
HAL Id: tel-01096012
https://hal.inria.fr/tel-01096012

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Synthesis of Hardware Accelerators from
High-Level Specifications of Physical Layers for Flexible

Radio
Ganda Stephane Ouedraogo

To cite this version:
Ganda Stephane Ouedraogo. Automatic Synthesis of Hardware Accelerators from High-Level Speci-
fications of Physical Layers for Flexible Radio. Hardware Architecture [cs.AR]. Université de Rennes
1, 2014. English. �tel-01096012�

https://hal.inria.fr/tel-01096012
https://hal.archives-ouvertes.fr

ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du signal
Ecole doctorale Matisse

présentée par

Ganda Stéphane OUEDRAOGO
préparée à l’unité de recherche IRISA (UMR 6074)

Institut de Recherche en Informatique et Systèmes Aléatoires
École Nationale Supérieure des Sciences Appliquées et de

Technologie

Automatic Synthesis

of Hardware Accelerators
from High-Level

Specifications of Physical

Layers for

Flexible Radio

Thèse soutenue à Lannion
le 10 décembre 2014
devant le jury composé de :

Tangy RISSET
Professeur, INSA de Lyon / rapporteur

Renaud PACALET
Directeur d’études, Institut Mines-Télécom / Télé-
com ParisTech / rapporteur

Christophe MOY
Professeur, Supelec Rennes / examinateur

Dominique NOGUET
Ingénieur recherche, CEA-LETI / examinateur

Olivier SENTIEYS
DR INRIA/directeur de thèse

Matthieu GAUTIER
MCF, Université de Rennes 1 / co-directeur de thèse

2

Contents

1 Introduction 11
1.1 Internet of Things (IoT) and Software-Defined Radio

(SDR) . 11
1.2 Design Methodologies . 11
1.3 The Proposed Methodology and the Main Contributions 13
1.4 The Outline . 13

I BACKGROUND 15

2 Digital Radio and Software-Defined Radio 17
2.1 Introduction . 18
2.2 Introduction to Digital Communication . 19

2.2.1 Symbol Mapping . 19
2.2.2 Channel Access Techniques . 22
2.2.3 Pulse Shaping . 23

2.3 Digital Communication Technologies . 25
2.3.1 DSP Software Platforms and Programming Environment 25
2.3.2 DSP Hardware Platforms and Programming Environment 26

2.4 Flexible Radios . 27
2.4.1 Cognitive Radios . 28
2.4.2 Adaptive Coding and Modulation (ACM) Technique 29

2.5 Software-Defined Radios . 29
2.5.1 Motivations and Main Features . 30
2.5.2 Survey of SDR Platforms . 31
2.5.3 SDR Design Methodologies . 33

2.6 FPGA Platforms for SDR . 35
2.7 Conclusion . 36

3 The Waveforms of Interest 37
3.1 Introduction . 38
3.2 The IEEE 802.15.4 Standard . 38

3.2.1 ZigBee Generalities . 38
3.2.2 The IEEE 802.15.4 PHY . 38
3.2.3 State of the art of IEEE 802.15.4 SDR transceivers 41

3.3 The IEEE 802.11 Standards . 42
3.3.1 Generalities . 42
3.3.2 The IEEE 802.11a Physical Layers (PHYs) 43
3.3.3 State-of-the-art of IEEE 802.11a/p SDR transceivers 45

3.4 Conclusion . 47

1

2 CONTENTS

4 High-Level Designing of Physical Layers (PHYs) 49
4.1 Introduction . 50
4.2 Model-Driven Engineering . 50

4.2.1 Generalities . 50
4.2.2 Domain Specific Languages (DSLs) . 50
4.2.3 Eclipse Modeling Framework (EMF) and Xtext/Xtend 51
4.2.4 Some relevant MDE-based technologies for embedded systems 53

4.3 The High-Level Synthesis (HLS) . 54
4.3.1 A bit of history . 54
4.3.2 High-Level Synthesis Fundamentals . 55
4.3.3 Advantages of HLS . 56
4.3.4 Examples of mature HLS Tools . 58

4.4 Bringing together HLS and MDE for FPGA-SDR 59
4.4.1 Dataflow Model of Computation (MoC) . 59
4.4.2 SDR Control Requirements . 60

4.5 In a Nutshell . 60
4.6 Conclusion . 61

II CONTRIBUTIONS 63

5 A Domain-Specific Language (DSL) for FPGA-Based SDRs 65
5.1 Introduction . 66
5.2 The Proposed Design Flow . 66

5.2.1 Waveform Modeling . 66
5.2.2 Waveform Compiling . 67
5.2.3 Verification and Validation (V&V) . 67
5.2.4 Platform Integration . 68

5.3 Conceptual aspects of the proposed DSL . 68
5.3.1 Platform Modeling . 68
5.3.2 DSL-Based Data-Frame Modeling . 69
5.3.3 DSL-Based Dataflow Modeling . 71

5.4 Frame-Based Control Unit . 74
5.4.1 A Hierarchical FSM (HFSM) for FPGA-based Dataflow Control 74
5.4.2 Frame-based Control Algorithm . 75
5.4.3 Simulation of the proposed HFSM on the StateFlow Environment 78

5.5 Library of HLS/RTL-based Functional Blocks . 79
5.6 Conclusion . 80

6 The DSL-Compiling Framework 81
6.1 Introduction . 82
6.2 DSL Implementation . 82

6.2.1 Parsing . 82
6.2.2 Abstract Syntax Tree (AST) . 83

6.3 DSL Compiler Flow . 83
6.3.1 AST Verification . 83
6.3.2 Waveform Generation . 85

6.4 Platform Programming . 88
6.5 Conclusion . 89

7 A Case Study: DSL-based Specification and Implementation of PHYs 91
7.1 Introduction . 92
7.2 Testbed Description . 92

7.2.1 Nutaq Perseus 6010 Motherboard . 93
7.2.2 Radio420X Radio Front-end Daughterboard 93
7.2.3 Perseus 6010 Software Development Tools 93

CONTENTS 3

7.3 DSL-based Platform Modeling . 96
7.4 DSL-based IEEE 802.15.4 PHY . 97

7.4.1 IEEE 802.15.4 PHY Data-Frame Modeling 97
7.4.2 IEEE 802.15.4 PHY Transceiver Modeling 98

7.5 DSL-based IEEE 802.11a PHY . 102
7.5.1 IEEE 802.11a PHY Data-Frame Modeling 102
7.5.2 IEEE 802.11a PHY Transceiver Modeling 104

7.6 The "adaptive" keyword . 106
7.7 Validation and Synthesis Results . 107
7.8 A few remarks regarding the development time . 109
7.9 Conclusion . 109

8 Conclusion and Perspectives 111

Appendices 117

A HLS Specifications 119
A.1 IEEE 802.15.4 PHY HLS specification . 119

A.1.1 Transmitter . 119
A.1.2 Receiver . 119

A.2 IEEE 802.11a PHY HLS specifications . 129

4 CONTENTS

List of Figures

2.1 Digital transceiver consisting of digital and analog components. 18
2.2 The OSI Model. 19
2.3 BPSK, QPSK, and 16-QAM. 21
2.4 Impulse response and frequency response of raised cosine pulse. 25
2.5 Harvard Architecture. 26
2.6 Abstract FPGA representation (left) and a typical FPGA design flow (right). . . . 27
2.7 Cognitive cycle composed of three major states. 28
2.8 Ideal Software-Defined Radio (SDR). 30
2.9 Realistic Software-Defined Radio (SDR). 31
2.10 KUAR System Diagram. 32
2.11 GNU Radio Companion GUI. 35

3.1 ZigBee PPDU format. 40
3.2 PHY IEEE 802.15.4 transmitter. 42
3.3 PHY IEEE 802.15.4 receiver. 42
3.4 IEEE 802.15.4 SDR Receiver. 43
3.5 IEEE 802.11a PPDU format. 43
3.6 PHY IEEE 802.11a transmitter. 45
3.7 PHY IEEE 802.11a receiver. 45
3.8 GNURadio PHY IEEE 802.11p receiver. 46

4.1 Generic architecture of DSL processing. 51
4.2 EMF possible representations (Java, XML, UML). 52
4.3 Traditional co-design flows vs. MOPCOM co-design flow. 53
4.4 Generic High-Level Synthesis Flow. 55
4.5 A for-loop parsed into a CDFG. 57
4.6 A dataflow graph for a digital filter. 60
4.7 An SDF signal flow graph (left) and its possible implementation (right). 61

5.1 Proposed Design Flow. 67
5.2 DSL-based platform description. 69
5.3 Generic data frame. 69
5.4 DSL-based description of a generic data frame. 70
5.5 DSL-based description of an FB. 72
5.6 FB equivalent architecture. 72
5.7 Simplified design constraint management scheme based on a throughput area trade-off. 73
5.8 Transceiver Hierarchical FSM. 75
5.9 Enable distribution for the activation of FBj operating on Fi. 76
5.10 Control algorithm illustration. 77
5.11 Proposed HFSM modeling and simulation on StateFlow. 78
5.12 IEEE 802.15.4 transceiver matched filter specification in Vivado HLS. 79
5.13 IEEE 802.15.4 transceiver matched filter specification in Catapult. 80

6.1 Generic AST representation. 82

5

6 LIST OF FIGURES

6.2 DSL-compiling framework. 84
6.3 Zoom into the actual AST representation. 84
6.4 Scheduled Design and Datapath Sate Diagram at the block-level. 85
6.5 Example of tcl script generating RTL code with loop constraints. 87
6.6 Hierarchical view of generated RTL for a given FB. 88
6.7 Waveform assembly view. 88

7.1 Testbed Description. 92
7.2 Validation and Testing Environment. 93
7.3 Perseus block diagram . 94
7.4 LMS6002D transceiver block diagram. 95
7.5 MBDK-based hand-coded ZigBee transceiver design. 96
7.6 MBDK-based hand-coded ZigBee transceiver design. 97
7.7 DSL-based Perseus 6010 platform description. 98
7.8 DSL-based IEEE 802.15.4 PHY data frame representation. 98
7.9 DSL-based IEEE 802.15.4 PHY data frame description. 99
7.10 DSL-based IEEE 802.15.4 PHY transmitter description. 100
7.11 DSL-based IEEE 802.15.4 PHY transmitter implementation. 101
7.12 DSL-based IEEE 802.15.4 PHY receiver implementation. 101
7.13 DSL-based IEEE 802.15.4 PHY receiver description. 102
7.14 DSL-based IEEE 802.11a PHY data frame representation. 103
7.15 DSL-based IEEE 802.11a PHY data frame description. 103
7.16 DSL-based IEEE 802.11a PHY receiver description. 104
7.17 DSL-based IEEE 802.11a PHY transmitter implementation. 105
7.18 DSL-based IEEE 802.11a PHY receiver implementation. 105
7.19 Transmitted (left) and received (right) IEEE 802.15.4 baseband signals. 107
7.20 Decoding the transmitted IEEE 802.15.4 signal with VSA. 107
7.21 OFDM (left) and ZigBee (right) spectrum. 108

List of Tables

2.1 Summary of state-of-the-art SDR languages. 36

3.1 Frequency bands and data rates. 39
3.2 Channel page and channel number. 40
3.3 Symbol to chip mapping . 41
3.4 PHY IEEE 802.11a modulation rate-dependent parameters. 44

4.1 A comparative study between different HLS tools. 58

7.1 Resource estimation for the IEEE 802.15.4 and IEEE 802.11a receivers. 109

7

8 LIST OF TABLES

Acronyms and Abbreviations

ACM Adaptive Coding and Modulation
ADC Digital to Analog Converter
ASIC Application Specific Integrated Circuit
AST Abstract Syntax Tree
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BNF Backus-Naur Form
BPSK Binary Phase Shift Keying
BSDK Board Software Development Kit
CISC Complex Instruction Set Computer
CP Cyclic Prefix
CPU Central Processing Unit
CR Cognitive Radio
DAC Digital to Analog Converter
DSE Design Space Exploration
DSL Domain Specific Language
DSSS Direct Sequence Spread Spectrum
DSP Digital Signal Processing
FB Functional Block
FDM Frequency Division Multiplexing
FFT Fast Fourier Transform
FHSS Frequency Hopping Spread Spectrum
FIR Finite Impulse Response
FMC FPGA Mezzanine Card
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPL General Purpose Language
GPP General Purpose Processor
HDL Hardware Description Language
HFSM Hierarchical Finite State Machine
HLL High-Level Language
HLS High-Level Synthesis
ICI Inter-Channel Interference
IDE Integrated Development Environment
IFFT Inverse Fast Fourier Transform

9

10 Acronyms and Abbreviations

IIR Infinite Impulse Response
IoT Internet of Things
ISI Inter-Symbol Interference
ISM Industrial Scientific and Medical
MBDK Model Based Design kit
MAC Medium Access Control
MDE Model Driven Engineering
MoC Model of Computation
OFDM Orthogonal Frequency Division Multiplexing
OQPSK Offset Quadrature Phase Shift Keying
OSI Open System Interconnection
PHY Physical Layer
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RISC Reduced Instruction Set Computer
RTL Register Transfer Level
RX Digital Receiver
SCA Software Communication Architecture
SDF Synchronous Data Flow
SDR Software-Defined Radio
SNR Signal to Noise Ratio
TRX Digital Transceiver
TX Digital Transmitter
UML Unified Modeling Language
USRP Universal Software Radio Peripheral
VHDL VHSIC Hardware Description Language
XPS Xilinx Platform Studio

Chapter 1

Introduction

1.1 Internet of Things (IoT) and Software-Defined Radio
(SDR)

The Internet of Things (IoT) [1][2] is a promising technology which purpose is to connect billions
of communicating devices (the things) through an internet-like network. Such things are expected
to range from simple RFID tags to powerful smartphones interacting with various types of nodes or
even with human beings themselves. Further to this, the IoT is intended to be implemented through
wireless links without any predefined standards or infrastructures. However, such technology would
require multiple communicating devices to coexist in a spectrum limited environment. To tackle this
issue, diverse approaches have been proposed in the literature. Thus, solutions like the Cognitive
Radio (CR) [3][4][5], the Cooperative Radio [6][7][8] or the Green Radio [9] are presented as the
enabling concepts to implement the IoT.

Traditional radios have shown some limitations regarding the implementation of such brand
new concepts. Indeed, they often consist of a set of dedicated hardware which usually implements
a single function at the same time. However, the cognitive radio, the cooperative radio or the green
radio concepts foster flexible architectures that can adapt to their environmental conditions. A
promising alternative which is also presented as a key enabling technology for these concepts is the
Software-Defined Radio (SDR)[10][11]. SDR fosters the implementation of most of the processing
stages in digital form by using programmable devices. Hence, this architecture is much more
flexible than using dedicated hardware while requiring fewer components. It also enables to change
the functionality of the radio at any time by simply using software updates. However, the SDR
approach comes with some drawbacks which are related to the reliability and the security of the
software. Moreover, SDRs require more power than dedicated-hardware based solutions.

Whilst, these concepts have come to a certain maturity, the underlying methodologies or tools
which support their implementation still represent an open research topic. Indeed, it is important to
point out the fact that an efficient toolset would allow to achieve better productivity by considerably
shortening the time-to-market.

1.2 Design Methodologies
Methodologies for implementing digital systems often referred to as design flows, have motivated

a lot of research work throughout the decades. As a result, the level of abstraction was raised
from the transistor-level up to the system-level all the way through gate-level and function-level.
Each of these breakthroughs was welcome with a lot of skepticism with respect to the achievable
performance even though their main purpose was to allow the designers to focus more on the
functionality rather than its implementation. To this aim, several steps within the design process
were automated thanks to some tailored algorithms as well as mechanisms for source code or other
artifacts generation. Such automation processes is generally supported by a dedicated compiler.

The design methodologies can be split up into two categories. On the one hand, some tools sup-
port the development of digital applications on software-based technology such as microprocessor

11

12 CHAPTER 1. INTRODUCTION

or DSP microprocessor. Their entry point consists of a high-level description of the intended ap-
plication written in a high-level language such as C/C++. Afterwards, this description is compiled
to a machine language which consists entirely of numbers (bits) that are understood by the target
processor (machine). The assembly language is often used for intermediate representation however,
it consists of variables and names which are relatively easy to interpret by human beings unlike
machine language. On the other hand, some tools support the development of digital systems on
hardware-based technologies like Field Programmable Gate Arrays (FPGAs) or Application Spe-
cific Integrated Circuits (ASICs). These technologies allow the designer to build customized circuit
architectures which are tailored to the application’s needs. However, FPGAs provide more flexibil-
ity compared to their ASIC counterparts. Indeed, FPGAs enable to program a customized circuit
architecture through a configuration file. It can be reprogrammed to implement a different func-
tionality unlike ASICs whose circuits are hardwired. Their underlying design tools usually consider
as entry point a description of the application in form of a Hardware Description Language (HDL)
such as VHDL or Verilog. The description which is usually performed at the Register Transfer
Level (RTL) is first synthesized into a netlist which is the equivalent description at the gate-level
in HDL. Following this step, the netlist is further processed and placed and routed afterwards. The
placement and routing tool generates the layout or the configuration files which are not in HDL.
Such files are used either to program the FPGA or for ASIC manufacturing.

An emerging approach consists in raising the level of abstraction while considering FPGA or
ASIC based designs. Referred to as High-Level Synthesis (HLS), it fosters the use of high-level
languages as entry point in both FPGA and ASIC design flows. Thus, an application can be first
specified in C/C++ for instance and then directly compiled to a configuration file for the target
FPGAs or ASICs. Once again, the approach allows the designers to focus on the functionality of
the application rather than the underlying hardware. The HLS is supported by a set of academic
and industrial tools such as Catapult from Calypto and Vivado HLS from Xilinx. In summary,
HLS flows can be used for rapid prototyping when hardware fabrics are being considered in a digital
system implementation process. However, they emphasize more on datapath designing rather than
control path. Hence, the control aspects should be handled separately whenever complex control
schemes are required. Indeed, HLS was first thought as a processor generator employing native
sequential languages such as C/C++. The related compilers have succeeded in extracting some
parallelism in the specified applications so as to build an efficient datapath. Control path on the
other hand is handled at function-level rather than system-level. For instance, HLS did not properly
address the specification of state machines, which are the mainstream structure for defining the
control logic of an application at the system-level.

