 1], define

Pλ = λP1 + (1− λ)Q1,

Qλ = λQ1 + (1− λ)P1.

First observe that Pλ+Qλ = P1 +Q1 ∈ V . There is some λ ∈ (0, 1) such
that (Pλ, Qλ) ∈ B \UB, more precisely δ < d(P, Pλ) < ε and δ < d(Q,Qλ) <
ε. Indeed,

d(P1, Pλ) = d(Q1, Qλ) = (1− λ)d(P1, Q1).

and as d(P1, Q1) > 2δ there exists λ ∈ (0, 1) such that (1−λ)d(P1, Q1) = 2δ.
One then has

d(P, Pλ) ≤ d(P, P1) + d(P1, Pλ) < 3δ < ε

and
d(P, Pλ) ≥ d(P1, Pλ)− d(P, P1) > δ,

and similarly δ < d(Q,Qλ) < ε. Observe that the shift-invariant mea-
sures Pλ and Qλ are not ergodic. However the ergodic measures are dense in
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the set of shift-invariant measures so there exist two ergodic measures P ′, Q′

close to Pλ and Qλ respectively, such that

δ < d(P, P ′) < ε,

δ < d(Q,Q′) < ε,

P ′ +Q′ ∈ V

which implies that (P ′, Q′) ∈ f−1(V )∩B \UB, which is then non-empty.

4 Directional genericity

Given an effectively irreversible function f ,

• Theorem 3.2.1 tells us that if x is 1-generic then x is not computable
relative to f(x),

• Theorem 3.3.1 tells us that there exist non-computable x such that f(x)
is computable.

The two results are “disjoint” in the sense that in general a single x cannot
at the same time be 1-generic and have a computable image, except for some
particular functions like constant functions. We raise the following question:
is it possible to bring the two results closer together? How far can x be from
being computable, given that f(x) is computable? How generic can x be?
In this section we give an answer to these questions, introducing a notion of
genericity that is compatible with a weak form of computability.

For the sake of simplicity, we will assume that f is the identity. We fix
a set X, endowed with an effective Polish topology τ and a weaker effective
topology τ ′. In doing so we lose no generality, as a function f : (X, τX) →
(Y, τY ) can always be thought as the identity from (X, τX) to (X, τ ′) where τ ′

is the initial topology of f whose open sets are the preimages of τY -open
sets.

4.1 Being generic from above

Let (X, τ) be an effective Polish space and τ ′ be an effective topology on X
that is effectively weaker than τ : the basic τ ′-open sets are effective τ -open
sets, uniformly. In other words, we require the identity function from (X, τ)
to (X, τ ′) to be computable.

Our general goal is to build elements of X that are to some extent
generic in the topology τ but still computable in the topology τ ′. The
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latter condition is usually weaker than being computable in the topology τ ,
and will be our weak notion of computability. We now have to define a
suitable notion of genericity.

The topology τ ′ induces a pre-order on X, called the specialization pre-
order ≤:

x ≤ y ⇐⇒ every τ ′-neighborhood of x is a τ ′-neighborhood of y.

x ≤ y means that if one describes x by listing its basic neighborhoods then
one can never distinguish x from y. Observe that when τ ′ is T0, ≤ is an
order, and when τ ′ is T1, ≤ is the trivial ordering (equality).

Definition 4.1. To x ∈ X we associate

Sx = {y ∈ X : x ≤ y}

which is the intersection of all the τ ′-neighborhoods of x.

Sx is the set of elements that cannot be distinguished from x when
describing x in the topology τ ′. If τ ′ is T1 then Sx = {x} for all x.

In a game where the player describes an element x in the τ ′-topology,
the player enumerates the basic τ ′-neighborhoods of x. Each enumerated
basic open set is a commitment: if V is enumerated then x must belong
to V . Each commitment reduces the degrees of freedom of the player to
fool the opponent. However some free space is always left, and this space is
precisely Sx: at any moment the player is allowed to move into Sx (and then
change x at the same time). As a consequence, during the computation of x
in the topology τ ′, the player is able to make x as generic as possible, inside
the subset Sx. This motivates the following definition.

Definition 4.2. Let (X, τ) be an effective Polish space, A ⊆ X and x ∈ A.
We say that x is generic inside A if for every effective open set U ⊆ X,

• either x ∈ U ,

• or there exists a neighborhood B of x such that B ∩ U ∩A = ∅.

If τ ′ is a weaker topology on X then we say that x is generic from
above if x is generic inside Sx = {y ∈ X : x ≤ y}, where ≤ is the special-
ization pre-order induced by τ ′.

Every 1-generic element is generic inside any set containing it. Let us
give a few examples illustrating these notions. For A = X, being generic
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inside A is the same as being 1-generic. Every element x is vacuously generic
inside {x}. In the product space X ×X, (x, y) is generic in {x} ×X if and
only if y is 1-generic relative to x, i.e. y does not belong to the boundary
of any open set that is effective relative to x (effective open subsets of X
relative to x are the same as the sections at x of effective open subsets
of X ×X).

Informally, x is generic from above means that x belongs to every ef-
fective open set that is dense above it, for the specialization order induced
by τ ′ (while a 1-generic elements belongs to every effective open set that is
dense along it).

With this notion in hand we obtain the sought combination of Theorems
3.2.1 and 3.3.1. For this we need a reasonable technical assumption on the
bases B and B′ of the topologies τ and τ ′ respectively.

Assumption 1 There is an algorithm that given a finite number of basic
open sets from B and B′, decides whether their intersection is non-
empty, where B is a basis associated with a complete effective metric.

In practice this assumption is often satisfied. We do not know how
to prove the next theorem without this assumption, and we do not know
whether the theorem fails without this assumption.

Theorem 4.1.1 (Generic and weakly computable). Let (X, τ) be an ef-
fective Polish space and τ ′ and effectively weaker topology, satisfying as-
sumption 1. Let Un be uniformly effective dense τ -open sets. There ex-
ists x ∈

⋂
n Un such that

• x is generic inside Sx,

• x is τ ′-computable.

Observe that the theorem is only interesting when τ ′ is not T1, other-
wise Sx = {x} and the first condition is vacuously satisfied for every x.

Observe that x is not in general weakly 1-generic, so it does not belong
to every dense effective open set. However, if an effective sequence of such
sets Un is given in advance then x can be taken in their intersection, as
stated by the theorem. This is possible as the family of dense effective open
sets is not enumerable in general.

Proof. Let ai be a dense computable sequence of simple points in (X, τ).
Again we can assume w.l.o.g. that the basic open sets B′k ∈ B′ come with a
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computable enumeration B′k[s] (B′k[s] is an effective open set) such that the
predicate ai ∈ B′k[s] is decidable in i, k, s (using Proposition 2.3.1).

The proof is a finite injury argument. We want to satisfy the require-
ments

Re : x ∈We or ∃ε, B(x, ε) ∩We ∩ Sx = ∅,
where We is the effective open set with number e (in the sequel, We,s will
be computable growing finite unions of elements of B with union We). At
stage s, each requirement Re is assigned a ball Be[s]. They satisfy Be+1[s] ⊆
Be[s] ∩ Ue. For each e, the sequence Be[s] is eventually constant when s
grows. At the same time, a list L ⊆ N is enumerated containing exactly
the indices of the basic B′-neighborhoods of x. L is obtained as the union
of a growing computable sequence of finite sets Ls. We denote by Vs the
finite intersection of elements of B′ whose indices are given by Ls, i.e. Vs =⋂
k∈Ls

B′k. Vs will be a neighborhood of x in the topology τ ′. In order to
satisfy the requirement Re, one tests whether Be[s] intersects We,s ∩ Vs and
if it is so, forces x to belong to the intersection.

Stage 0. LetB0[0] be any ball of radius< 2−0 and inductively chooseBe+1[0] ⊆
Be[0]∩Ue of radius < 2−e−1. Let x0 be the center of B0[0] and L0 = ∅.

Stage s+ 1. Let e ≤ s be minimal such that Be[s]∩We,s∩Vs 6= ∅ (decidable
by Assumption 1) and Re is not already declared satisfied, if it exists
(decidable property). Let Be′ [s+1] = Be′ [s] for e′ ≤ e, let Be+1[s+1] ⊆
Be[s] ∩ We,s ∩ Vs ∩ Ue have radius < 2−e−1 and xs+1 be the center
of Be+1[s + 1]. Define inductively Be′+1[s + 1] ⊆ Be′ [s + 1] ∩ Ue′ of
radius < 2−e

′−1 for e′ > e. We say that Re acts and Re is declared
satisfied. All Re′ with e′ > e are initialized, which means that all of
them are declared unsatisfied.