In the context of SDR, the design tools must support the specification as well as the implemen-
tation of any applications while being independent of the underlying hardware, which could ensure
the portability of the solution on different platforms. Furthermore, the tools entry point should be
a high-level language for programmability purpose and finally, such tools must address the reconfig-
urability of the application at a higher level of abstraction. To this aim, different proposals can be
found in the literature and a state of the art of the design methodologies for SDR implementation
is provided throughout this document.

The FPGA technology is often used as a simple hardware accelerator in a typical SDR plat-
form. Paradoxically, it is also presented as a key enabling technology for SDR since it trades-off
between design throughput and power consumption while offering reconfigurability capabilities.
In effect, the main reason why FPGA platforms have not encountered a lot of success within the
SDR community is essentially because of their programming model which relies on HDLs. This
programming model requires a deep knowledge in hardware design, which contrasts with the stated
goal of SDR that is to say a software intensive platform. To remedy this issue, we believe that the
HLS technology can be leveraged so as to define an FPGA-based SDR design flow.

In essence, the design methodologies for implementing digital radios are broadly addressed in
the literature. However, the SDR technology has come with some new challenges which require
rethinking the development process by integrating some relevant features that could tackle the
domain issues.

1.3. THE PROPOSED METHODOLOGY AND THE MAIN CONTRIBUTIONS 13

1.3 The Proposed Methodology and the Main Contributions

Our proposal consists of a design flow for SDR specification and implementation on FPGA-
based platforms. It leverages the HLS principle which allows rapid prototyping on FPGA fabrics
while addressing the control requirements at the system-level. The entry point of the proposal is
a Domain Specific Language (DSL) which is a customized language tailored to a domain’s needs.
The DSL was entirely developed with the Xtext/Xtend framework which is an Eclipse plugin.
It coarsely allows the designers to capture different parts of an SDR waveform, i.e. the frame
model and the dataflow structure, at a higher level of abstraction while instantiating HLS-based
Functional Blocks (FBs). The DSL is featured with a compiler which purpose is to automate as
many steps as possible in the implementation process. The compiler further analyzes the description
of the waveform made with the DSL and then produces a set of artifacts such as synthesis script
and source code. Finally, the proposed flow has been validated on two well-known waveforms,
namely the IEEE 802.15.4 PHY and the IEEE 802.11a PHY transceivers which implement the
radio communication protocol of the ZigBee and the WiFi technologies respectively.

In sum, our contributions can be listed in the following way:
– A Domain Specific Language (DSL) which provides the primitives to rapidly prototype the
dataflow applications meant for SDR. The DSL is combined to HLS tools so as to take
advantage of their offerings.

– A frame-based algorithm to automatically generate an appropriate control path capable of
handling the reconfiguration requirements of a multi-rate complex dataflow specification.

– A design space exploration scenario which enables the appropriate selection of the blocks
composing the final design. Such scenario was made possible by the usage of HLS for rapid
prototyping.

– A compiler which implements the proposed algorithms by further analyzing the DSL-based
descriptions and generating the required artifacts such as synthesis scripts as well as source
code.

– A library of functional blocks specified in HLS and compatible with Catapult or Vivado HLS.
The library includes some blocks which are part of either the IEEE 802.15.4 PHY or the
IEEE 802.11a PHY.

1.4 The Outline

This document is basically divided into two major parts. The first part, Chapters 2 to 4,
entitled Background provides a comprehensive overview of the SDR throughout the different notions
involved. The second part, Chapters 5 to 7, entitled Contributions covers the details of our proposal
which consists of a design flow for implementing FPGA-based SDRs. More detailed descriptions
of the chapters follow.

– Chapter 2 discusses some digital radio principles as well as the underlying technologies.
Furthermore, the chapter presents the "big picture" of SDR including platforms and design
methodologies.

– Chapter 3 provides the details of two PHYs that we have considered in this work for val-
idation purpose. The two PHYs are the IEEE 802.15.4 PHY and the IEEE 802.11a PHY
which implement the radio communication protocols of the ZigBee and the WiFi technologies
respectively.

– Chapter 4 covers the methodologies which purpose is to raise the level of abstraction for PHY
designing. It introduces some concepts such as the Model Driven Engineering (MDE) or the
HLS.

– Chapter 5 provides an overview of our proposal. The chapter discusses the conceptual as-
pects of the DSL through generic examples. In addition, a discussion on the automatically
generated control logic is provided.

– Chapter 6 details the features of the associated compiler. To this aim, it provides more
information on the intermediate representation of a DSL-based SDR waveform description
and then discusses the mechanisms that we have developed to produce the final waveform.

– Chapter 7 discusses the specification and the implementation of the two aforementioned

14 CHAPTER 1. INTRODUCTION

waveforms with the proposed flow. The ensuing results are interpreted and some conclusions
are drawn.

– Chapter 8 first summarizes the entire work depicted in this document and discusses the
perspectives afterwards.

A appendix chapter is provided at the end of the document. It includes HLS specifications, which
are intended to illustrate the description of a PHY layer with HLS tools.

Part I

BACKGROUND

15

Chapter 2

Digital Radio and Software-Defined
Radio

Contents
2.1 Introduction . 18
2.2 Introduction to Digital Communication 19

2.2.1 Symbol Mapping . 19
2.2.2 Channel Access Techniques . 22
2.2.3 Pulse Shaping . 23

2.3 Digital Communication Technologies 25
2.3.1 DSP Software Platforms and Programming Environment 25
2.3.2 DSP Hardware Platforms and Programming Environment 26

2.4 Flexible Radios . 27
2.4.1 Cognitive Radios . 28
2.4.2 Adaptive Coding and Modulation (ACM) Technique 29

2.5 Software-Defined Radios . 29
2.5.1 Motivations and Main Features . 30
2.5.2 Survey of SDR Platforms . 31
2.5.3 SDR Design Methodologies . 33

2.6 FPGA Platforms for SDR . 35
2.7 Conclusion . 36

17

18 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

2.1 Introduction

Digital radio systems [12][13][14][15] resulted from an increasing demand in terms of efficiency
and control over the electronic applications. Indeed, analog designs which physically operated

the signal turned out to be less efficient when high data rates and low power consumption were
required. In addition, pure analog systems gave uncertain performance in production in the sense
that they did not guarantee accuracy and perfect reproducibility of the designs [16].
The advent of the transistor and the limitations of the analog systems have led the designers to
rethink the overall electronic designing processes by introducing some new concepts. Thus, elec-
tronic systems have evolved from analog devices to hybrid fabrics composed of both analog and
digital components as illustrated in Figure 2.1. Figure 2.1 shows the architecture of a current
digital radio transceiver which comprises a baseband processing module to perform the digital
processing and a front-end module to modulate a signal on a career frequency. An antenna trans-
mits/receives the signal into/from the propagation channel. A mainstream approach consists now
in designing flexible radio transceivers which are capable to adapt to the environmental conditions.
Such transceivers are intended to improve the usage of the spectral resource which tends to be
more and more scarce owing to an under optimized utilization. Moreover, the evolution of the
digital platforms has enabled to reach a certain flexibility at the price of a lesser efficiency in terms
of power consumption. Software-Defined Radio (SDR) [10][11] can be presented as a potential
implementation of a flexible radio. In addition to the flexibility, the SDRs also address the pro-
grammability and the portability of a waveform. In this chapter, we will first emphasize on the
baseband transceivers architectures which are mainly ruled by some signal processing principles.
Flexible radios and SDRs will be discussed afterwards.
Section 2.2 and 2.3 introduce the digital communication principles and the underlying technologies
respectively. In Section 2.4, the concept of flexible radio is discussed and illustrated throughout
some examples. Section 2.5 introduces the SDR concept while Section 2.6 discusses the usage of
the Field Programmable Gate Array (FPGA) fabrics as physical hardware for SDR development.
Conclusions are drawn in Section 2.7.

Figure 2.1: Digital transceiver consisting of digital and analog components.

2.2. INTRODUCTION TO DIGITAL COMMUNICATION 19

2.2 Introduction to Digital Communication

Generally speaking, a digital radio transceiver can be defined as any device that is used to
exchange an information signal from point A to point B through wired or wireless channels. It
is usually referred to as the Physical Layer (PHY) which is composed of hardware transmission
technologies and represents the lowest layer in the OSI model. The OSI model, shown in Figure 2.2,
characterizes the internal functions of a communication system. The PHY layer plays an important
role within the OSI model since it provides a network access to the higher layers. The information
theory introduced by Claude Shannon [17], partly introduced the concept of digital communication
by defining some of its major principles. Indeed, the document teaches us the theoretical capacity
of a channel as well as the performance which can be expected. For instance, by considering an
Additive White Gaussian Noise (AWGN) channel and a passband transmission, it was shown that
the maximum capacity achievable, also known as the channel capacity, is given by (2.1):

C = W log2(1 + SNR), (2.1)

where C is the bit rate (in bits per second), W the width of the spectral band in which the signal
is transmitted and SNR, the Signal to Noise Ratio in this band. These results later guided the
research toward source coding, channel coding and algorithmic complexity theories.
The communication theory [18][19] on the other side focuses on how the information transits from
point A to B under the constraints dictated by the information theory. In other words, it deals
with how to condition the signal so as to ensure its integrity throughout the channel. It is usually
well-specified by telecommunication standards [20][21][22][23][24].

Our research work emphasizes on PHY specifications and implementations and therefore, the
following sections provide some discussions over the main aspects of a PHY from a baseband
perspective namely, the symbol mapping, the channel access techniques and the pulse shaping or
signal conditioning. The following equations are taken from [12].

2.2.1 Symbol Mapping

Symbol mapping is usually the starting stage of a PHY definition depending on whether a
channel coding scheme is required or not. It literally takes a sequence of streaming bits and

Figure 2.2: The OSI Model.

20 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

converts (maps) them into a set of symbols predefined in an alphabet of symbols. The symbols
can be either real or complex. Complex symbols are composed of two components, namely an in
phase (I) component and a quadrature phase (Q) component. The choice of a symbol mapping
scheme for a given standard depends on its requirements in terms of bit rate and probability of
error. Thereby, several symbol mapping techniques have been proposed and each of them allows
achieving some theoretical data rate and Bit Error Rate (BER). In the following paragraphs,
we will discuss some of the most encountered symbol mapping techniques by highlighting their
mathematical formalization together with the associated theoretical error rates.

M-ary Pulse Amplitude Modulation (M-PAM)

The M-PAM modulation consists in mapping the input set of bits into a sequence of symbols
according to anM -ary alphabet or constellation. Thus, the number of possible transmitted symbols
is equal to M and a unique symbol represents a set of log2(M) bits. The alphabet is composed of
the symbols sm given by (2.2), where Eg is the energy per symbol.

sm =
√
Eg(2m− 1−M), m = 0, 1, ...,M − 1, (2.2)

One can note from (2.2) that the distance between two consecutive symbols is 2
√
Eg. This

distance impacts the distinction of the symbols at the receiver since the metric that is used to
differentiate them is based on setting a threshold between neighboring symbols. In the context of
an AWGN channel, it leads to a theoretical probability of error at the symbol-level given by (2.3).

PSER =
2(M − 1)

M
Q(

√
6PavTs

(M2 − 1)N0
), (2.3)

where Pav is the average power, N0 the spectral density of the noise Ts the symbol period and Q(.)
the Gaussian density function given by

Q(x) = 1
σ
√
2π
e−(x−µ)

2/2σ2

,

where µ is the mean and σ2 the variance of the function.

M-ary Phase Shift Keying (M-PSK)

The M-PSK modulation is a slightly different approach in the sense that in this symbol mapping
technique, the information is embedded in the phase component of a signal with constant amplitude.
It contrasts with the M-PAM modulation where the amplitudes vary with a constant phase. An
M-PSK constellation fits onto the circumference of a circle where the symbols lay at equal angular
distances. Thereby, the symbols are the phase information whose values are given by

θm =
2πm

M
+

π

M
, m = 0, 1, ...,M − 1, (2.4)

where M is the number of symbols.

The Quadrature Phase Shift Keying (QPSK) is a particular case of an M-PSK modulation,
where M = 4, that has found several applications in wireless communication such as in the IEEE
802.11a standard. The Offset Quadrature Phase Shift Keying (OQPSK) is a slightly modified
version of the QPSK which introduced a delay of half a symbol in order to prevent fluctuations
in the constant envelop of QPSK. It was employed in the definition of the PHY of the Zigbee
technology [20]. For the QPSK modulation and its variant OQPSK, the distinction of the symbols
at the receiver is performed by assigning a region of decision around each symbol of the alphabet.
It leads to a theoretical expression of the probability of symbol error, in the context of an AWGN
channel, given by

PSER = 2Q(

√
Eg
N0

)−Q2(

√
Eg
N0

), (2.5)

where Eg
N0

is the symbol SNR.

2.2. INTRODUCTION TO DIGITAL COMMUNICATION 21

Figure 2.3: BPSK, QPSK, and 16-QAM.

M-ary Quadrature Amplitude Modulation (M-QAM)

The M-QAM modulation is a combination of the two aforementioned modulation techniques.
Indeed, it modulates the information signal into both phase and amplitude information. Doing so,
the two dimensions are simultaneously exploited, which enables to achieve higher data rates. It is
formalized through a complex mathematical representation that exhibits both the amplitude and
the phase information. Equation (2.6) gives the complex representation of an M-QAM modulation
where the amplitude corresponds to an M-PAM modulation and the phase corresponds to an
M-PSK modulation. The probability of error is given in (2.7) where Eb is the energy per bit.
Figure 2.3, which is taken from [21], shows the constellation for M = 2, 4 and 16 respectively. One
can notice that for M = 4 it results in the QPSK modulation that was discussed in the previous
paragraph.

sm =
√
Eg(2m− 1−M)ej(

2πm
M + π

M), m = 0, 1, ...,M − 1, (2.6)

PBER = 4(

√
M − 1√
M

)(
1

log2M
)

√
M
2 −1∑
i=0

Q((2i+ 1)

√
Eb
N0

3 log2M

M − 1
), (2.7)

M-ary Frequency Shift Keying (M-FSK)

The M-FSK is a frequency modulation that turns a set of K = log2(M) input bits into a
frequency information. The set of possible frequencies is given by (2.8), where ∆f is the frequency
separation between two consecutive frequency symbols.

fm = (2m− 1−M)
∆f

2
, (2.8)

Other symbol mapping techniques have been developed and deployed throughout the decades.
Among them, one can mention the Minimum Shift Keying whose variant, the Gaussian-MSK[12]
has been employed in the GSM [25] telecommunication standard. Remembering that the choice
of a given mapping technique depends on the expectation in terms of data rate and probability of
error, accurate simulations must be carried out in order to find the appropriate symbol mapping
technique. These simulations must include the distortions of the expected channel which can vary
in the context of wired, wireless, satellites or underwater communication.

In addition to information signal modulation, it is important to decide how the allocated band-
width resource will be utilized by the modulated symbols. This is known as channel access tech-
niques that are developed in the next section.

22 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

2.2.2 Channel Access Techniques
The channel access techniques have been developed to optimize the usage of the allocated

spectral bandwidth under certain conditions. Indeed, the spectral resource is quite a scarce and
costly resource that is generally managed by the local authorities and at some point coveted
by the other applications. Thus, several techniques have been proposed to increase the overall
communication performance given both a spectral resource and a propagation condition, while
ensuring the signal integrity. Each of these techniques has some relevant advantages however they
may exhibit some shortcomings deeply related to the properties of the channel.

In this section, we will essentially discuss two of those techniques namely, the spread spectrum
and the Orthogonal Frequency Division Multiplexing (OFDM) techniques that have been employed
in many of nowadays applications. They are also relevant for the PHY waveforms that we will use
to validate our approach.

Spread Spectrum Systems

Spread spectrum is a channel access technique in which the information signal is transformed
to a signal of a higher bandwidth before transmission. It is declined in two variants namely, the
Direct Sequence Spread Spectrum (DSSS) and the Frequency Hopping Spread Spectrum (FHSS).
In DSSS systems, the spreading is performed by multiplying the information signal by a known
code while in FHSS this code indicates the carrier frequency on which the information signal is
modulated. These two techniques both result in a wider information bandwidth that protects the
signal from narrowband interference. Moreover, these techniques show some improvements in the
context of multipath transmission.

Equations 2.9 and 2.10 formalize the information signal S(t) and the spread signal respectively
(in the context of the DSSS). The spread signals are commonly called chip sequences and should
include some properties (e.g. orthogonality) that enable to efficiently differentiate them at the
receiver. Indeed, at the reception the transmitted symbols are recovered by synchronization which
implies a multiplication by the synchronized spreading code and detection. Finally, performance
vary according to the channel.

S(t) =

+∞∑
m=−∞

smgT (t− nTs), (2.9)

where sm is the transmitted symbol sequence and gT (t) the modulation pulse of period Ts.

S(t)sC(t) =
∑

angT (t− nTs)
∑

cPN (n)p(t− nTc), (2.10)

where U(t) is the information signal and cPN (n) takes the values ±1 of the desired code. Tc is the
duration of a chip and p(t) represents the unit pulse.
On the other hand, FHSS operates by loading the information signal S(t) onto a carrier, the
frequency of which is indicated by the spreading code. The transmitted signal remains in such a way
at a specific carrier frequency for a period of Tf . Thus, the hopping process can be mathematically
formalized through(2.11). At the reception, the signal is de-hopped by combining mixing operation
and bandpass filtering.

f(t) = fm, mTf ≤ t ≤ (m+ 1)Tf . (2.11)

To conclude, it is important to note that the spread spectrum technique has been employed in
well-known telecommunication protocols and also for many other ad hoc networks. For instance,
the Zigbee radio protocol [20] uses the DSSS within one of its PHY definitions that will be further
discussed in this report. Furthermore, both the Bluetooth protocol and the UMTS standard
leverage FHSS and DSSS respectively.