If such an e ≤ s does not exist then let Be[s + 1] = Be[s] for all e
and xs+1 = xs.

Let Ls+1 contain Ls together with every k ≤ s such that xs+1 ∈ B′k[s].

Verification. By the usual analysis of finite injury arguments, each require-
ment acts finitely many times, so for each e there is s0 such that Be[s] =
Be[s0] for all s ≥ s0. Let Be = Be[s0]. One has Be+1 ⊆ Be and Be has
radius < 2−e. Let x be the unique member of

⋂
eBe.

Claim 4. The sequence xs converges to x.

For each k, and all sufficiently large s, only requirements Re with e > k
act, so xs+1 ∈ Be+1[s + 1] ⊆ Bk[s + 1] = Bk. As x ∈ Bk and Bk has
radius < 2−k, d(xs+1, x) < 2−k+1 for all sufficiently large s.
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Claim 5. x ∈
⋂
e Ue.

By construction, Be+1 ⊆ Ue for all e, hence x ∈
⋂
eBe+1 ⊆

⋂
e Ue.

Claim 6. L lists exactly the elements of B′ containing x, hence x is τ ′-
computable.

First, x belongs to each Vs by construction of the balls Be[s], so L lists
only (indices of) neighborhoods of x. Conversely, assume that B′k is a neigh-
borhood of x. It implies that some B′k[s0] is a neighborhood of x. As xs
converges to x, xs belongs to B′k[s0] for all s larger that some s1. As a result,
for s > max(s0, s1), k is listed in Ls.

Claim 7. x is generic inside Sx.

Let e ∈ N be such that x /∈We. Let s be such that no requirement e′ < e
acts from stage s on. Re cannot act at a stage s′ ≥ s, otherwise x ∈ Be+1 =
Be+1[s

′ + 1] ⊆ We which contradicts the assumption x /∈ We. In the same
way, Re cannot be declared satisfied at stage s, otherwise x ∈ Be+1 =
Be+1[s

′ + 1] ⊆ We. As Re never acts after stage s, it means that x ∈
Be = Be[s] and Be[s] ∩ We ∩ Sx = ∅, otherwise there exists s′ ≥ s such
that Be[s] ∩We,s′ ∩ Sx 6= ∅, hence Be[s

′] ∩We,s′ ∩ Vs′ 6= ∅ as Be[s
′] = Be[s]

and Sx ⊆ Vs′ , and then Re must act at stage s′ as it is not declared satisfied.
This is a contradiction.

The point x provided by Theorem 4.1.1 actually satisfies a stronger no-
tion of genericity than being generic inside Sx.

Lemma 4.1.1. For each effective open set We =
⋃
sWe[s],

• either x ∈We,

• or there exists a neighborhood B of x such that B∩(
⋃
sWe[s]∩Vs) = ∅.

Proof. Indeed, if x /∈We then when all Re′ with e′ ≤ e have settled, Be[s] =
Be and Be[s] ∩ We[s] ∩ Vs = ∅ otherwise Re will act and force x to fall
into We, so one can take B = Be.

In other words, x satisfies the condition of 1-genericity not for every
effective open set We, but for the effective open set

⋃
sWe[s] ∩ Vs. This

genericity condition has the consequence that x behaves in some respects as
a 1-generic point, as illustrated by the following two results.

Corollary 4.1.1. The point x provided by Theorem 4.1.1 is low, i.e. the
set {e ∈ N : x ∈ We} is ∆0

2 (or ∅′-computable, or limit of a computable
sequence).
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Proof. For each e, the computable predicate Be[s]∩We[s]∩Vs 6= ∅ converges
to the predicate x ∈ We. Indeed, if Be[s] ∩We[s] ∩ Vs 6= ∅ for infinitely
many s then Re will eventually act and never be injured later, so x will be
forced to fall into We. If x ∈ We then for sufficiently large s, Be[s] = Be
and x ∈We[s] so Be[s] ∩We[s] ∩ Vs 6= ∅.

On compact spaces satisfying assumption 1, Theorem 4.1.1 is indeed a
strengthening of Theorem 3.3.1.

Corollary 4.1.2. Assume that (X, τ) is compact. If id : (X, τ) → (X, τ ′)
is effectively irreversible then the point x provided by Theorem 4.1.1 can be
taken to be non-computable.

Proof. One can take x in the dense effective Gδ-set given by Proposition
3.2.1, so that id is not locally continuously invertible at x.