Orthogonal Frequency Division Multiplexing (OFDM)

Some classes of modulation techniques operate by dividing the allocated bandwidth into a set of
subchannels that are modulated independently. It is called Frequency Division Multiplexing (FDM)

2.2. INTRODUCTION TO DIGITAL COMMUNICATION 23

and results in a lower data rate per subchannel. However, it was shown that this technique reduces
the effect of the impulse response of the channel but requires being further improved so as to reduce
the Inter-Channel Interference (ICI). In fact, it was shown that by selecting orthogonal subchannels
the ICI effect can be considerably reduced. Thus, the OFDM has become a mainstream channel
access technique in which the orthogonality of the subchannels is achieved by making all subcarriers
be an integer multiple of a fundamental frequency.

In practice, the OFDM is achieved by splitting the incoming complex data symbols (issued from
a symbol mapping function) into N parallel streams corresponding to the subcarriers. Then, for
each parallel stream, the complex symbols are modulated by complex sinusoids with frequencies
corresponding to the subcarriers. The modulated symbols are then added to form an OFDM
symbol. In the digital domain, this operation is known as the Digital Fourier Transform (DFT)
whose equation is given by (2.12) and the inverse operation is known as the Inverse Digital Fourier
Transform (IDFT) given by (2.13). It was shown that this operation can be digitally realized with
a Fast Fourier Transform (FFT) or an Inverse Fast Fourier Transform (IFFT) which are two faster
(reduced complexity) implementation of the DFT and the IDFT respectively.

sk =
1

N

N−1∑
k=0

Sne
j(2πkn

N), (2.12)

Sn =

N−1∑
k=0

ske
−j(2πkn

N), (2.13)

Several telecommunication standards employ the OFDM technique. Coarsely, at the transmitter
the IFFT is used to convert the complex symbol in time domain as aforementioned. Furthermore,
a Cyclic Prefix (CP) is appended to each OFDM symbol before transmission. It was shown that
the CP enables to protect the signal from the channel impairments. Signal windowing is also
part of the transmitter as it enables to squeeze the signal into the spectral recommendation. The
receiver consists essentially in synchronization and symbol recovery through a DFT calculation.
Many other challenges are encountered at the receiver making it a burden in OFDM design.

OFDM systems will be further depicted through an example later in this document where an
OFDM-based telecommunication standard will be discussed. To conclude OFDM encounters a lot
of success and it is employed in many standards such as the Digital Audio Broadcasting (DAB) [23],
the Digital Video Broadcasting (DVB) [24], the Long Term Evolution (LTE) [26] and many others.

2.2.3 Pulse Shaping

The pulse shaping technique has been developed to counter the Inter-Symbol Interference (ISI)
damaging effects. Indeed, pioneers transmission systems have faced severe interference effects.
These interference were due to the leakage of the energy of the previously transmitted symbols into
the current symbol. It ended up with strong distortions which made it very complex to decode the
current symbol. To tackle this issue, a first solution has been to decrease considerably the symbol
rate so as to tell the received symbols apart. This solution was not sustainable since the trend was
fostering to move toward the opposite way, i.e. to increase the transmission rate.

As a result, pulse shaping techniques have been proposed to strengthen the information signal
prior to the transmission. Say, g(t) is a pulse shape function, g∗(−t) its transform conjugate and
c(t) the impulse response of the channel. The received pulse, formalized as p(t) = g(t)∗c(t)∗g∗(−t)
should satisfy the Nyquist criterion which states that p(t) must be equal to zero at optimal sampling
times. In the next paragraphs, three useful pulse shaping techniques are discussed.

Rectangular Pulse

Rectangular pulse shaping consists in shaping the incoming symbols with a time-domain rectan-
gular filter. It is quite an intuitive shape that unfortunately leads to some important shortcomings
in practice. Indeed, the rectangular pulse is difficult to create in time domain because of its rise
time and its decay time. In addition, its frequency response is a sinc function (sin(x)/x) that has
a zero amplitude at integer multiples of the symbol rate. This sinc frequency response goes on

24 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

forever and might interfere with others, which is not allowed by the frequency regulators. It shows
some second lobes that are only 13 dB lower than the main one. Equation 2.14 gives the time
domain rectangular pulse function where Ts is the symbol period.

g(t) =

√
2

Ts
, 0 ≤ t < Ts, (2.14)

From then on, one can argue that a filter with a rectangular frequency response could solve this
problem since both second lobes and going forever issues would have been tackled in such a way.
Such a filter corresponds to a sinc function in time domain that is unfortunately no more possible
to build than a rectangular pulse. Thus, alternative solutions have been proposed to trade-off
between these two classes of filters.

Cosine Pulse

Cosine pulse shaping presents some interesting spectral gain as compare to the rectangular
pulse. For instance, it has some 10 dB lower side lobes in comparison, with a constant amplitude.
Equation 2.15 gives the time domain expression of the pulse.

g(t) = sin(
πt

Ts
), 0 ≤ t < Ts, (2.15)

Raised Cosine Pulse

The raised cosine filters came up as a modification of the sinc pulse. They have an adjustable
bandwidth that can be adapted through a parameter called the roll-off factor. Equation 2.16 gives
the time domain representation of the raised cosine pulse where the roll-off factor a ranges from 0
to 1. This equation shows that the filter ranges from a pure sinc function (a = 0) to a rectangular
function (a = 1) depending on the value of a. The most encountered values given to the parameter
a are 0.2, 0.4 and 0.6. Figure 2.4 gives both the impulse response and the frequency response of a
raised cosine pulse for different values of the roll-off factor a. In practice, the raised cosine filter is
implemented as a Finite Impulse Response (FIR) filter. In addition, it requires a minimum number
of taps since the filter get better as the number of taps increases.

g(t) =
sin(πtTs)

πt
Ts

cos(aπtTs)

1− 4r2t2

T 2
s

, 0 ≤ t < Ts, (2.16)

Further Digital Signal Processing (DSP) blocks/algorithms can be involved in the definition of
a digital transceiver, however covering all these blocks features is out of the scope of this document.
For instance, the channel coding and decoding techniques are relevant mechanisms for ensuring
the integrity of the transmitted information signal throughout a noisy channel. They are declined
into block codes [27] and convolutional codes [28]. The former submit k bits in their inputs and
forward n bits in their outputs. The latter induces the notion of memory by considering the
preceding bits for computing the ongoing code. Both techniques are usually characterized by a
coding rate (r) which coarsely denotes the redundancy induced by the coding technique. In addition
to channel coding, one can mention the synchronization blocks which purpose is to lock the receiver
components with the appropriate processing parameters. They are employed in coherent receivers
which are opposed to non-coherent receiver where a blind reception is performed. Synchronization
has actually a crucial importance on a given transceiver architecture since its performances can limit
the request for data re-transmission in the network. Channel estimation is optionally implemented
on receivers. It aims at estimating the channel’s distortions by using blind techniques or known
sequences that are inserted in the transmitted data.

In the next section, the technologies that are proposed to support these algorithms are discussed.
Their choice can have a significant impact on the final product, so it is important to have an idea
of the expected performance when considering a given technology.

2.3. DIGITAL COMMUNICATION TECHNOLOGIES 25

Figure 2.4: Impulse response and frequency response of raised cosine pulse.

2.3 Digital Communication Technologies
The advent of the digital communication has started a new era for communication system

in general. This paradigm has been supported by the proposal of a set of technologies which
purpose is to increase the overall productivity in digital systems designing. In the signal processing
domain, these technologies allow implementing most of the algorithms discussed in the previous
section and they are often referred to as the baseband technology. As the complexity of the
communication systems increases, technologies turn out to be rapidly obsolete and may require
to be further enhanced so as to support more complex algorithm implementations. As a result, a
bunch of technologies, most of them issued from research programs, for digital systems designing
have appeared throughout the decades. These technologies can be classified into two main groups
namely, the software technologies and the hardware technologies. They both enable implementing
digital systems and are supported by specific design flows.

In this section we briefly review the technologies that are involved into digital signal processing
systems, which essentially consist in design flows and running platforms. Designs flows, on the one
hand, are generally composed of textual or graphical programming languages and their associated
compilers. The platforms on the other hand, represent the physical device on which the application
is run.

In DSP, the choice of the underlying platform is governed by the target performances. Those
performances are diverse, in the sense that they can be estimated in terms of processing speed,
platform area, power consumption or flexibility. Further to this, DSP applications are described
as computationally intensive, data independent, exhibiting a high level of parallelism and requir-
ing low arithmetic architectures. As a result, different types of platforms have been proposed,
some of which tending to be more software-oriented in contrast to the hardware-oriented plat-
forms. Coarsely, software-oriented platforms emphasize on the programmability issues whereas the
hardware-oriented platforms focus more on the resulting circuit architecture. Each of these two
platforms is depicted in the following two paragraphs.

2.3.1 DSP Software Platforms and Programming Environment
Microprocessors are generally characterized by their Instruction Set Architecture whose instruc-

tions are sequentially evaluated on a fixed hardware. They are declined into two types namely,
the Complex Instruction Set Computer (CISC) [29] machines that have some complex instruction
formats and the Reduced Instruction Set Computer (RISC) [29] machines with regular and simple

26 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

Figure 2.5: Harvard Architecture.

instruction formats. Microprocessors are widespread electronic components that are employed in
many industrial fields such as the automotive , the aerospace, the home/building automation or
the telecommunication industry. However, their sequential nature makes them unsuitable for the
efficient implementation of computationally intensive DSP applications.

These limitations have led in the 80s to the proposal of microprocessors that are optimized
for DSP, those DSP microprocessors [30] are capable to perform multiplication and accumulation
operations by consuming less power. They rely on the Harvard architecture [30] which separates
the data memory and the program memory as shown in Figure 2.5. Indeed, a common data and
program memory leads to a memory bottleneck that limits the performance of microprocessors.
DSP microprocessors have been enhanced with dedicated complex functions and also with some of
the fixed-point operators that are often required in most of DSP applications.

Furthermore, parallelism has been also addressed in DSP microprocessors by introducing in-
struction level parallelism through instruction pipelining orVery Long Instruction Word (VLIW) [31]
architecture for instance. Thus, DSP microprocessors have become an interesting alternative for
implementing DSP applications and they are usually associated with General Purpose Processors
(GPPs) or other type of general microprocessors, such as the Advanced RISC Machine (ARM)
microprocessors, to implement the rest of the network stack.

As mentioned before, software platforms offer a good trade-off between programmability and
performance. Thereby, DSP microprocessors and general purpose microprocessors are supported
by software tools that enable specifying and implementing an application from a high-level of
abstraction with an a priori knowledge of the underlying architecture. Those tools usually consider
a C-based specification of the application and rely on a compiling framework to produce a run-
time code that is optimized for the microprocessor architecture. Moreover, some of these compilers
are featured with some intrinsic functions that are used to optimally target, from the C-based
description, a dedicated resource.

2.3.2 DSP Hardware Platforms and Programming Environment

Whilst DSP microprocessors have enabled achieving certain performance in terms of application
throughput, they still restrict the application designers to a pre-defined architecture. This restric-
tion limits the achievable level of parallelism, which makes DSP microprocessors unsuitable for
several high data rate DSP applications. FPGA and ASIC technologies enable customizing circuit
architecture for a given applications. From a DSP point of view, these platforms allow defining the
architecture that are tailored to an application, thereby optimized in terms of processing speed,
resource area and power consumption. FPGAs can be coarsely presented as a set of programmable
logic components, interconnection and input/output (I/O) pins at their outer edge as shown in

2.4. FLEXIBLE RADIOS 27

Figure 2.6: Abstract FPGA representation (left) and a typical FPGA design flow (right).

Figure 2.6. Nowadays, they are featured with large memory and data processing resources. Logic
components can be programmed to implement simple or complex DSP functions while the intercon-
nection is used to program a desired functionality. FPGAs are declined into different types based
on the way they are configured. Actually, FPGAs are programmed via configuration files stored
into memories. Thus, SRAM-based FPGAs, FLASH-based FPGAs or antifuse-based FPGAs can
be found. However, this programmability at the architectural level implies an overhead in terms
of power consumption and speed as compared to ASICs fabrics.

ASICs are fully customized architectures that are generally employed for large market tech-
nologies. They consist in providing a hardware that is suitable for a given DSP application. By
doing so, the provided hardware (called an ASIC) can be optimized to meet all the requirements
regarding processing speed, resource area and power consumption. As a result, ASICs are not
flexible fabrics and they are usually associated with microprocessors to perform some others task
such as control.

The design methodologies employed to prototype an FPGA-based or an ASIC-based DSP appli-
cation usually relies on Hardware Description Languages (HDLs). Those languages such as Verilog
or VHDL are the main entry points for most of the available FPGA and ASIC synthesis tools.
HDLs are programming languages that allow an accurate description of circuit architecture at the
RTL-level for instance. In the context of FPGA, a HDL description is compiled down to a bitstream
which is used to program the FPGA as shown in the design flow illustrated in Figure 2.6. An ASIC
development methodology is quite similar to the FPGA ones, however it requires additional steps
for the final circuit manufacturing.

2.4 Flexible Radios
In the previous section we have introduced the DSP concept by discussing some of its core

principles together with its underlying technologies. A high degree of flexibility is now expected
in DSP application since communication protocols must support multiple modes and transceiver
must support multiple communication protocols. Flexible radios are then employed when it comes
to incorporate adaptive capabilities. Such radios must be capable for instance to switch between
different configurations so as to take advantage of their operating environment. This approach

28 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

Figure 2.7: Cognitive cycle composed of three major states.

aims at increasing the spectral efficiency or could be used to save the energy. Indeed, the spectral
resource which is managed by the local authorities tends to be scarce because of all the operating
radios. One way to tackle this issue is to undertake a cognitive usage of the spectrum by these
radios.

2.4.1 Cognitive Radios

Cognitive Radios (CRs) [5] can be defined as radios that are aware of the context in which
they are being operated. They observe a set of environmental parameters before selecting the
optimal communication scheme. The cognition refers to the fact that cognitive radios monitor
their operating environment in order to improve their performance. A cognition cycle as shown
in Figure 2.7 is usually employed so as to illustrate the main features of a cognitive radio. It
is composed of three major states namely, the Sense state where the system monitors a set of
metrics, the Decide state where the system makes up a decision on which configuration to select
and the Adapt where the system is reconfigured into the selected configuration. In the following two
paragraphs, we will discuss two implementations of a cognitive radio that are the Spectrum-Aware
radios and the Multi-Standard radios.

Spectrum Aware Systems

The research on cognitive systems has been essentially oriented toward spectrum aware radios.
As spectrum turns out to be quite a scarce resource, there has been a growing need for spectrum
management techniques so as to take advantage of the underutilized allocated spectrum. Such
opportunistic systems aim at achieving better performance from a clever usage of the spectrum.
For instance, the white space in the TV band (470 to 862 MHz in Europe) has gathered a lot
of interest in the community and an important part of the research in cognitive systems focuses
on how to exploit these spectral bands without disturbing the incumbents. The detection of an
incumbent is performed by using different signal processing methods that can be found in the liter-
ature [32][33][34]. Among those methods, one can mention the energy detector [32] which typically
detects the presence of an incumbent by thresholding the energy that is sensed in the channel.
A relevant detection technique that is also discussed in the literature is the cyclostationnarity
detector [33][34][35] which detects digital modulations through their cyclostionnarity properties.
Indeed, most of the digital modulations imply cyclic frequencies in the transmitted signal due to
the periodical digital computations performed over random source data. Thus, the cyclostation-
narity detector aims at finding a periodicity within the mean and the autocorrelation function of
a signal x(t). Equations (2.17) and (2.18) give the mean and the autocorrelation functions of a
signal x(t) while (2.19) the periodicity of these functions.

2.5. SOFTWARE-DEFINED RADIOS 29

mx(t) = E[x(t)] (2.17)

rxx(t) = E[x(t− δ

2
)x∗(t+

δ

2
)] (2.18)

mx(t+ T0) = mx(t) rxx(t+ T0, δ) = rxx(t+ T0). (2.19)

Multi-Standard Systems

Multi-Standard systems [36][37] can also be viewed as another type of cognitive systems where
the cognition is related to the capability to operate with different telecommunication standards.
Indeed, several telecommunication standards were released in order to fulfill the increasing demand
in terms of data rate. However, given an application (voice, data, video...), the required data rate
may vary in the sense that a high data rate standard may not be appropriate to transmit low data
rate signal such as voice. It would be more efficient in such cases to switch to a lower data rate
standard before initiating the communication. Furthermore, owing to the limited coverage that is
offered by the telecommunication operators, multi-standard systems enable, given a geographical
region, virtualizing global network coverage. An example of such scenario that we often face is
the switching between mobile standards operated by most of the current mobile phones in order
to ensure a permanent network access to the users. From an implementation perspective, this is
currently achieved by integrating a dedicated chip for each standard and then using a software
control to switch at run-time between standards. Some mechanisms are provided to handle the
handover between the standards as well. This approach implies a duplication of radio chips, which
is not economically sustainable in the long term.

2.4.2 Adaptive Coding and Modulation (ACM) Technique

TheAdaptive Coding and Modulation (ACM) [38] technique is used in many of the recent radio
protocol. Its main purpose is to dynamically improve the overall spectral efficiency, i.e. increasing
the number of bit per second in a given spectral band. This technique employs some cognition
to tailor both the coding and the modulation schemes to the environmental conditions. Thus,
depending on the value of the SNR, the system can select which coding or modulation technique
to employ. As a result, such a system would be capable to higher the data rate when SNR is high
and lower it when SNR is low.

ACM has brought some interesting perspectives by enabling a dynamic exploitation of the
spectrum. However, it also came up with some new challenges by making DSP, in the context
of ACM, more data dependent. Indeed, the dynamic coding and modulation information are
now embedded in the transmitted data frame so as to inform the receiver which decoder or de-
modulator to employ. Thus, these information must be decoded prior to data decoding. It leads
to some implementation challenges, which can be addressed with either multi-mode functions or
reconfigurable functions. In this work, we have studied the possibility of implementing ACM-based
waveforms on FPGA platforms.

2.5 Software-Defined Radios

Software-Defined Radio (SDR) is the generic terminology that is employed to depict the flexible
DSP architectures with very high reconfiguration capabilities so as to adapt themselves to various
air-interfaces. This concept was first introduced by Joseph Mitola and then turned out to be a
sustainable implementation of Cognitive Radios [10] [11]. Indeed, in the early 90s the unavoidable
shift from hardware radios to software intensive radios was portended. In his paper, Dr. Mitola
also pointed out that software radios should be a set of DSP primitives and a metamodel system for
combining these primitives into communications systems functions such as transmitters, channel
models or receivers. In the following sections, we propose an insight of SDR in order by discussing
its major principles.

30 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

Figure 2.8: Ideal Software-Defined Radio (SDR).

2.5.1 Motivations and Main Features

Motivations

SDR actually came up from a military need in insuring the inter-operability of the equipment
through platforms that could run any type of waveforms by simply being reprogrammed [38].
Indeed, military applications have quite a long life cycle and it is crucial to maintain them and
insure their inter-operability with the upcoming applications. Thus, an SDR platform could enable
to deploy various type of application in a given geographical location and make it possible to
communicate whatever the situation. Say a jammer is trying to disturb the communication, it
would be easy for SDR platforms to agree on a different channel/protocol and then switch the
communication to that new configuration.

Later on, SDR has appeared to present several advantages. It allows, among others, to make an
efficient use of resources under a key metric such as low-power or high-throughput for instance. Op-
portunistic frequency reuse can be easily sketched with an SDR platform so as to virtually increase
the amount of available spectrum. Moreover, SDR can significantly reduce the equipment obsoles-
cence in the sense that SDR can be upgraded so as to support the latest communications standards.
Finally, SDR has opened some perspectives for the research and development by enabling with a
certain comfort to implement many different waveforms for real-time analysis.

Main Features

An ideal SDR can be illustrated as in Figure 2.8. In this ideal representation, the signal
is converted at the transmitter (TX) antenna and receiver (RX) antenna by a Digital to Analog
Converter (DAC) and an Analog to Digital Converter (ADC) respectively. Such architecture could,
in theory, support any type of waveforms since it could be easily reprogrammed for a desired
waveform implementation. Furthermore, this approach ensures both the programmability and the
portability of the SDR solutions over multiple microprocessor-based platforms. It would suffice to
recompile the same application code for the other platforms.

The ideal SDR would have been the holy grail for digital radio systems however some limitations
appear when it comes to the practical requirements. Actually, digitizing the signal right after the
antennas requires high sampling frequency ADCs and DACs technologies capable to support the
high rate incoming data stream. ADCs and DACs are essentially characterized by their bandwidth,
data precision and sampling frequency [39]. Sampling in an ideal SDR context would require the
ADCs to operate at up to twice the carrier frequency when sub-sampling technique is not employed.

Furthermore, microprocessors exhibit some limitations that are related to the power consump-
tion and the achievable throughput. As aforementioned, microprocessors evaluate the instructions
in a sequential order, which limits the achievable parallelism. However, most of the DSP algo-
rithms are highly parallel and require computation intensive solutions. Whilst programmability is
well addressed when considering microprocessors, their overall performance in terms of computa-
tion speed does not make them such a good candidate for an ideal SDR implementation. Timing
performance is then a critical aspect for microprocessor-based SDRs.

Further to this, power consumption is also limiting the development of microprocessor-based

2.5. SOFTWARE-DEFINED RADIOS 31

Figure 2.9: Realistic Software-Defined Radio (SDR).

SDR. It is known that microprocessor-based solutions consume much more power compare to
hardware counterparts. Thus, in a context where some restrictions exist on power consumption
microprocessors would be unsuitable for SDR implementation. A typical illustration of such a
power constrained SDR would be in cellular networks where base stations could afford a greedy (in
terms of power) SDR implementation whereas mobile phones are extremely constrained in terms of
power. In summary, the ideal implementation of SDR is dramatically limited by the technologies
that are available on the market. Nonetheless, research on SDR domain has identified three major
aspects that must be properly tackled when it comes to implementation. Thus, programmability,
portability and reconfiguration are the key elements of an SDR and most of the proposal emphasize
on at least one of those three features.

Given the limitation factors of the ideal SDRs, the proposals in this domain have so far consisted
in inserting an agile RF front-end after the antennas and building the baseband processing as
software-defined as possible. Thence, the SDR solutions that are encountered in the literature use
a software intensive approach to perform most of their baseband computation such as filtering,
modulation, channel equalization and so on. The mainstream SDR platform can be illustrated
as in Figure 2.9 where the challenge consists in pushing the converter as close as possible to the
antennas.

Finally, the implementation of SDR platforms is subject to exploitation constraints. Thus, some
implementations are more applicable to laboratory conditions where space and power-consumption
are not that critical. These implementations rely on General Purpose Processors (GPPs) which
offer maximum flexibility and easy development flow while suffering from low-throughput and high
power-consumption. On the other hand, SDRs which rely on signal processing specific hardware
such as FPGAs, are more suitable for high data rate and resource-constrained applications. In
the following section, we give an insight of SDRs platforms by emphasizing on their underlying
architecture technology.

2.5.2 Survey of SDR Platforms

Since the advent of the SDR concept, several platforms intended to implement SDR waveforms
have been proposed. These platforms aim at providing a hardware environment for programming
SDR waveforms while making an abstraction of the underlying hardware. Such platforms can be
classified into three major groups depending on their hardware resources [40] [41]. Thus, some
platforms were developed around a single or a cluster of GPPs. Such platforms do not consider
constraints like space or power consumption. Another group of platforms were developed in a
co-processing style where a single GPP or a general microprocessor, which provides the control
and the upper layers, is augmented with accelerators for the PHY requirements. The third group
considers programmable hardware fabrics as the central components on the platform.

32 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

Figure 2.10: KUAR System Diagram.

GPP-based SDRs

GPP-based SDR platforms offer a high flexibility and an easy development flow. They are
suitable for laboratory environment where the size and the power consumption are not a major
concern. They enable rapid prototyping of new waveforms by using specification languages such
as C. However, latency is a major concern for such platform. Indeed, GPPs are more suitable to
work with block of data rather than on one sample at the time. Furthermore, the operating system
introduces latency which makes GPPs inappropriate for certain real-time applications.

The most popular GPP-based SDR platform is certainly the pair USRP/GNU Radio. USRP [42]
stands for Universal Software Radio Peripheral and is employed as an RF front-end. It is composed
of ADC/DAC which convert the signal from/at the intermediate frequency and a FPGA which
converts the signal form the intermediate frequency down to the baseband. GNU Radio on is a
software framework that enables the baseband processing on GPPs, typically on a host computer.
It provides a Graphical User Interface (GUI), called the GNU Radio Companion, which enables
modeling dataflow graphs by using a block-based approach. The pair USRP/GNU Radio has
encountered a lot of success and it has been intensively used for demonstration purpose in the SDR
community.

Co-Processor based SDRs

Co-processor based SDR platforms came out from the limitations and unsuitability of the
GPP-based SDR for real-time and low power implementation. They aim essentially at reducing
the platform power consumption while increasing the achievable throughput. Such platforms ac-
celerate the signal processing of the GPP by considering additional resources called accelerators.
On these platforms, GPPs are sometimes substituted for general microprocessors such as the ARM
family microprocessors and the accelerators vary between FPGAs, DSP microprocessors, Graphics
Processing Units (GPUs) or a combination of these technologies. This approach is often employed
to develop SDR platforms, however it makes the programming model dependent on the platform.

The Kansas University Agile Radio (KUAR) [43], shown in Figure 2.10, is an SDR development
platform whose DSP part is composed of an embedded PC and an FPGA. It was designed to address
the need in wireless networking and radio frequency research. The Imec ADRES [44] is an SDR
platform that is built around a main CPU and the ADRES accelerator which is used for signal
processing and which also leverages data parallelism. The NXP EVP16 [45] is built around an ARM
processor which provides the control and the LINK/MAC layers. It is featured with a conventional
DSP and several hardware accelerators for the signal processing. The Tomahawk SDR chip [46]

2.5. SOFTWARE-DEFINED RADIOS 33

was developed by the University of Dresden and uses two Tensilica RISC processors for control
and eight DSP microprocessors for the signal processing. Along the same lines, the Embb [47] is
a generic hardware and software architecture dedicated to dataflow applications. To this aim, it
combines some DSP units and a General Purpose Control Processor. Each of these DSP units is
dedicated to a family of signal processing algorithms and the available set of DSP units include an
interleaver, a general purpose modulator, a general purpose interface (up to 4 ADCs and DACs)
as well as a general purpose vector processor.

Reconfigurable Hardware-based SDRs

As mentioned before, hardware fabrics such as FPGAs or ASICs enable to gain more perfor-
mance compared to DSP microprocessors. Thus, they have gathered a lot of interest in the SDR
community when it came to increase the computation power available on SDR platforms. As a
result, different architectures which employed specialized hardware fabrics were proposed. How-
ever, one can argue that this approach takes the SDR concept far away from its initial goal by
decreasing the programmability and making the portability of the solutions more burdensome.

The Magali SDR chip [48] is a platform that was developed by the CEA-Leti for telecommu-
nication demonstration purposes. It has a Network-on-Chip configuration controlled by an ARM
processor. It is featured with reconfigurable IPs for OFDM, decoding and de-interleaving functions.
The ExpressMIMO SDR platform [49] was developed as a configurable units approach on an FPGA
by EUROCOM. It targets essentially MIMO implementations and relies on the OpenAirInterface
open-source framework. The WARP SDR platform [50] was developed by the Rice University as an
open SDR platform programmed in VHDL (RTL). It is built around an FPGA fabric and supported
by a community whose goal is to offer some open source implementations on the platforms. The
Nutaq platform [51] is an example of commercial platforms for FPGA-based SDR development. It
is also presented as supporting MIMO transceivers and the WIMAX protocol.

2.5.3 SDR Design Methodologies

The programmability constitutes a major factor in the rise of SDR. Indeed, SDR has come to
maturity and a common development process is the need of the hour. In the previous section,
we have discussed different SDR platforms and we have also highlighted that one important thing
while considering these platforms is the designing methodology that they offer. GPP-based SDRs
are the easiest to program since they are usually programmed in C-based languages and leverage
a well-supported compiling framework. Heterogeneous SDR platforms like co-processor based and
reconfigurable hardware based platform are more complex to program because their programming
model is tailored to their architecture. This also limits the portability of an SDR application
specified for these platforms onto a different platform.

The lack of a common flow to specify SDRs has implied two mainstream approaches. On the one
hand, some research programs focused on defining standards for SDR development so as to unify
the development approaches. On the other hand, some researches have addressed the PHY layer
implementation by proposing programming language to model and implement PHYs in the context
of SDR. In the following paragraphs, we discuss the SDR standards and SDR-PHY languages that
can be found in the literature.

SDR standards

SDR standardization proposals can be viewed as middlewares which provide an interface be-
tween the hardware and the application. The underlying idea is to propose Application Specific
Interfaces (APIs) through which an SDR can be specified while giving an emphasis on the porta-
bility of the solution on different platforms. Standardization was supported by the US Army
essentially and two major works have been realized in this domain. First on is the Software Com-
munication Architecture (SCA) [52] that was motivated by the diversity of the waveforms employed
by the US Army. The stated goal of the SCA is the development of a standard to facilitate the
reuse of waveform code between different radio platforms. SCA specifies how waveform components
are defined, created, connected together, and the environment in which they operate. To do so,

34 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

SCA defines a Real-Time Operating System (RTOS) that manages the hardware, a middleware
layer which takes care of connecting different parts of the radio and handles data transfer between
them, a set of interface definition language (IDL), an eXtensible Markup Language (XML) based
ontology to describe all the components that make up a radio and how these components are to
be interconnected and finally APIs for the many frequently used interfaces.

Another attempt for SDR standardization is the Space Telecommunication Radio System
(STRS) [53] developed by the NASA. Indeed, satellites and deep space missions have quite a
long life cycle and could leverage SDR to extend the life of a mission. NASA investigated on
SDR and the early mentioned SCA turned out to be too heavy for NASA missions’ applications.
STRS explicitly addresses the signal processing modules built upon ASIC or FPGA fabrics and
employed GPP for control only. STRS relies essentially on APIs that handle control, application
setup, memory, messaging and timing.

SDR PHY languages

The second set of approaches consists of textual/graphical languages which purpose is to spec-
ify and implement the PHY of an SDR. Given that SDR was taught as software-centric platform,
these languages mainly target GPP or DSP-based SDRs. The Waveform Description Language
(WDL) [54] is an example of such a language that was proposed by the Programmable Digital Ra-
dio (PDR) research project in the UK. It enables to implement and SDR-PHY from a hierarchical
decomposition. Each processing element is viewed as a block within which a state machine locally
handles both scheduling, thanks to handshake protocols, and communication with the other blocks.
SPEX [55] is language developed by the Michigan University SDR Group to specify SDR-PHYs
on a Single Instruction Multiple Data (SIMD) processor by using vector data type like Matlab
and also data types borrowed from SystemC. SPEX is declined into three sub-languages namely,
the Kernel SPEX to define the processing algorithm, the Stream SPEX to handle to handle both
dataflow and interconnection and finally the Synchronous SPEX for real-time constrains consider-
ation. DiplodocusDF [56] is a modeling language that was proposed for implementing SDR PHYs
on software-based platforms. It leverages a Unified Modeling Language (UML)-like representation
to model the SDR PHY and generates an executable to be run on a software-based platform. The
Prismtech Spectra Core Framework [57] is a SCA-compliant framework that supports the deploy-
ment of waveform components on any mix of General Purpose Processor (GPP), DSP microproces-
sors and FPGAs. In this framework, FPGA functions are essentially programmed in VHDL-RTL.
In the same way, the Platform and Hardware Abstraction Layer (P-HAL) [58] aims at designing
specific radio applications independently of the hardware context. The underlying approach con-
sists in abstracting the hardware platform by software functional units. Thus, it manages radio
process real time constraints, processing elements communication issues and enables the software
functional units to be configured. The P-HAL defines four services namely, the BRIDGE that
handles real time constraints, the SYNC that synchronizes the concurrent processes, the KERNEL
schedules the software functional units and the STATS analyses the statistics of the functional
units.

SDRPHY [59] is another language that was proposed to cover the sample-to-bit part of the SDR.
It enables an XML-based description of the waveform and provides an interpreter as an interface
between the description and a specific SDR implementation. This approach makes it possible to
allow multiple applications to operate on different SDR hardware. The SDRPHY language aims
at satisfying the following goals:

– Completeness: most of the waveforms should be describable using the language.
– Lightweight: the interpreters should require low processing and memory.
– Consistency: similar functionality should not require different descriptions.
– Compactness: low number of keywords to support the description.
– Accessibility: making the language open to any user wishing to utilize or improve.
The GNU Radio [60] framework is an environment for designing GPP-based SDRs. It is featured

with a GUI called grc, which enables to draw the flow graph of an SDR. The GNU Radio major
components are:

– A framework of arbitrary signal processing blocks that can be connected together.
– A scheduler to sketch the processing and the transfer of the data.

2.6. FPGA PLATFORMS FOR SDR 35

Figure 2.11: GNU Radio Companion GUI.

– C++/Python infrastructure to build the flow graph.
– A GUI called grc to draw the flow graph.
– An interface to commercial front-ends such as USRP.

Most of the signal processing blocks are implemented in C++ and they can be interconnected
through a Python infrastructure. Indeed, GNU Radio is intended for rapid prototyping of radio
waveforms. By using C++/Python as entry point, it enables the waveforms to be rapidly developed
and easily integrated into the framework. Programmability and portability is ensured in such a
way on different GPP-based platforms and GNU Radio has been extensively adopted by the SDR
community especially by the academic research groups. The GUI-based approach illustrated in
Figure 2.11 has also contributed in SDR popularization by providing an intuitive way to develop
the flow graphs of SDRs.

The GNU Radio framework leverages an interface to commercial front-end. Thus, one can
implement a whole transceiver chain and perform some real-time analysis. As mentioned before,
the pair GNU Radio/USRP is extensively used for SDR demonstration purpose. However, GNU
Radio remains unsuitable for implementations which require low power performance. Whilst, pro-
grammability and portability is ensured, an open question would be how to port such solution onto
low power signal processing hardware? Table 2.1 summarizes the previously discussed languages
for SDR. It provides an insight on the features which are expected in an SDR design methodology,
namely the programmability, the flexibility and the portability.