If x is computable then there exists e such that We = X\{x}. As x /∈We

there exists a neighborhood B of x such that B∩
⋃
sWe[s]∩Vs = ∅. Let UB ⊆

B come from the local continuous non-invertibility of id at x. As We covers
the compact set X \ UB, there exists s such that We[s] already covers that
set. As Vs is a τ ′-neighborhood of x, B ∩ Vs \UB 6= ∅ so B ∩ Vs ∩We[s] 6= ∅,
which contradicts the choice of B.

We now illustrate directional genericity in several situations and show
how Theorem 4.1.1 embodies many constructions encountered in computabil-
ity theory. It means that in many situations, in order to construct an object
satisfying a given set of requirements, one only has to find the suitable
topologies τ and τ ′ that make directionally generic objects have the sought
properties. Theorem 4.1.1 can then be directly applied, instead of explicitly
constructing the object by means of a finite injury argument.

4.2 Genericity for c.e. sets

We consider the Cantor space X of subsets of N. Here τ is the Cantor
topology and τ ′ is the Scott topology generated by the sets {A ⊆ N : F ⊆ A},
where F ranges among the finite subsets of N. For a set A ⊆ N, SA = {B ⊆
N : A ⊆ B} is the class of supersets of A.

Definition 4.3. A set A ⊆ N is generic from above if it is 1-generic
inside SA, which means that for every effective open class U , either A ∈ U
or there exists n such that [A�n] ∩ U ∩ SA = ∅.
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In other words, A is generic from above if it belongs to every effective
open class that is dense above A in the subset ordering. This should be
compared to the notion of 1-generic set, which belongs to every effective
open class that is dense along or at it. Observe that a co-finite set A is
vacuously generic from above as there is an n such that [A�n] ∩ SA = {A}.
Hence only co-infinite sets that are generic from above are interesting.

As a direct application of Theorem 4.1.1 we obtain:

Corollary 4.2.1. There exists a co-infinite c.e. set A ⊆ N that is generic
from above.

Proof. The class of co-infinite sets is a dense effective Gδ-set.

As the next result shows, Theorem 4.1.1 embodies simple finite injury ar-
guments such as the Friedberg-Muchnik theorem for instance. Interestingly
many arguments showing that 1-generic sets satisfy some property already
apply to sets that are generic from above. Indeed, in these arguments, an
effective open class is shown to be dense at the set and it often happens that
it is even dense above the set. We now give illustrations of this phenomenon.

Proposition 4.2.1. Let A be co-infinite and generic from above. N \ A is
hyperimmune, A = A1 ⊕ A2 where A1 and A2 are Turing incomparable, A
is not autoreducible.

Proof. The simple arguments showing the results for 1-generic sets actually
give this stronger result, observing that the involved open set is not only
dense along A, but even above A. For instance, to prove that A2 �T A1,
given a Turing functional φ, let U = {A1 ⊕ A2 : ∃n, φA1(n) = 0 ∧ A2(n) =
1}. If φA1 = A2 then replacing a 0 in A2 by a 1 arbitrarily far gives an
element of U arbitrarily close to A1 ⊕ A2 that is above (i.e. is a superset
of) A1 ⊕A2.

It happens that the co-infinite sets that are generic from above are ex-
actly the p-generic sets defined by Ingrassia [Ing81].

4.3 Genericity for left-c.e. reals

We consider the unit real interval [0, 1]. τ is the Euclidean topology, τ ′ is
the topology induced by the semi-lines (x, 1]. The specialization order is the
natural ordering on real numbers. For a real x ∈ [0, 1], Sx = [x, 1].

Definition 4.4. A real x ∈ [0, 1] is generic from the right if it is 1-
generic inside [x, 1], which means that for every effective open set U ⊆ [0, 1],
either x ∈ U or there exists ε > 0 such that [x, x+ ε) ∩ U = ∅.
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Again x is generic from the right if it belongs to every effective open set
that is dense above x in the real ordering.

Kurtz built a left-c.e. weakly 1-generic real (see Theorem 1.8.49 in [Nie09]).
The construction even gives a left-c.e. real that is generic from the right. One
can think of the proof of Theorem 4.1.1 as a kind of generalization of this
argument (replacing the lexicographic order used in the proof appearing in
[Nie09] by the specialization pre-order induced by τ ′).

Genericity from the right easily lies between two classical notions of
genericity.

Proposition 4.3.1. Every 1-generic is generic from the right. Every generic
from the right is weakly-1-generic. The implications are strict.

Proof. An open set that is dense is dense on the right of x. An open set
that is dense on the right of x is dense along x. Right-c.e. reals cannot be
generic on the right, but there exists a right-c.e. weakly-1-generic real. Left-
c.e. reals cannot be 1-generic, but there exists a left-c.e. real that is generic
on the right.

In Section 4.5 we will separate genericity from the right from weakly-1-
genericity among the left-c.e. reals.

Solovay reducibility vs. cl-reducibility. If A is a subset of N then we
denote by xA the real number whose binary expansion is A. In [DHL04] it is
proved that there exist two sets A,B such that A is a c.e. set, xB is a left-c.e.
real and A ≤cl B but xA �S xB. Here ≤cl stands for computably Lipschitz
reducibility and ≤S stand for Solovay reducibility. The construction is a
finite injury argument, which again is captured by Theorem 4.1.1.

Let us recall that A ≤cl B means that there is a Turing functional
computing A with oracle B, reading the first n + c bits of B to compute
the n first bits ofA, for some constant c and all n. xA ≤S xB means that there
exists a constant c ∈ N and computable sequences ai ↗ xA and bi ↗ xB
such that xA − ai ≤ c(xB − bi) for all i, or equivalently that cxB − xA is
left-c.e.

Theorem 4.3.1. Let xB be left-c.e. and generic on the right and A = {w ∈
2<N : w <lex B}. One has A ≤cl B but xA �S xB.

Note that we identify A with a subset of N by using a computable bi-
jection between 2<N and N (we will assume that the string represented by
a number n has length at most n).
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Proof. The reduction A ≤cl B is obvious: to know whether w <lex B, one
only needs to know the |w| first bits of B.

Assume that xA ≤S xB. It implies the existence of a one-to-one com-
putable enumeration wi of A, a computable sequence bi ↗ xB and a com-
putable order h : N → N such that for all i ∈ N, if xB − bi < 2−h(n)

then |wi| > n. Let Bi be the maximal element of {w0, . . . , wi} in the lex-
icographic ordering. If xB − bi < 2−h(n) then Bi�n = B�n: indeed, the
string B�n belongs to A so it must be wj for some j, which must be less
than i.

For w ∈ 2<N, let [w] be the interval containing all real numbers having
a binary expansion starting with w, namely [w] = [0.w, 0.w + 2−|w|].

Let U =
⋃
n,i(bi, bi + 2−h(n)) \ [Bi�n]. U is an effective open set. U does

not contain xB. Indeed, if xB−bi < 2−h(n) then Bi�n = B�n so xB ∈ [Bi�n].
We now prove that U is dense on the right of xB, which contradicts the
assumption that xB is generic on the right. As xB is generic on the right it
is weakly 1-generic, so there exist infinitely many n such that B contains all
the natural numbers from n to h(n). In other words for infinitely many n, xB
is very close to the right endpoint of [B�n], namely at distance < 2−h(n).
For such n and sufficiently large i, (bi, bi + 2−h(n)) \ [Bi�n] is a non-empty
subset of the interval (xB, xB + 2−h(n)).

We actually prove more: there is no computable order h and no com-
putable sequences ai ↗ xA, bi ↗ xB such that xB − bi ≤ 2−h(n) im-
plies xA−ai ≤ 2−n, which would be a generalization of Solovay reducibility.

Left-c.e. reals with only computable presentations. Downey and
LaForte [DL02] proved the existence of non-computable left-c.e. reals x all
of whose presentations are computable: each prefix-free c.e. set A of finite
binary strings satisfying

∑
w∈A 2−|w| = x is actually a computable set. A

corollary of a result of Stephan and Wu [SW05] is that any such real is
weakly 1-random, i.e. it must belong to every effective open set of measure
one. Actually it must be weakly-1-generic and even generic from the right.

Proposition 4.3.2. If x is a non-computable left-c.e. real all of whose pre-
sentations are computable then x is generic from the right.

Proof. Let U be an effective open set that does not contain x: we must
find y > x such that [x, y) is disjoint from U . First replace U by V = U ∪
[0, x). Let A be a prefix-free c.e. set such that V =

⋃
w∈A[w]. The set A<x =

{w ∈ A : w <lex x} is a presentation of x hence it is computable, so A>x =
{w ∈ A : w >lex x} = A \ A<x is c.e. As a result, y := inf

⋃
w∈A>x

[w] is
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right-c.e. As x is not computable and x ≤ y, one has x < y and we get the
result as [x, y) is disjoint from U .