2.6 FPGA Platforms for SDR

FPGA is a promising technology that is expected to play a key role in the development of SDR
platforms. It has so far been employed as a hardware accelerator on which computation intensive
functions are deported at run-time. This has enabled low timing to be achieved while making the
platform more complex to program because of its heterogeneity. The WARP SDR platform [50]
is an example of SDR platform that has centered the processing on an FPGA fabrics. It employs
a large FPGA device that can support complex waveform implementation. However, WARP-
SDR is programmed entirely with a low-level language that is VHDL. This approach does not
ensure the programmability of the platform since the program model relies on low level language
that requires a strong knowledge in circuit designing. Thenceforward, we are facing a trade-off
between programmability and performance by using the FPGA technology. In this thesis, we

36 CHAPTER 2. DIGITAL RADIO AND SOFTWARE-DEFINED RADIO

Proposals Programming language Flexibility Portability

WDL [54] UML-based Constrained n/a

representation Specifications

SPEX [55] Subset of n/a DSP

C++ (VLIW & SIMD)

DiplodocusDF [56] UML-based Constraint GPP & DSP

representation profile

P-HAL [58] Object-oriented Real-time GPP & DSP

C++ adaptation & FPGA

GNU Radio [60] C++ & Python Compile-time GPP

flexibility

Prismtech Spectra Model-based design n/a GPP & DSP

Core [57] & RTL IP Cores & FPGA

SDRPHY [59] XML-based Configuration GPP & FPGA

description files

Table 2.1: Summary of state-of-the-art SDR languages.

have investigated the feasibility of programming SDR on FPGA platforms by raising the level of
abstraction of the programming model.

2.7 Conclusion
In this chapter, we have reviewed the digital radios and introduced the SDR paradigm. Dig-

ital radios have been depicted in both signal processing requirements and the technology that is
involved. SDR, which implements digital radios, was presented as a promising technology that has
motivated a lot of research since its introduction. Its three major aspects are its programmability,
its portability and its reconfiguration capabilities over the end platform. Most of the proposals
have traded-off between these three aspects and winded up with SDR platforms lacking either of
programmability, portability or reconfiguration.

In the forthcoming two chapters, we will first depict two PHYs that have considered in this
research work for demonstration purpose. Afterwards, we will discuss some approaches that aim at
improving the programmability in PHY designing by raising the level of abstraction. They enable
to speed up the development process by hiding the complexity of programming a waveform.

Chapter 3

The Waveforms of Interest

Contents
3.1 Introduction . 38
3.2 The IEEE 802.15.4 Standard . 38

3.2.1 ZigBee Generalities . 38
3.2.2 The IEEE 802.15.4 PHY . 38
3.2.3 State of the art of IEEE 802.15.4 SDR transceivers 41

3.3 The IEEE 802.11 Standards . 42
3.3.1 Generalities . 42
3.3.2 The IEEE 802.11a Physical Layers (PHYs) 43
3.3.3 State-of-the-art of IEEE 802.11a/p SDR transceivers 45

3.4 Conclusion . 47

37

38 CHAPTER 3. THE WAVEFORMS OF INTEREST

3.1 Introduction

In the first chapter, we have briefly introduced some of the DSP principles together with one of its
applications which is the Software-Defined Radio (SDR). It was shown that SDR is meant to op-

erate with different Physical Layers (PHYs), which implements by definition some DSP algorithms.
An implementation of such a DSP algorithm in the telecommunication domain is referred to as
a waveform and it is usually well-specified by the released standards [20][21][22]. Such standards
are issued from international institutions like the Institute of Electrical and Electronics Engineers
(IEEE) [61] or the European Telecommunications Standards Institute (ETSI) [62]. Their stated
goal is to propose some standards that will ensure the interoperability of the associated equipment
worldwide. In this chapter, we will review two of these standards, namely the IEEE 802.15.4 [20]
and the IEEE 802.11 [21], from a PHY perspective. Our research work on PHY layers modeling
and implementation in the context of SDR. Coarsely, the IEEE 802.15.4 is intended for low data
rate applications where energy consumption is the key metric, whereas the IEEE 802.11 supports
higher data rate applications where the achievable throughput is the key metric. Each of these
standards will be depicted by starting from generalities down to compliant transceiver architec-
tures that were proposed in the literature with respect to SDR. Sections 3.2 and 3.3 discuss the
IEEE 802.15.4 and IEEE 802.11 respectively. Conclusions on the two waveforms implementation
are drawn in Section 3.4.

3.2 The IEEE 802.15.4 Standard
The IEEE 802.15.4 standard specifies both the MAC and the PHY layers of the ZigBee protocol.

It is a standard for low-rate Wireless Personal Area Networks (WPANs) [63], which are used to
convey information over relatively short distances. The ZigBee technology actually came out from
an increasing demand in a low consumption and low data rate wireless communication standard.
The specification of the standard has enabled among others to achieve the interoperability between
equipment released by different vendors and therefore the ZigBee technology has been largely
deployed for several applications.

3.2.1 ZigBee Generalities
The ZigBee protocol enables to reach a few dozens of kbit/s of data rates for relatively short

distances with low power consumption. ZigBee is mainly promoted by the ZigBee Alliance [64]
which is an open non-profit association of members that was established in 2002. ZigBee has been
deployed for several applications which implement some Wireless Sensor Networks (WSN) [65] [66]
such as:

– Building automation: to offer interoperable products that enable secure and reliable moni-
toring and control of commercial building systems.

– Remote control: to provide a global standard for advanced, greener and easy-to-use RF
remotes.

– Health care: to offer a global standard for secure and reliable monitoring and management
of non-critical and low-acuity healthcare services.

– Smart energy: to enable products that monitor, control, inform and automate the delivery
and use of energy and water.

– Telecom services: to provide the means for a wide variety of added-value telecom services
including information delivery, location-based services or secure mobile payment.

ZigBee was defined to operate on the Industrial Scientific and Medical (ISM) radio bands depending
on the geographical location. However, the ZigBee technology can be deployed around the 2.4 GHz
ISM band worldwide. In the following section, we discuss the features of the ZigBee PHY.

3.2.2 The IEEE 802.15.4 PHY
Our research focuses on PHY layers modeling and implementation, therefore we will only discuss

the baseband PHY layer in the subsequent lines. The PHY layer of the IEEE 802.15.4 Standard
is responsible for the activation and the deactivation of the transceiver, the Energy Detection

3.2. THE IEEE 802.15.4 STANDARD 39

PHY Frequency bandSpreading parameters Data parameters

(MHz) chip rate Modulation Bit rateSymbol rate Symbols

(kchip/s) (kbit/s) (ksymbol/s)

868/915 868-868.6 300 BPSK 20 20 Binary

902-928 600 BPSK 40 40 Binary

868/915 868-868.6 400 ASK 250 12.5 20-bits PSSS

(optional) 902-928 1600 ASK 250 50 5-bits PSSS

868/915 868-868.6 400 O-QPSK 100 25 16-ary Orthogonal

(optional) 902-928 1000 O-QPSK 250 62.5 16-ary Orthogonal

2450 2400-2483.5 2000 O-QPSK 250 62.5 16-ary Orthogonal

Table 3.1: Frequency bands and data rates.

(ED) within the current channel, the Link Quality Indicator (LQI) for the received packets, the
Clear Channel Assessment (CCA) for the Carrier Sense Multiple Access with Collision Avoidance
(CSMA-CA), the channel frequency selection and finally the data transmission and reception.
In this work, we emphasize more on the data transmission and reception process, especially on
the underlying architecture. As aforementioned, the PHY was specified to operate in several
location-based ISM bands namely, 868-868.6 MHz in Europe, 902-928 MHz in North America and
2400-2483.5 MHz worldwide. Each of these channels exhibits some drawbacks together with some
advantages regarding the signal propagation, often referred to as the link budget. The underlying
modulations must then be robust enough to protect the transmitted signals from those channel
distortions.

Table 3.1 gives the theoretical bit rates according the frequency bands. It also provides the
type of modulation that is employed in each of these bands. The frequency bands are divided into
sub-channels defined in the standard. To this end, 32 bits are allocated for the identification of the
channels through a dedicated paging and number management system. Among those 32 bits, the
5 most significant bits (MSB) designate the page and the 27 remaining bits designate the channel.
This technique enables forecasting some extensions of the standard to other frequency bands as
illustrated in Table 3.2 where some pages are reserved for extension purpose; and for each page the
supported frequency bands are given. On page zero for instance, the channels center frequencies
can be formalized as:

Fc = 868.3 MHz for k= 0 (3.1)
Fc = 906 + 25(k − 1) MHz for k= 1,...,10 (3.2)
Fc = 2405 + 5(k − 1) MHz for k= 11,...26 (3.3)

where k is the channel number.
In a ZigBee transmission process, the useful data are gathered into packet or frame. Each

frame includes some data fields that are appended for various purposes. The IEEE 802.15.4 defines
the PHY frame, also called PHY protocol data unit PPDU, which consists of a synchronization
header (SHR), a PHY header (PHR) and a variable length payload as shown in Figure 3.1. The
SHR allows the receiving devices to synchronize and lock onto the bit stream. In the 2400-2483.5
MHz O-QPSK PHY definition, the synchronization field includes Preamble and the Start-of-Frame
Delimiter (SFD) which are used to perform the synchronization at the sample-level and at the
symbol-level respectively. A symbol in the ZigBee protocol corresponds to a group of four bits.
Thus, there are 16 different symbols numbered from 0 to 15. The synchronization field consists of
height symbols 0 and the SFD field consists of two known symbols. The PHR field informs the
length of the current frame on 7 bits plus one reserved bit. The variable payload (DATA) carries

40 CHAPTER 3. THE WAVEFORMS OF INTEREST

Channel page Channel page (binary) Channel number Channel number

(decimal) (b31, b30, b29, b28, b27) (decimal) description

0 00000 0 868 MHz, BPSK

1-10 915 MHz, BPSK

11-26 2.4 GHz, O-QPSK

1 00001 0 868 MHz, ASK

1-10 915 MHz, ASK

11-26 Reserved

2 00010 0 868 MHz, O-QPSK

1-10 915 MHz, O-QPSK

11-26 Reserved

3-31 00011-1111 reserved Reserved

Table 3.2: Channel page and channel number.

Figure 3.1: ZigBee PPDU format.

the useful information bits issued from the upper layers and its size ranges from 4 to 128 bytes.
At the transmitter whose synoptic is given in Figure 3.2, the data frame is first spread into chip

sequences and then modulated by an Offset-QPSK modulator. Spreading consists in multiplying
each symbol which is composed of 4 bits by a Pseudo Noise (PN) sequence which includes 32
chips. The correspondence the symbols and the chip sequence is given in Table 3.3. This spreading
operation is a variant of the DSSS technique which was introduced in the first chapter. It results in
a wider spectrum of 2 Mchip/s which is later split into two channels I and Q and shaped separately
with a half sine FIR filter p(t) given in (3.4). A delay of half a chip period is introduced in channel
Q to enable continuous phase change which suits to the energy-efficient nonlinear amplifiers usually
employed in IEEE 802.15.4 RF transceivers.

p(t) =


sin(π t

2Tc
) 0 ≤ t ≤ 2Tc

0 else

(3.4)

where Tc is the chip period.
At the receiver whose synoptic is given in Figure 3.3, the main objective is to recover the

transmitted bits (data payload). The architecture of the receiver is not specified by the standard
therefore the designers are given the freedom to implement a receiver which is tailored to their
needs. An IEEE 802.15.4 PHY receiver would require a matched filter at the output of the ADCs
to maximize the SNR in the presence of additive stochastic noise. The matched filter equation is
p∗(−t) and it is employed to reshape the incoming stream. After matched filtering, synchronization
must be performed on the Preamble field. It mainly consists of the time synchronization to recover
an optimum sampling period, the phase synchronization to compensate the phase shift due to either

3.2. THE IEEE 802.15.4 STANDARD 41

Data symbol Data symbol chip values

(decimal) (binary) (c0 c1 ... c30 c31)

(b0 b1 b2 b3)

0 0000 11011001110000110101001000101110

1 1000 11101101100111000011010100100010

2 0100 00101110110110011100001101010010

3 1100 00100010111011011001110000110101

4 0010 01010010001011101101100111000011

5 1010 00110101001000101110110110011100

6 0110 11000011010100100010111011011001

7 1110 10011100001101010010001011101101

8 0001 10001100100101100000011101111011

9 1001 10111000110010010110000001110111

10 0101 01111011100011001001011000000111

11 1101 01110111101110001100100101100000

12 0011 00000111011110111000110010010110

13 1011 01100000011101111011100011001001

14 0111 10010110000001110111101110001100

15 1111 11001001011000000111011110111000

Table 3.3: Symbol to chip mapping

the transmission delay or the PLL phase at the receiver; and the Carrier Frequency Offset (CFO)
which is a frequency offset introduced by the receiver PLL. Once these synchronization elements
are determined, they are used to compensate the distortions on the rest of the incoming frame. The
remaining of the receiver consists in decoding the rest of the frame through parallel correlation with
the known PN sequences. Indeed, the received chip sequences must be distinguished within the
16 possible sequences. To this aim, a correlation bench which computes the correlation between
the incoming sequence and the 16 known sequences is required. The correlation bench decides
of the received symbol from a comparison between the output correlation values. The compared
correlation values must be greater than a pre-established threshold.

3.2.3 State of the art of IEEE 802.15.4 SDR transceivers

The ZigBee technology has motivated a lot of research and development works both from a
digital and an analog perspectives. Several ad-hoc and professional networks that were deployed,
rely on this technology. In the context of SDR, IEEE 802.15.4 transceivers have been extensively
used as prototypes for demonstration purpose as in [67][68][69][70]. Indeed, the standard compliant
transceivers are relatively less complex to implement and therefore several SDR research have led
to the proposal of an IEEE 802.15.4 baseband transceiver prototypes. In [67], a USRP-based
SDR platform is used to implement the transceiver. The USRP is equipped with 14-bit ADC and
connected to a host PC via a Gigabit Ethernet connection which means that all baseband signal
processing takes place on the host PC by using Matlab or Labview. This transceiver was proposed

42 CHAPTER 3. THE WAVEFORMS OF INTEREST

Figure 3.2: PHY IEEE 802.15.4 transmitter.

to enable the computation of error probability parameters at different stages of the transceiver since
such architecture makes it possible to access the different stages of the receiver and compute the
associate error probability. Thus, performance can be analyzed at the chip-level, the symbol-level
and the bit-level in a real-time implementation of the transceiver.

In [68], the authors have developed an IEEE 802.15.4 SDR transceiver whose setup is based on a
URSP and the GNU Radio software framework. The software runs on a host PC which is connected
to the USRP via USB2.0. The platform, shown in Figure 3.4, was first developed for education
and monitoring purpose and also to enable a deeper understanding of the IEEE 802.15.4 PHY.
The proposed receiver consists of synchronization, gain adjustment, a differential phase decoder, a
symbol correlator and a data frame interface for upper software layers. The prototype was designed
to work at the rate of 4 Msamples/s. The paper [69] introduces an all-digital transceiver based
on the 868 MHz band of the IEEE 802.15.4. The prototype has first consisted in a behavioral
model of the system fully developed in Simulink which was then used to automatically generate
some VHDL file by using Simulink HDL Coder. The generated VHDL files were simulated with
ModelSim and synthesized with the help of the Xilinx ISE Suite. The design was implemented in
a Xilinx Virtex-5 FPGA [71] and operates at 128 MHz.

In summary, the ZigBee technology has gathered some interest in the SDR community. It is
a relatively light protocol which suits to rapid prototyping requirements as fostered by the SDR.
However, ZigBee transceivers have often been implemented as ASICs since its stated goal is first to
achieve very low-power performances. Considering different fabrics such as FPGA or CPUs while
ensuring low-power requirements would certainly open this technology to more research in the SDR
community.

3.3 The IEEE 802.11 Standards

3.3.1 Generalities

The IEEE 802.11 technology is an international standard which describes the main features of
a Wireless Local Area Network (WLAN). It enables creating some high data rate wireless networks
ranging from a few dozen meters up to a few hundred meters. Referred to as the WiFi technology,

Figure 3.3: PHY IEEE 802.15.4 receiver.

3.3. THE IEEE 802.11 STANDARDS 43

Figure 3.4: IEEE 802.15.4 SDR Receiver.

Figure 3.5: IEEE 802.11a PPDU format.

which stands for Wireless Fidelity, the released standards define the lower layers of its OSI model.
Initially designed to support up to 2 Mb/s of data throughput, it later led to multiple revisions of
the standard. Some of these revisions are characterized as follows:

– 802.11a: designed to ensure a theoretical rate of up to 54 Mbit/s for a range of a few dozen
meters.

– 802.11b: enables to obtain a theoretical rate of 11 Mbit/s for a range of a few hundred meters.
– 802.11g: enables to obtain a theoretical rate of 54 Mbit/s for a range of a few hundred of
meters.

– 802.11p: defines mechanisms that allow IEEE 802.11 technology to be used in high speed
radio environments typical of cars and trucks.

– Some others such as the 802.11d which purpose is to enable an international wireless access,
the 802.11e for better Quality of Service (QoS) or the 802.11f for better roaming services.

These technologies have been extensively deployed throughout the years and today they are
part of our daily life in the sense that the Wifi network coverage tends to be accessible from any
geographical points. In this work, we have shown a particular interest for the IEEE 802.11a whose
PHY layer is discussed in the subsequent section.

3.3.2 The IEEE 802.11a Physical Layers (PHYs)

The IEEE 802.11a was released and approved in 1999 and it specifies the MAC and the PHY
layers of a Wireless LAN. It was designed to support the transmission and reception at data rate
of 6, 9, 12, 18, 24, 36, 48 and 52 Mbit/s by using an OFDM-based channel access technique that
we have already introduced in the first chapter. Similarly to the lately introduced ZigBee PHY,
the IEEE 802.11a PHY organizes its data into frame prior to the transmission. The transmitted
data frame is illustrated in Figure 3.5 and consists of three major fields. The Preamble field, which
comprises twelve known symbols, is appended for synchronization purposes. It is composed of 10
repetitions of a "short training sequence" with a duration of 8µs (employed for AGC convergence,
diversity selection, timing synchronization and coarse frequency synchronization in the receiver)

44 CHAPTER 3. THE WAVEFORMS OF INTEREST

Data rate) Modulation Coding rate Coded bits Coded bits Data bits

(Mbits/s) (r) per per OFDM per OFDM

subcarrier symbol symbol

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 16-QAM 1/2 4 192 96

36 16-QAM 3/4 4 192 144

48 64-QAM 2/3 6 288 192

54 64-QAM 3/4 6 288 216

Table 3.4: PHY IEEE 802.11a modulation rate-dependent parameters.

and two repetitions of a "long training sequence" (8µs) that are used for channel estimation and
fine frequency synchronization in the receiver. The SIGNAL field (4µs) includes frame-specific
information like the data rate that can be any of the aforementioned data rates and the length of
the data payload. This field is modulated with a BPSK modulator and coded at rate r = 1/2. Such
modulation and coding scheme ensures the integrity of this field facing the channel impairments.
The DATA field carries the useful information and its rate and length information are embedded
in the SIGNAL field. In Figure 3.5, on can see that each field is composed of a certain number
of OFDM symbols. These symbols are computed with an IFFT as it was explained in the first
chapter. The IEEE 802.11a defines a 52-subcarrier FFT/IFFT where 48 of them are used for data
and the remaining 4 are used for pilots insertion. Table 3.4 summarizes the modulation parameters
depending on the targeted data rate.