4.4 Genericity for Π0
1-classes

We work on the set CL(2N) of non-empty closed subsets of the Cantor space,
endowed with the so-called hit-or-miss topology τhm [Mic51]. τhm is gener-
ated by the miss sets Uu = {P ∈ CL(2N) : P ∩ [u] = ∅} where u ∈ 2<N,
together with their complements (the hit sets). We obtain an effective Polish
space (CL(2N), τhm). A computable element of this space is usually called
a computable closed set, and is the set of infinite branches of a computable
tree without dead-ends.

Proposition 4.4.1. In the space (CL(2N), τhm), every weakly-1-generic el-
ement contains only weakly-1-generic sequences.

Proof. Let U ⊆ 2N be a dense effective open set. Let U = {P ∈ CL(2N) :
P ⊆ U}. U is a dense effective open set in the space CL(2N). Hence every
weakly-1-generic closed set P belongs to U , i.e. is contained in U .

We consider a weaker topology τm called the miss topology, generated
by the miss sets Uu with u ∈ 2<N. A Π0

1-class is a computable member
of (CL(2N), τm). The specialization pre-order induced by τm is the reverse
inclusion, so that for each non-empty closed set P one has SP = {Q ∈
CL(2N) : Q ⊆ P} (being “above” P in this pre-order means being inside P ).
Definition 4.2 is instantiated as follows.

Definition 4.5. A non-empty closed set P ⊆ 2N is generic from inside
if P is 1-generic inside SP , which means that for every effective τhm-open
set U ⊆ CL(2N), either P ∈ U or there exists a τhm-neighborhood N of P
such that N ∩ U ∩ SP = ∅.

Proposition 4.4.2. Every closed set P that is generic from inside has empty
interior, i.e. has a dense complement.

Proof. Given a cylinder [u], the class U of non-empty closet sets that do not
contain [u] is an effective open class: it is the union over [v] ⊆ [u] of the
miss sets Uv. If [v] ⊆ [u] then P \ [v] belongs to SP ∩ U and is arbitrarily
close to P in the topology τhm as the length of v tends to infinity. As P is
generic from inside, P must belong to U so P does not contain [u].

As a result, no member of a Π0
1-class P that is generic from inside can

be weakly-1-generic. However all the elements of P are weakly-1-generic
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inside P : if U is an effective open subset of the Cantor space such that P ∩U
is dense in P then U contains every member of P , i.e. U contains P .

Proposition 4.4.3. If P is generic from inside then every member of P is
weakly-1-generic inside P .

Proof. Let U ⊆ 2N be an effective open set. Consider the set U = {P :
P ⊆ U}. U is an effective open set in the space (CL(2N), τhm) (and even
in the topology τm). If P ∩ U is dense in P then there exists Q ⊆ P ∩ U
arbitrarily τhm-close to P (let Q be a finite set of points from P ∩U whose ε-
neighborhood covers P , for arbitrarily small ε), so P belongs to the closure
of U∩SP . If P is generic from inside then P must belong to U , so P ⊆ U .

In particular,

Corollary 4.4.1. A perfect closed set that is generic from inside has no
computable member.

Proof. If x is computable then U = 2N \ {x} is an effective open set. If P
has no isolated point then P ∩U is dense in P . By the previous result, P is
then contained in U , i.e. P does not contain x.

Now, Theorem 4.1.1 can be instantiated as follows.

Corollary 4.4.2. There exists a perfect Π0
1-class that is generic from inside.

Proof. Being perfect, or having no isolated point is a dense effective Gδ-
property in the space (CL(2N), τhm).

4.5 Genericity for regular Π0
1-classes

We know from Proposition 4.3.1 that every real x ∈ [0, 1] that is generic
on the right is weakly-1-generic, but not the converse. Here we prove the
existence of left-c.e. reals that are weakly-1-generic but not generic from the
right.

To this end we need to construct a Π0
1-set P such that (i) its leftmost

element x is weakly-1-generic, and (ii) the complement of P is dense on the
right of x. The first condition requires the class to have non-empty interior,
and even that the interior of P be dense along x. Together with the second
condition, it implies that x should not be isolated in the boundary of P .