The IEEE 802.11a transmitter shown in Figure 3.6 consists first in gathering the encoded bits
into group of 1, 2, 4 or 6 as shown in Table 3.4. Each group is converted into a complex number
according to the selected mapping scheme. These complex numbers are then divided into groups of
48 complexes to form a single OFDM symbol. To this end, each complex is mapped to a designated
subcarrier and the 52 (48+4) subcarriers are converted into a time domain representation by using
an IFFT. Each OFDM symbol is prefixed with a repetition of its end which forms the Cyclic
Prefix (CP). Following that, a windowing operation takes place by using a time domain windowing
function whose equation is given by (3.5). In (3.5), TTR represents the transition time between two
windowing operations and T is the duration of the overall windowing operation. The windowing
function can be optionally extended over more than one OFDM symbol period. The resulting
windowed symbols or group of symbols are appended one after another to form the final frame.

WT (t) =



sin2(π2 (0.5 + t/TTR)) − TTR/2 ≤ t ≤ TTR/2

1 TTR/2 ≤ t ≤ T − TTR/2

sin2(π2 (0.5− (t− T)/TTR)) T − TTR/2 ≤ t ≤ T + TTR/2

(3.5)
The receiver which is shown in Figure 3.7 starts with a windowing function which truncate the

3.3. THE IEEE 802.11 STANDARDS 45

Figure 3.6: PHY IEEE 802.11a transmitter.

incoming frame into subframe of duration T . Afterwards, a synchronization block is appended to
process the short training sequences of the Preamble field (coarse synchronization). It is followed
by a CP removal block which removes the CP of the following OFDM symbols. Each OFDM
symbol is then converted from time domain to frequency domain through an FFT operation. This
operation produces some complex numbers which may present some distortions due to the channel.
To tackle this issue, a fine synchronization block is added to compute the error (thanks to the long
training sequences) when it is required and an equalizer block compensates the computed error on
each complex number. Finally the complex numbers are de-mapped into group bits. As mentioned
before, the SIGNAL field is used to recover the incoming symbols (DATA field) data rate and
length.

3.3.3 State-of-the-art of IEEE 802.11a/p SDR transceivers

The IEEE 802.11a compliant transceivers have been extensively developed to provide wireless
connectivity in the home, office and commercial establishments. Such transceivers are slightly
complex to develop and they require further development efforts in comparison to IEEE 802.15.4
transceivers. This certainly explains why the standard is not often considered when it comes to
implement a waveform prototype in a typical SDR validation process. Furthermore, the IEEE
802.11a standard was specified to operate in the 5 GHz whereas most of the SDR RF front-
ends such as the USRP operate in the 2.4 GHz band. However, examples of IEEE 802.11a SDR
transceivers [72][73][74][75] can be encountered in the literature. The authors of [72] address the
implementation an IEEE 802.11a compliant transceiver on the OSSIE SDR platform. Their stated
objective was to design and implement a software transceiver which uses the SCA [52] including the
Common Object Request Broker Architecture (CORBA) [76] that allows flexibility, performance
and maximum potential for software module reuse.

In [73], a full SDR-based IEEE 802.11p transceiver was developed in the GNU Radio framework.
The IEEE 802.11p is a variant of the IEEE 802.11a that was developed for Wireless Access in

Figure 3.7: PHY IEEE 802.11a receiver.

46 CHAPTER 3. THE WAVEFORMS OF INTEREST

Figure 3.8: GNURadio PHY IEEE 802.11p receiver.

Vehicular Environments. It was shown that the implementation of the overall transceiver including
the MAC layer, as illustrated in Figure 3.8, can be run on a low-end desktop PC or a laptop.
Moreover, the solution was made available as Open Source to enable further research within the
SDR community.

Some others SDR-based implementations of the 802.11a transceiver have been proposed such
as in [74] where a receiver was implemented on an array of programmable processors. The com-
putational platform is precisely composed of an array of processors combined with configurable
accelerators interconnected in a 2-D mesh network. The proposed receiver includes frame detec-
tion, timing synchronization, carrier frequency offset compensation and channel equalization. It
is claimed that the implementation of the receiver has required 29 small processors together with
some Viterbi and FFT accelerators that operate at the frequency of 590 MHz.

Finally, the authors in [75] have considered the FPGA as an enabling technology for the hard-
ware platform of an SDR system as FPGAs offer the potential of hardware-like performance cou-
pled with software-like programmability. At the time the paper was written (2004), the authors
have considered the relatively recent "partial reconfiguration" feature that was proposed on Xilinx
FPGA to implement an 802.11a baseband transceiver. They have partitioned the transceiver into
static and reconfigurable units. Thus, coding and modulation blocks have clearly been identified as
reconfigurable units while the FFT block was stamped as a static unit. Further to this, streaming
data are handled with input buffer when reconfiguration takes place. The size of the buffer de-
pends on the speed at which the FPGA can be reconfigured and the size of the FPGA being used.
However, the authors have pointed out in conclusion that a high degree of familiarity with FPGA
design techniques is required to produce effective implementations and thus they suggested that
automating different steps in the design process would be a relevant contribution. Automation
usually implies to raise the level of abstraction of the design process.

Our work has considered both the IEEE 802.15.4 and the IEEE 802.11 standards as case
studies within a SDR development flow. To our point of view, they enable to grasp the specificity
of a dataflow application while allowing to explore some SDR features such as the flexibility or
programmability.

3.4. CONCLUSION 47

3.4 Conclusion
Wireless technologies are widespread technologies which came out from an increasing demand in

connectivity. However, the requirements in terms of wireless performance appeared to be different
depending on the application. Thus, telecommunication standards have been proposed by different
institutions to address these communication needs. In this chapter, we have introduced two of
these technologies namely, the ZigBee technology and the Wifi technology. Their transceivers must
be compliant to the IEEE 802.15.4 and the IEEE 802.11 standards respectively.

Actually, ZigBee is meant for low rate and power-efficient wireless applications while Wifi was
designed to provide high data rate connectivity to the users. To this end, each of them employs a
different modulation scheme namely the DSSS for the ZigBee and the OFDM for the Wifi. These
modulations have been discussed in this chapter and some examples of their implementations in
the context of SDR have also been detailed.

The research work presented in this document has partly consisted in the specification and
implementation of these two waveforms through an SDR design flow. The ensuing results will be
discussed later in this document.

48 CHAPTER 3. THE WAVEFORMS OF INTEREST

Chapter 4

High-Level Designing of Physical
Layers (PHYs)

Contents
4.1 Introduction . 50
4.2 Model-Driven Engineering . 50

4.2.1 Generalities . 50
4.2.2 Domain Specific Languages (DSLs) . 50
4.2.3 Eclipse Modeling Framework (EMF) and Xtext/Xtend 51
4.2.4 Some relevant MDE-based technologies for embedded systems 53

4.3 The High-Level Synthesis (HLS) . 54
4.3.1 A bit of history . 54
4.3.2 High-Level Synthesis Fundamentals . 55
4.3.3 Advantages of HLS . 56
4.3.4 Examples of mature HLS Tools . 58

4.4 Bringing together HLS and MDE for FPGA-SDR 59
4.4.1 Dataflow Model of Computation (MoC) 59
4.4.2 SDR Control Requirements . 60

4.5 In a Nutshell . 60
4.6 Conclusion . 61

49

50 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

4.1 Introduction

In the DSP domain, one can note that PHY designing has been performed with several method-
ologies throughout the decades. Each breakthrough in the proposed methodologies has mainly

consisted in raising the level of abstraction. Indeed, raising the level of abstraction reduces the
amount of detailed design work required. However, each of these evolutions came along with a
lot of skepticism which was related to both the achievable performances and the associated learn-
ing curve. Each time the complexity of the desired architectures was increasing, because of the
expected performances, it turned out to be tedious and time consuming to use the same design
methodologies which required considerable efforts. The solution to this was to raise the level of
abstraction while automating as much steps as possible in the final architecture synthesis process.
Thus, regarding logic synthesis, the design methodologies have evolved as follows:

– 1960s: D-Algorithm [77] applied to Automatic Test Pattern Generation (ATPG) [78] is used
for boolean reasoning.

– 1979: IBM uses logic synthesis for Gate Array-based mainframe design. LSS tool [79], fol-
lowed by BooleDozer [80].

– 1986: Synopys founded and offers a logic remapper between Standard Cell Libraries which
was later extended to RTL logic synthesis.

– 1990s to early 2000s: Major EDA companies offer commercial High-Level Synthesis (HLS) [81]
[82] tools for System level design.

Similarly, for DSP software platforms, the abstraction was raised from the assembly language
or machine code to C or C++ language which is now mainstream. A generalization of this

concept, which is mostly promoted in the software domain, is called the Model-Driven Engineering
(MDE) [83]. It fosters the use of models and the generation of code from the models. In this
chapter, we discuss the modeling concept/tools that were proposed for software application in
general and also PHY designing and then we will emphasize on the proposed environments in the
context of FPGA.

4.2 Model-Driven Engineering

4.2.1 Generalities

The growth of the platform complexity exhibits the limitation of the current design method-
ologies for software-oriented platforms and also for embedded systems. As these platforms evolve,
the applications code are generally written and maintained manually. As a result, the developers
spend considerable efforts to port the application codes to different platforms or newer versions
of the same platform. A mainstream approach to address platform complexity is to develop the
Model-Driven Engineering (MDE) [83] technology which main purpose is to improve the software
development process. It shifts the development process from code-centric to model-centric by fos-
tering the reuse of models, the transformation of models and the generation of code from models.
The MDE technology combines:

– A Domain-Specific Language (DSL) [84] which purpose is to formalize the application struc-
ture, behavior and requirements in a declarative way. A DSL is described from metamodels
which define the main concepts of the domain and allow capturing its expressiveness.

– A set of transformation engines and generators to parse the DSL script and generate diverse
artifacts such as source code, simulation inputs or intermediate model of representations.
Such approach is claimed to ensure a "correct-by-construction" development of the final
application.

In the following sections, we will briefly review the existing software technologies that enable
implementing an MDE environment and then we will discuss some of the existing MDE technologies
that were proposed for embedded systems.

4.2.2 Domain Specific Languages (DSLs)

Domain-Specific Languages, as opposed to General Purpose Languages (GPLs) such as C/C++
or Java, are computer programming languages of limited expressiveness and tailored to a particular

4.2. MODEL-DRIVEN ENGINEERING 51

Figure 4.1: Generic architecture of DSL processing.

domain. They can be viewed as very specific tools for very particular conditions. Their stated goal
is among others to improve the development productivity, to ease the communication between
domain experts and to provide an alternative computational model. Indeed, DSLs enable to raise
the level of abstraction in a software or hardware development process. Doing so, they allow
the automation of several steps throughout the process. Their expressiveness, through a tailored
syntax, eases the communication between domain experts and facilitates it for arbitrary users
to quickly grasp main idea behind the proposed DSL. A generic DSL processing architecture is
presented in Figure 4.1. It starts with a DSL-based description of the application which is then
fed to a parser to generate an intermediate model called the semantic model. This model is used
to generate optional artifacts such as source code.

In [84], DSLs are declined into three types namely, the internal DSLs, the external DSLs and
the language workbenches. Internal DSLs are usually hosted by a GPL and they are therefor
constrained by their host language since any expression must be a legal expression in the host
language. However, internal DSLs benefit from the host compiling framework which is generally
well-developed and supported by an active developer community. Examples of internal DSLs are
the Lisp language [85] or the Rails language [86] which was developed as a framework of the Ruby
language [87]. External DSLs are usually developed from scratch thereby, they are not limited
in terms of expressiveness compared to internal DSLs. They require defining a specific compiling
framework that can leverage parsing programming languages techniques. Unlike internal DSLs,
they might require more effort to be developed and may lead to a higher learning curve. Some of
the external DSLs that the reader may have come across are for instance the Structured Query
Language (SQL) [88] or XML [89]. Finally, the language workbenches are specialized Integrated
Development Environments (IDEs) for defining and building DSLs. They proposed a custom
environment for editing DSL scripts intended to model the target application. In the next section,
we will first discuss the Eclipse Modeling Framework (EMF) [90] that is a framework intended for
the development of language workbenches and then we will review the Xtext/Xtend framework
that is an EMF-based language workbench that we use in our research work.

4.2.3 Eclipse Modeling Framework (EMF) and Xtext/Xtend

The Eclipse Modeling Framework

EMF [90] was initiated by the Eclipse Modeling Project to enable developers to rapidly construct
robust applications based on simple models. EMF relates modeling concepts directly to their
implementations in three important technologies that are Java, XML and UML as illustrated in
Figure 4.2. It relies on the Ecore metamodel which defines the following components:

– EClass: enables representing a modeled class. It includes a name, some attributes and
references.

52 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

Figure 4.2: EMF possible representations (Java, XML, UML).

– EAttribute: with a name and a type to represent a modeled attribute
– EReference: used to represent some associations between classes.
– EDataType: employed to represent the type of an attribute.

An Ecore model is usually the entry point to an EMF project and EMF itself includes a simple
tree-based sample editor for Ecore modeling. Ecore models have a canonical representation in form
of XML Metadata Interchange (XMI) [91] serialization which does not add any extra information.
Finally, the EMF project has inspired several other projects which leverage its facilities to offer
some modeling environments. Among them, the Xtext/Xtend framework enables defining the
structure of DSL through a Backus-Naur Form (BNF) [92] syntax while offering an environment
to edit the DSL scripts or models.

Xtext/Xtend Framework

Xtext [93] is an open EMF-based framework for implementing DSLs together with their inte-
gration in the Eclipse IDE. It covers all the aspects of a language implementation starting from
the parser, code generator or interpreter up to a full Eclipse IDE integration. It also enables to
build the entire DSL from its ANTLR (ANother Tool for Language Recognition) [94] like grammar
specification and most of the intermediate steps like Abstract-Syntax Tree (AST) representation
are handled automatically by Xtext itself. Actually, the entry point to the Xtext framework is
a grammar specification which is composed out of rules. Xtext generates the lexer, the parser,
the AST model, the construction of the AST to represent the parsed program and the Eclipse
editor with all the IDE features. The AST is generated from an ANTLR specification which is
derived from the aforementioned Xtext grammar. An AST is composed of nodes whose classes are
generated using the EMF framework. Throughout an Xtext design process, the generators and
model checkers, implemented by the designers, will have to traverse and analyze the AST in order
to produce the required artifacts.

To this end, Xtext is enhanced with the Xtend programming language that is sugared version of
the java programming language. Xtend enables to customize the Xtext framework so as to produce
a desired output from a DSL specification. For instance, validation, tests and code generation
are entirely written in Xtend. Indeed, apart from the grammar definition, the main efforts while
implementing a DSL will consist in visiting the AST and compiling it down to the desired artifacts.

4.2. MODEL-DRIVEN ENGINEERING 53

Figure 4.3: Traditional co-design flows vs. MOPCOM co-design flow.

4.2.4 Some relevant MDE-based technologies for embedded systems

The MDE technology was essentially fostered by the software communities with a stated goal
to raise the level of abstraction for implementing software applications. It winded up with several
projects whose purpose was to standardize this approach into a common framework. The most ac-
tive group toward such standardization is the Object Management Group (OMG) which conducted
the projects that led to the definition of relevant standards such as the UML [95], the Meta-Object
Facility (MOF) [96], the of XML Metadata Interchange (XMI) [91] or the Model-Driven Architec-
ture (MDA) [97], which is a refinement of the MDE for embedded systems.

These concepts are extensively employed by the software communities and they also gathered
a lot of attention in the hardware design community. Indeed, the limitations of the methodologies
for implementing hardware-oriented embedded systems have led the developers to consider raising
the level of abstraction in their design process. Thus, some solutions were proposed to address
this issue and most of these solutions are implemented as a subset or an extension of the UML
standard.

SysML

The Systems Modeling Language (SysML) [98] is a general-purpose modeling language for
system engineering. It reuses a subset of UML2 and provides additional extensions to address the
requirements in UML for Systems engineering. Moreover, SysML proposes both structural and
dynamic diagram to model a system. It supports the specification, analysis, design, verification
and validation of a broad range of embedded systems. SysML development environment usually
consists of plugins and some commercial and open source modeling tools have extended their
functionalities to support SysML development.

UML-MARTE Profile

Modeling Architecture Real-Time Embedded (MARTE) [99] is a UML profile intended for
model-based Real-Time Embedded Systems (RTES) that was accepted by the OMG in June 2007.
It mainly consists in a set of specializations of general UML so as to enable modeling real-time
embedded applications. MARTE was proposed to replace the UML SPT (Schedulability, Perfor-
mance and Time) profile [100] that was considered as too complex to implement by the community.

54 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

MARTE enables a high-level description of both the application and the platform. It stated goals
are the followings [101]:

– Providing a common way of modeling both hardware and software aspects of a RTES in order
to improve communication between developers.

– Enabling interoperability between development tools used for specification, design, verifica-
tion, code generation, etc.

– Fostering the construction of models that may be used to make quantitative predictions
regarding real-time and embedded features of systems taking into account both hardware
and software characteristics.

MARTE is supported by stand-alone academic, commercial and open source development tools.
Some plugins have also been proposed to support the MARTE project.

The MOPCOM Project

The MOPCOM (Modélisation et spécialisatiOn de Plates-formes et Composants MDA) [102]
was defined to tackle the issue of co-designing complex systems composed of both software and
hardware components. It stated goal is to offer an environment for the development of heteroge-
neous Systems on Programmable Chip (SoPC) by using a co-designing approach. Thus, it addresses
the limits of traditional design flows where the partition between hardware and software compo-
nents occurred early in the design process. Figure 4.3 illustrated the two approaches. Furthermore,
MOPCOM relies on the MDA concept which implements the UML MARTE profile to cover the
EElectronic System Level (ESL) domain, to automatically generate source code and provide some
documentation. Indeed, the MOPCOM flow generates some source code for DSP microprocessors,
microcontrollers and FPGAs.

4.3 The High-Level Synthesis (HLS)

4.3.1 A bit of history

As mentioned before, the methodologies that are involved in circuit architecture designing
has shifted considerably throughout the decades. These changes are related to the increasing
complexity of the desired architectures. Thus, the methodologies that were usually employed
turned out to be inefficient and time consuming. Each of these evolution consisted in raising the
level of abstraction in order to enable rapid design time and better performances. This approach
has the advantage of shortening the time-to-market while make it possible to explore more and
more complex architectures.

Until the 60s, the circuits were manually designed at the transistor-level. Around the 70s, the
first gate-level (AND, OR, NAND) design and simulation tools appeared. Then, in the 80s the level
of abstraction was raised to the schematic-level where coarser grained components such as adders
and multipliers were employed to design circuit architecture. Hardware Description Languages
(HDLs) such as Verilog and VHDL were proposed in the late 80s and popularized in the 90s.
HDLs have enabled Register-Transfer Level (RTL) description of circuit architectures. An RTL
description consists in describing the circuit’s registers and the sequence of transfers between these
registers but does not describe the hardware used to carry out these operations. Today HDLs
are supported by mature synthesis tools which compile HDL-based descriptions down to binary
executable (for FPGA designing) or netlist (for ASIC designing).

Once again, we are at the turning point in the history of circuit designing with more complex
applications that require a shorter time-to-market. HDLs synthesis tools have addressed this
issue with the concept of reusable IPs which fosters the reuse of pre-developed and well debugged
functions [103] [104]. This approach is still on the mainstream but an alternative approach has
consisted in raising the level of abstraction. Referred to as High-Level Synthesis (HLS) [81] [82],
its main features and advantages are discussed in the following sections.

4.3. THE HIGH-LEVEL SYNTHESIS (HLS) 55

Figure 4.4: Generic High-Level Synthesis Flow.

4.3.2 High-Level Synthesis Fundamentals

The HLS can be defined as the process of automatically generating quality RTL descriptions
from high-level specifications. It has now come to maturity and gathers a lot of attention in the
circuit designers community. HLS bridges the gap between algorithm designers and architecture
designers however, it requires some knowledge in hardware designing. It allows, all along the design
process, to focus essentially on what the end-system does rather than how the system is imple-
mented. Thus, most of the designing effort is put on specifying the application while the underlying
architecture (RTL) is automatically generated. A high-level specification is usually performed with
some High-Level Languages (HLL) [105] such as C/C++ or Matlab, which enable modeling an un-
timed representation of the application. A typical HLS tool first parses the provided high-level
description of the application to extract an intermediate representation. Then, depending on the
target technology, the design constraints and the structure of the intermediate representation, each
operation is mapped on a dedicated resource and scheduling mechanism in form of state machine
is decided for the computation. Finally, the RTL description of both the datapath and the state
machine are generated. Figure 4.4 represents a synoptic of an HLS synthesis flow. The following
lines discuss each of these steps.

High-Level Specifications for HLS

An HDL-based design flow often starts with specification of the application in a high-level
language such as C/C++ or Matlab. These specifications serve as reference designs with which
performance analysis, such as BER or PER in the telecommunication domain, can be performed
under various constraints. Further refinements are then applied to these specifications so as to
achieve more realistic ones. These refinements consist mostly in data quantization which severely
impacts the performance of the specification. Then, the associated RTL description is performed
by a different team which has some deep knowledge in hardware designing. Finally, the design
is validated and tested. This approach has been on the mainstream for many years (since the
popularization of HDLs) and it requires a good communication between all the teams involved in

56 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

the designing process.
HLS on the other hand offers a direct path from the specifications down to the RTL description

while fully automating the validation process. It relies on high-level descriptions and requires some
knowledge in hardware designing. In fact, it is important to note that any software designer cannot
be turned into a hardware designer since HLS designing requires some good quality specifications
that include some hardware considerations. Moreover, the HLS specifications/implementations are
written in an untimed language where no clock is specified and doing this can be troublesome for
the hardware designers who generally work on a clock basis. Thus, HLS trades-off between the
hardware and software engineers to enable rapid and efficient prototyping of the final solution.

An HLS specification is quite tool-dependent. Even thought, most of the tools use C/C++
descriptions as entry point, some variations may appear when it comes to write a synthesizable
specification. Data sizing, for instance, is supported by different libraries of bit accurate data types
which model bit accuracy for integer, fixed or complex data. It contrasts with native C/C++ data
types which come with only widths of 1, 8, 16, 32 bits. Thus, the designer can model data
with an arbitrary width. HLS tools enable specifying different kinds of annotation, also called
pragmas, which can be used for optimization or design exploration purpose. In addition, care must
be taken while manipulating memory components such as arrays which impact considerably the
performances of the resulting hardware.

A complete discussion over the specifications expected by HLS tools is out of the scope of this
document. For deeper information, the reader can explore the user guide references provided by
each tool.

From Specification to RTL Generation

The high-level specifications are fed to an HLS parser which converts the specification into an
intermediate representation also called Control Data Flow Graph (CDFG) [106][107]. The CDFG
models the control and the components that are involved in the computation. It also models
data dependencies which are identified within a single function. Figure 4.5 shows the CDFG
corresponding to a for-loop. The control is represented at the upper part of the graph while the
graph itself is composed of nodes which represent data and operators and edges to represent the
dependencies between data. From the CDFG representation, scheduling and resource allocation
are performed with the goal to optimize both the performance and the occupied area. Scheduling
consists in determining the order in which order each operation is executed. It ensures in such
a way consistency in the datapath. Several scheduling algorithms [108][109][110] whose goal is
to minimize either latency or resources are proposed in the literature. Resource allocation is the
process which consists in binding the computation, communication or memory storage to some
dedicated hardware resources with the objective to maximize the reuse of the hardware within a
clock cycle so as to minimize the overall area.

Finally, RTL generation takes place after scheduling and resource allocation are successfully
performed. The final RTL (VHDL or Verilog) consists of two units namely, the control unit and the
processing unit that are assembled into a top level design. They are implemented as state machines
and datapath respectively. The RTL is claimed to faithfully implement the specification and most
of the tools enable to automatically verify the generated RTL against the C/C++ testbench.

4.3.3 Advantages of HLS

HLS has opened a lot of research perspectives and the available tools can be considered mature.
It primary goal was to speed up the design time however it now comes with a lot advantages which
are specific to each tool. Thus, each tool offers different types of optimization which means that
final architecture performances may vary depending on the tool. In the following sections, we
discuss some of the advantages of HLS.

Rapid Prototyping

One of the key elements of the HLS is undoubtedly its entry language which is an untimed
HLL. This HLL, which raises the level of abstraction in comparison with the traditional HDLs, is

4.3. THE HIGH-LEVEL SYNTHESIS (HLS) 57

Figure 4.5: A for-loop parsed into a CDFG.

partly responsible of the success encountered by the most of the proposed software programming
environment. By leveraging such well known languages, HLS enables somehow to speed up the
design time while taking advantage of the existing compiling framework. In fact, it was shown
in [111] that a 1M-gate design requires approximately a 300K lines of RTL code where HLS would
require around 40K lines of C/C++ code.

However, HLS compilers must extract a maximum parallelism from native sequential languages
which were first designed for fixed architectures whereas HDLs enable to explicitly express the
parallelism within an application. Thus, HLS tools usually provide some tips which purpose is to
help expressing some parallelism into the specifications.

Optimization and Design Space Exploration (DSE)

Given that HLS employs high-level specifications, it naturally borrows several compile-time
optimization techniques from the existing software compiling frameworks. These optimization
enable exploring the design space in order to generate an architecture that fits the best to the
requirements. They can be led toward latency, throughput, memory or area optimization. HLS
makes it possible to trigger such optimization from high-level specifications which considerably
accelerates the design process and enables shorter time-to-market to be achieved.

Latency and throughput optimization can be addressed by using several techniques that remove
the performance bottlenecks. Pipelining techniques allow concurrent operations to occur and it
has the effect of increasing the overall computation speed or throughput. In the tools that we have
experienced with, pipelining techniques can be applied at different levels. Dataflow, function or
loop-level pipelining can be easily performed by inserting memory elements (registers) which break
the critical path into several stages. Pipelining is generally characterized by an Initiation Interval
(II). It is a metric that was introduced to estimate how often, in number clock cycles, a pipelined
function or loop iteration starts. Thus, an II of 1 means that an iteration starts every clock cycle.
Generally, the lower is the II, the faster is the function or loop.

Latency on the other hand can be addressed by optimizing memory accesses for instance.
Indeed, instantiating an array results in a memory component in hardware that can be implemented

58 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

as register files, Random-Access Memories (RAMs) or Read-Only Memories (ROMs). Register files
enable a parallel access to all the cells of an array. It allows any function or operator, which fetches
data from that array to reduce its computation delays but such array implementation requires
considerable resources. RAMs and ROMs allow an access to a few cells at the time and they are
sometimes considered as performance bottleneck. An alternative solution consists in partitioning
the arrays into several memories that can be accessed in parallel. Some other techniques based on
loops manipulation are also employed by HLS tools for optimizing latency. Those techniques are
loop unrolling, loop merging or flattening nested loops. Loop unrolling consists in duplicating the
loop body so as to minimize the initial number of loop iteration. This technique is characterized
by a factor (the unrolling factor) U whose value tells how many times the loop body has been
duplicated. Loop merging enables to improve the locality and reduces the loop overhead. However,
care must be taken when using these loop optimization techniques as they might be very sensible
to data dependencies.

To conclude, one of the big challenges in HLS resides in the possibility to extract parallelism
from C/C++ descriptions that are sequential by nature. Indeed, one of the advantages of HDLs
is their ability to express parallelism through concurrent expressions. HLS compilers analyze
the provided specifications to extract both data and instruction parallelism. As aforementioned,
different optimization techniques can be employed to explore the space of the solutions and different
performance can be achieved when feeding a similar algorithm to different HLS tools.

4.3.4 Examples of mature HLS Tools

As it was pointed out in the previous section, parallelism extraction is quite a crucial aspect
within each HLS design flow. GAUT [112] is an example of academic HLS tools that is dedicated
to DSP applications. It starts from a pure C description and extracts the potential parallelism
before selecting, allocating, assigning and scheduling hardware operations. It generates an IEEE
P1076 VHDL file which is compatible with the commercial synthesis tools. However GAUT, as
many of HLS tools, emphasizes on datapath designing and supports only loops with constant
boundaries. Commercial tools are also available on the market. Among them, Catapult [113] from
Calypto raises the level of abstraction by using the standard ANSI C++ and SystemC to describe
the functions. Catapult speeds the time to RTL by automating the generation of bug free RTL
and significantly reduces the time to verify RTL. It targets essentially ASICs and FPGAs and is
featured with power optimization techniques.

Formerly known as AutoESL [82] and renamed Vivado HLS [114] after being purchased by
Xilinx and made compatible with the Vivado Design Suite, Vivado HLS is a HLS tool that is
tailored to the Xilinx families FPGAs and takes a mix of C/C++ functions specifications as entry
point. Some other examples of HLS tools are C-to-Silicon [115] from Cadence or Impulse-C [116].
Recently, OpenCL [117] [118] [119] has also been proposed as an abstraction to program FPGAs.

Catapult C-to-Silicon Impulse-C AutoESL GAUT

Pointer Management ++ - - - -

Memory Management +++ + - +++ -

Interfaces Management ++ ++ ++ ++ +

Loop Unrolling +++ + + + +

Pipelining +++ + + ++ -

Dependence Analysis ++ + - + –

Resource Reuse +++ ++ - ++ ++

Table 4.1: A comparative study between different HLS tools.

4.4. BRINGING TOGETHER HLS AND MDE FOR FPGA-SDR 59

It is argued that OpenCL has a native approach to express application parallelism, hence it is a
good candidate for designing parallel signal processing applications for FPGA fabrics. Table 4.1
compares the features of some of these HLS tools.

4.4 Bringing together HLS and MDE for FPGA-SDR

In the previous sections, we have discussed the methodologies intended to raise the level of
abstraction for implementing embedded systems in general and then, an emphasis was given to the
FPGA technology through the HLS technology. Indeed, the HLS technology enables targeting FP-
GAs or ASICs devices from HLLs, which raise considerably the level of abstraction when compared
to traditional HDLs. As a result, HLS can be fully leveraged to improve the programmability of
FPGAs. In the context of SDR, HLS can then be employed to virtualize the software intensive
aspect when FPGA-centric platforms are targeted. However, couple of issues must be identified
and discussed before defining such a framework that could enable some SDR PHY implementation
while considering FPGA-centric platforms. Such issue would consist in defining an appropriate
underlying Model of Computation (MoC) that would be suitable for the intended applications and
also identifying the control requirements for such applications. In the next section, we introduce
the Dataflow MoC which characterized most of the current DSP applications.

4.4.1 Dataflow Model of Computation (MoC)

A dataflow program can be modeled like a directed graph which is composed of a set of com-
putational units interconnected by communication channels through ports [120]. Each of these
channels, usually implemented as First-In-First-Outs (FIFOs), corresponds to a stream of atomic
data objects called tokens. The computational units, often called processes or actors, are expected
to first read some tokens from their input channel then to perform a given computation on those to-
kens and then write the result (in form of tokens) to their output channels. Dataflow programming
has been heavily used for the development of signal processing applications because it naturally
suits the computation structure of such applications. A MoC is coarsely an abstraction of how the
computation is done and it is also a useful representation when defining the semantics of a program-
ming model. However, formalizing the dataflow MoC is quite an old paradigm which has motivated
a lot of research. Thus, two main classes of dataflow MoCs arose from this research namely, the
static dataflow MoCs whose behavior can be predicted (at compile-time) and the dynamic dataflow
MoCs that exhibit a data-dependent behavior. The Khan Process Network (KPN) [121] is a re-
markable proposal which represents a dataflow program as a graph G = (V,E) such that V is a set
of vertices modeling computational units or processes which operate concurrently, and E the set of
unidirectional edges represented as unbounded FIFO channels. The inter-process synchronization
is done by a blocking-read which ensures that every program following this model of concurrency
is deterministic. As the control is completely distributed to the individual processes, a KPN im-
plementation does not require a global scheduler. As a result, partitioning a KPN over a number
of reconfigurable components or microprocessors is quite a simple task.

The Synchronous Data-Flow (SDF) [122] is a special case of static dataflow models in which
the computational units (actors) consume and produce a predetermined number of token each
time. In Figure [?] an IIR-Filter is modeled through an SDF graph and the number of consumed
and produced tokens is explicitly annotated on each node. This prevents the computation from
any side effect and most of the signal processing application can be modeled in such a way. An
implementation would require buffering the data tokens into FIFOs and control the nodes so that
they are run when data is available. In a pure SDF approach, static scheduling (or control for
uniprocessor implementation) is usually employed when it comes to implementation. However, a
dynamic scheduling would be more suitable for flexible radios such as SDRs whose control may
vary at run-time. Thus, different extensions of SDF were proposed to adapt the model to various
processing requirements. The Parameterized Synchronous Dataflow (PSDF) [123] is an example
of such an extension which enables to bind the token production and consumption together with
the expected delays. PSDF consists coarsely in parameterizing dataflow subsystem within a given
dataflow graph so as to enable local configuration to be handled at run time. Finally, SDF and its

60 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

Figure 4.6: A dataflow graph for a digital filter.

extensions have been extensively used as the underlying MoC for several widespread DSP modeling
tools and it is also the spearhead of the Ptolemy project [124] studies modeling, simulation, and
design of concurrent, real-time, embedded systems.

4.4.2 SDR Control Requirements

A dataflow implementation requires a control unit capable to support the data processing
throughout the flow graph. In the context of SDF, such control functionality must be determined
at compile time so as to set the memory and computation resources. Figure 4.7 shows an SDF signal
flow graph and its possible implementation which is composed of memory resources (FIFOs) for
interconnection purpose, functional blocks (FBs) to process the streaming data and a control unit
to sketch the process. The control appears as a central element which interacts with the functional
blocks to produce the desired behavior. Furthermore, statistical analysis must be performed to
determine the appropriate depth for each FIFO within the graph since multirate systems can also
be modeled with SDF. This task is achieved by analyzing a topology matrix which is extracted
from the SDF graph and whose properties are used to determine whether the graph can have a
valid schedule or not.

An SDR PHY implements signal processing algorithms and the SDF flow graph is a suitable
candidate for such implementation. However, SDR PHYs foster reconfigurable computational units
or functional blocks to ensure the flexibility of the PHY. To this end, an adapted MoC must be
established for SDR-PHYs and the provided control unit must able to support switching between
different configurations. At a coarser grain, reconfiguration may be required in SDR at the PHY-
level. Typically in a multi-standard SDR, such a scenario must be envisioned and once more the
control unit should be capable to handle the handover between two configurations.