The class P that we build will actually satisfy these conditions at ev-
ery point of its boundary : P is regular (it coincides with the closure of its
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interior), its boundary is perfect (has no isolated point) and contains only
weakly-1-generic points.

A suitable way of describing a regular closed set C is by giving ap-
proximations of C in the hit-or-miss topology and at the same time enu-
merating its interior. This can be formalized by introducing a new topol-
ogy τ on CL([0, 1]) that is stronger than the hit-or-miss topology τhm. First,
the hit-or-miss topology τhm is generated by the hit sets {C ∈ CL([0, 1]) :
C ∩ (a, b) 6= ∅} where a < b are rational, and the miss sets {C ∈ CL([0, 1]) :
C ∩ [a, b] = ∅} where a < b are again rational. The stronger topology τ is
generated by the hit-or-miss open sets together with the sets

{C ∈ CL([0, 1]) : [a, b] ⊆ int(C)},

where a < b are rational numbers and int(C) is the interior of C. A canon-
ical enumeration of the rational numbers gives a numbered basis for the
topology τ , which makes (CL([0, 1]), τ) an effective topological space.

Intuitively, describing a closed set C in the topology τ amounts to giv-
ing approximations of C in the hit-or-miss topology and at the same time
enumerating the interior of C, which is equivalent to giving approximations
of both C and (int(C))c in the hit-or-miss topology.

Proposition 4.5.1. The space (CL([0, 1]), τ) is an effective Polish space.

Proof. The space can be embedded into CL([0, 1]) × CL([0, 1]) endowed
with the product of the hit-or-miss topology, which is an effective Pol-
ish space. Indeed, the space is computably homeomorphic to the sub-
set {(C, (int(C))c) : C ∈ CL([0, 1])} of CL([0, 1]) × CL([0, 1]). We show
that this subset is a c.e. effective Gδ-set, which implies that it is an effective
Polish space by Proposition 2.3.3.

Claim 8. The set {(A,B) : (int(A))c ⊆ B} is Π0
1.

Indeed, (int(A))c ⊆ B is equivalent to Ac ⊆ B, which holds iff every
rational interval [a, b] that intersects Ac intersects B.

Claim 9. The set {(A,B) : B ⊆ (int(A))c} is Π0
2.

Indeed, B ⊆ (int(A))c iff every rational interval (a, b) that intersects B
also intersects Ac.

Now it is c.e. The collection of pairs (C, (int(C))c) where C ranges over
the finite unions of closed rational intervals is dense in it.

The Polish topology τ induces a notion of 1-genericity that fits with our
objectives.
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Proposition 4.5.2. In the space (CL([0, 1]), τ), every 1-generic element is
regular and its boundary contains only weakly 1-generic reals.

Proof. First, the set of regular closed sets is a dense effective Gδ-set. In-
deed, C is regular iff every rational interval (a, b) is disjoint from C or
intersects the interior of C. The collection of finite unions of closed rational
intervals (regular sets) is dense.

Let U ⊆ [0, 1] be a dense effective open set. Let U ⊆ CL([0, 1]) be
the collection of closed sets whose boundary is contained in U . It is an
effective open set in the topology τ : the boundary of C is contained in U
iff int(C) ∪ Cc ∪ U covers [0, 1], which is semi-decidable from a description
of C. U is moreover dense.

Theorem 4.5.1. Let P be a non-empty regular closed set that is τ -generic
from inside. The boundary of P contains only weakly-1-generic points.

Proof. Let U ⊆ [0, 1] be a dense effective open set. The class U of regular
closed sets whose boundary is contained in U is an effective open class in the
topology τ . Now let P be a regular closed set. There exists a sequence Pn of
finite unions of closed intervals contained in int(P ) and converging to P in
the topology τ . As U is dense, the endpoints of the intervals constituting Pn
can be taken in U . Each Pn is contained in P (i.e. Pn belongs so SP ), and
belongs to U , so U is dense below P . If P is τ -generic from inside then P
must belong to U , i.e. its boundary must be contained in U .

Theorem 4.1.1 directly gives the following result.

Corollary 4.5.1. In the space (CL([0, 1]), τ) there exists a regular Π0
1-class

that is generic from inside and whose boundary is perfect.

Proof. Having a perfect boundary is again a dense effective Gδ-property in
the topology τ .

As a result, the leftmost element of this set is a left-c.e. real that is
weakly-1-generic but not generic from the right.
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