4.5 In a Nutshell

Abstraction seems to be the mainstream approach to enhance the productivity and perfor-
mances in engineering in general. In the software domain, such an abstraction has been imple-
mented and rapidly adopted through technologies like the MDE. Indeed, these technologies are
now widely used to developed daily-life software applications. Conversely, raising the level of
abstraction in the hardware domain usually comes with a lot of skepticism owing to the initial
achievable performances. However, some mature tools have been recently proposed to tackle the
issue of programming hardware applications from high-level specifications; however these proposals
still require deep knowledge of the underlying hardware. Such tools can be leveraged to rapidly
prototype circuit architectures intended for FPGAs or ASICs.

In SDR domain, an open research work is the FPGA-centric SDR platforms development.
Indeed, there is an obvious interest in using FPGA fabrics for implementing SDRs however their

4.6. CONCLUSION 61

Figure 4.7: An SDF signal flow graph (left) and its possible implementation (right).

design methodologies contrast with the paradigm of SDR. Is merging the MDE technology and the
tools that enable high-level specifications for FPGA would automatically result in a design flow for
FPGA-SDR?

4.6 Conclusion
In this chapter, we have discussed the technologies intended to raise the level of abstraction both

in software and hardware domains. These technologies aim at reducing the complexity of developing
an application by automating as much steps as possible in the designing flow. It is clearly shown
that this approach improves the overall productivity and enables to perform several verification
early in the design process. Regarding software development, this approach was rapidly formalized
into the MDE technology and widely adopted by the community. On the contrary, hardware
communities mostly employed low-level technologies in their design process. However, HLS has
enabled to bridge the gap between the specifications and the implementation in a hardware design
process. It is a promising alternative that mirrors software programmability for FPGAs and ASICs.
The chapter ends with a discussion on how MDE and HLS could be unified into a designing flow
for FPGA-SDR.

62 CHAPTER 4. HIGH-LEVEL DESIGNING OF PHYSICAL LAYERS (PHYS)

Part II

CONTRIBUTIONS

63

Chapter 5

A Domain-Specific Language (DSL)
for FPGA-Based SDRs

Contents
5.1 Introduction . 66
5.2 The Proposed Design Flow . 66

5.2.1 Waveform Modeling . 66
5.2.2 Waveform Compiling . 67
5.2.3 Verification and Validation (V&V) . 67
5.2.4 Platform Integration . 68

5.3 Conceptual aspects of the proposed DSL 68
5.3.1 Platform Modeling . 68
5.3.2 DSL-Based Data-Frame Modeling . 69
5.3.3 DSL-Based Dataflow Modeling . 71

5.4 Frame-Based Control Unit . 74
5.4.1 A Hierarchical FSM (HFSM) for FPGA-based Dataflow Control 74
5.4.2 Frame-based Control Algorithm . 75
5.4.3 Simulation of the proposed HFSM on the StateFlow Environment . . . 78

5.5 Library of HLS/RTL-based Functional Blocks 79
5.6 Conclusion . 80

65

66 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

5.1 Introduction

An ideal SDR development tool should allow capturing any DSP application structures regard-
less of the underlying hardware. It is also important to allow in such tools, the possibility to

express the flexibility of the desired waveform through constraints or annotations. However, flexi-
bility issues must be considered both at compile-time and run-time. Compile-time flexibility should
enable exploring the design solution space while run-time flexibility is much more about how to
change the functionality of the selected design at run-time. A well-planned SDR development tool
should provide a minimum set of waveforms in form of library at launch and then evolve to sup-
port multiple waveform constructions. Regarding embedded systems in general, some abstracted
modeling environments [99][98], which rely on the Unified Modeling Language (UML) [95] have
been proposed. Similarly in the context of SDR, other abstractions have also been proposed and
we have already discussed their potential earlier in this document. In this chapter we introduce
our proposal, which consists in an FPGA-SDR design flow in form of a DSL [84]. The goal is
to provide an environment to model and implement SDR PHY intended to be run entirely on an
FPGA fabric. The flow is featured with the HLS technology to enable rapid prototyping of the
desired waveforms. An associated compiling framework has been developed to automate different
stages of the flow by automatically generating the required artifacts. Throughout this chapter, we
will illustrate each step of the design process with some generic examples. Some case studies will
be provided later in the document. Section 5.2 introduces the proposal and Section 5.3 provides
more details on the conceptual aspects of the DSL. In Section 5.4 we will discuss the features of
the automatically generated control unit. Section 5.5 deals with the features of functional blocks
composing the HLS library and conclusions are drawn in Section 5.6.

5.2 The Proposed Design Flow

The research work that is presented in this document has mainly consisted in defining and
implementing a software-based framework for designing FPGA-SDRs. A synoptic of the proposal
is illustrated in Figure 5.1. It comprises four major stages, namely the Waveform Modeling stage,
the Waveform Compiling stage, the Verification and Validation stage and finally the Waveform
Programming stage. Each of these stages covers a specific aspect in an SDR waveform development
process and we strongly believe that bringing them together ensures the completeness of the pro-
posal. As the reader can notice in Figure 5.1, the flow is also featured with a library of functions
whose main goal is to enable rapid prototyping. The main idea behind this approach is to provide
an evolving library of signal processing components that can be used to program any SDR. Such a
block-based approach was suggested by Joseph Mitola [10][11] who clearly identified the need for
a set of DSP primitives/functions in a software radio development framework. Thus, most of the
SDR frameworks encountered in the literature are featured with some libraries of signal processing
primitives. Further details on the library which is featured with our proposal will be given later in
this chapter. The following sections introduce each of the stages.

5.2.1 Waveform Modeling

The Waveform Modeling stage is the entry point of our SDR development flow. It consists of an
external DSL, developed with the Xtext/Xtend framework [93], which essentially allows capturing
the data types and the dataflow organization of an SDR waveform. The DSL was developed from
scratch by defining a meta-model/grammar for the language through a BNF-like (Backus-Naur
Form) syntax [92]. Indeed, the Backus-Naur Form is a formal and mathematical way to describe
the grammar of a language. It coarsely consists in defining a set of rules that are used to evaluate
the correctness of an instance of the language source code.

The Xtext/Xtend framework takes a BNF syntax as entry point. Our DSL definition has then
consisted in defining some grammar rules in Xtext so as to model different aspects of an SDR
waveform. Thus, these rules enable modeling a typical FPGA-based platform by providing the
FPGA device information as well as the ADC and DAC features such as their precision or their
operating frequency. The second aspect that is also modeled with the DSL is the data frame

5.2. THE PROPOSED DESIGN FLOW 67

D
S

L-

C
co

m
p

il
e

r

D
o

m
a

in
-S

p
e

ci
fi

c

La
n

g
u

a
g

e

RTL Merging Third-party

Blocks

Library

IP_x.cpp

IP_x_v1.vhd

Waveform Modeling

Frame & Dataflow

Specification

.tcl

HLS

Tools
FB

Sourcing

.tcl

.cpp

.vhd

Control

Unit
P

la
tf

o
rm

In
te

g
ra

ti
o

n

To FPGA

Bitstream Generation

.vhd .vhd

.vhd

.vhd + .tcl

.bit

Design

Constraints

HLS

Tools

.vhd .vhd

N IP_x_v2.vhd

IP_x_v3.vhd

FB� FB��� FB�

FB

Sourcing

FB�

Model-based

Verification

Functional

Verification

Waveform

Validation

Verification

&

Validation

Figure 5.1: Proposed Design Flow.

structure together with the dataflow organization. This aspect will be further discussed in the
following sections. The DSL finally allows specifying a set of design constraints whose goal is to
enable both compile-time and run-time waveform flexibility.

5.2.2 Waveform Compiling

A DSL-based description of an SDR waveform is automatically converted into an intermediate
representation consisting of an Abstract Syntax Tree (AST). This AST is actually an Ecore model
which represents the converted code in form of a directed graph whose nodes are coarsely the
attributes of rules specified within the source code. The generated AST is made compatible with
the ANTLR [94] parser generator which is quite a famous tool in the computer scientist community
for generating language parser or compiler. Xtext has been used to model its own parser/compiler
generator which is the Xtend framework. Thus, an AST that is issued from a DSL specification
can be parsed/compiled into a desired artifact, such as source code, by a set of functions written
in Xtend. Xtend itself is a kind of sugared version of the Java language however the parser could
have also been written in Java, which is compatible with Xtext.

In this work, we have proposed a DSL compiler which is entirely written in the Xtend language.
Its main goal is to automate as many steps as possible in the SDR design process. Thus, a
DSL-based SDR specification is first converted into an AST. Following this step, some synthesis
scripts are generated for each HLS-based FB instantiated in the DSL specification. The synthesis
scripts are used in combination with the HLS description of the block, to generate the RTL-VDHL
description of the block through the HLS tools. A control logic tailored to the application is inferred
from the AST, as well. Finally, both FBs and the control are assembled into a waveform.

5.2.3 Verification and Validation (V&V)

Verification and validation processes are very important in a design flow since they ensure
that the final design will meet with the requirements. They can be time consuming to perform,
however, they enable proving the correctness and reliability in the various steps of the design and
implementation process. In the proposed design flow, as illustrated in Figure 5.1, the V&V is

68 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

declined into three steps namely, the Model-Based Verification, the Functional Verification and
the Waveform Validation. Each of these steps gradually verifies the correctness of the waveform
at each stage of its development. Thus, the Model-Based Verification relies on the MDE concept
to ensure the validity of the specified model. The Functional Verification is intended to verify the
generated implementation of the waveform and consists of different steps. Finally, the Waveform
Validation consists in testing the waveform which is programmed on the platform.

5.2.4 Platform Integration

Once the desired SDR waveform implementation has been automatically generated and verified,
a platform integration of the solution comes next. This stage relies on the software tools which are
provided to synthesize the bitstream for the target FPGA. Indeed, the integration is quite tool-
dependent since the target platform(s) is (are) supported by some specific software toolsets. One
of our goals was to automate some parts of this stage by leveraging some automatically generated
scripts from the high-level descriptions.

We believe that these four stages compose an SDR design flow. In addition, a library of
functions is associated to this flow so as to enable rapid implementation in the long term thanks to
a block-based designing approach. In the forthcoming sections, each of these stages will be further
discussed and illustrated through generic examples.

5.3 Conceptual aspects of the proposed DSL

An SDR development tool/flow must support different requirements regarding the implemen-
tation while enabling some system-level simulations. The simulations allow the designer to analyze
the big-picture behavior of an architecture while creating its underlying solution. In the literature,
system simulation tools fall into two categories [38] namely, the code-based tools and the block-
based tools. The first category fosters a description of the system by using specific commands in
a specific language while the second category requires the developer to draw block diagrams to
describe the algorithm. The major difference between these two approaches resides in the way
the dataflow is handled. Indeed, code-based tools would generally require the designer to manage
the data transfer between functions with loop constructs for example, whereas block-based tools
implicitly provide buffers and flow control between blocks. As a result, block-based tools take more
time to simulate compared to code-based tools. However, block-based tools are becoming more
and more popular and it is a common sense to recognize that block diagram are more intuitive
when compared to equivalent function calls.

We have defined and implemented a code-based tool which consists of a DSL, to model and
implement an SDR waveform to be run entirely on an FPGA-based platform. A typical DSL-based
description is composed of a platform model description followed by a data frame and a dataflow
description. This innovative approach employs the description of the dataflow structure together
with the data frame model for an automatic inference of the control unit. Each of these steps is
depicted and illustrated with generic examples in the following paragraphs.

5.3.1 Platform Modeling

The proposed DSL enables to provide a description of the intended FPGA platform. To this
aim, a description of the FPGA device must be provided together with the features of the available
signal converters. Such features comprise the converters bandwidths (in MHz), data precision (in
bit), sampling frequency (in MHz) as well as their serial/parallel nature. Recall that, a serial
converter requires the data from different channels (I and Q for instance) to be multiplexed before
being converted while parallel converters connect directly to the channels. The information enables
to tailor the final waveform description to the platform requirements.

Figure 5.2 shows the description of an FPGA-based platform with the proposed DSL. Both
ADC and DAC are described by explicitly giving some of their relevant features. For instance, the
employed ADC has a data precision of 16 bits with a sampling rate of up to 80 MHz. It implies

5.3. CONCEPTUAL ASPECTS OF THE PROPOSED DSL 69

/* ADC specification */
ADC LTC2641ADC {
precision 16 bits;
bandwidth [1 MHz - 80 MHz];
nature serial;

}

/* DAC specification */
DAC LTC2641DAC {
precision 14 bits;
bandwidth [1 MHz - 80 MHz];
nature serial;

}

/* FPGA specification */
FPGA V6 {
family VIRTEX-6;
speed 1;
part VLX75TLFF484;

}

Figure 5.2: DSL-based platform description.

that the information signal bandwidth which can be properly sampled by such an ADC should not
exceed 40 MHz. FPGA is also depicted in this description by giving the device family, its speed
grade and further information. All these information are later used to guide the compiler so as to
produce appropriate RTL from the HLS tools. However, not all types of FPGAs are supported at
the time but further extensions to more FPGA families are under consideration.

5.3.2 DSL-Based Data-Frame Modeling

Most of the radio communication standards [20][21][22] organize the transmitted set of data
into data frames or data packets. As mentioned previously, this frame structure ensures among
others the interoperability of the standard compliant transceivers that are released by different
vendors. A data frame at the PHY-level is composed of a set of fields or subframes which carry
either synchronization information or upper layers, such as Medium Access Control (MAC), data
payload or frame-specific information.

Further to this, the information that is nested in a given field may vary or remain unchanged
in all the transmitted frames. For instance, synchronization fields should always respect a regular
pattern whereas data payload can vary in terms of content or size. The proposed DSL provides
the keywords to describe such organization of a data frame. Thus, each field can be characterized
depending on its fix or variable nature. As a result, two types of fields were identified, namely the
constant fields and the variables fields. Figure 5.3 shows a generic data frame structure, which is
composed of N fields numbered from 1 to N . From this example, both data field and data frame
DSL-based descriptions are discussed in the following lines.

Figure 5.3: Generic data frame.

70 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

/* Specification of field#1 */
#fieldC F1 {

constant dataf1; /* Constant symbol */
redundancy 8; /* Repetition over 8 symbols */
duration 128 us; /* Overall duration of the field */

}
...

/* Specification of field#3 */
#fieldV F3 {

data dataf3; /* Variable data being carried by field#3 */
duration 32 us; /* Fixed duration of field#3 */

}
...

/* Specification of field#N */
#fieldV FN {

data datafN; /* Data payload conveyed by field#N */
maxsize 128 bytes; /* Maximum payload size */
minsize 16 bytes; /* Minimum payload size */

}
/* Data Frame Specification */
complex frame F {

F1 F2 F3 . . .FN
} sof after F1 /* F1 is designated as the start of frame */

Figure 5.4: DSL-based description of a generic data frame.

Field specification

In a DSL description, the declaration of constant and variable fields is done with the keywords
#fieldC and #fieldV respectively. They are followed by an arbitrary identifier that will be used to
reference the field in the rest of the DSL source code. Following this step, field-specific information
such as data redundancy, size or duration are defined in a structure-like specification. The redun-
dancy within a given field enables to highlight a repetition of a data structure within the field. The
size provides an interval in byte within which lays the size of the field. It is employed for data fields
with variable size. The duration provides the exact duration (in µs) of a given field. The duration
is usually specified by the standards when the field size does not vary. Actually, these definitions
aim at adapting the control when each field is transmitted or received through the transmitter or
receiver dataflow graph.

Figure 5.4 shows a DSL-based description of the generic data frame illustrated in Figure 5.3.
In this description, we assume that the field#1 denoted F1 is a synchronization field. Moreover,
F3 and FN carry frame-specific information and data payload respectively. As a preamble field,
F1 has a constant structure hence being specified with the keyword #fieldC. It is composed of a
repetition of a regular pattern which is shown by the keyword redundancy. Such repetition enables
at the transmitter to compute once the data and then store it into a given memory unit. The
constant field is multiplexed from that memory storage with the rest of the frame at run-time. In
the other cases where the constant field does not exhibit any redundancies, the constant data which
composes the field can be entirely stored into memory and multiplexed to the rest of the frame at
run-time. F3 which carries frame-specific information is specified with the keyword #fieldV. It has
a fixed duration and its content is provided byte-wise through the variable dataf3. The data frame
payload is conveyed by the field FN . It is a variable field which carries the useful bits. Its content
size generally belongs to an interval which is given by the standard. In the proposed DSL, such an
interval can be specified in byte within the definition of the field. Further to this, the useful data
that are provided by the upper layers and identified by the variable datafN. This variable has a
byte size by default.

We believe that such a specification enables to capture the features of each field so as to adapt
the control path afterwards. Further discussions on how the description of each field is employed
to infer an efficient control path, are given later in this document.

5.3. CONCEPTUAL ASPECTS OF THE PROPOSED DSL 71

Data frame specification

After each field composing the frame has been specified, a resulting data frame is specified with
the keyword frame, which is followed by an arbitrary frame identifier. Then, through a structure-
like specification, the set of fields composing the frame are listed according to the order with which
they are transmitted. Moreover, a frame can be specified either as complex or real. Remember that
complex frames imply both an inphase and a quadrature phase projection of the signal. It results
in a baseband signal composed of two channels usually called I and Q. Once a frame has been
specified, a Start-Of-Frame (sof) delimiter is designated after a given field. This sof information
denotes essentially a set of synchronization elements that must be computed at the receiver. Thus,
the detection of the sof enables to intuitively sketch the control path of the waveform at the
receiver. The description of the data frame which is made up of the N fields is given at the bottom
of Figure 5.4. An sof is designated after F1, which implies that synchronization will mainly consist
in recovering some information from the field F1.

The purpose of a frame declaration is twofold. On the one hand, computation resources are
optimized with regards to the nature of the field. As mentioned previously, constant fields are one
time computed and mapped to memory. The actual frame is built by consistently multiplexing
those fields to the rest of the frame during transmission. On the other hand, the attributes of
each field, especially the duration information, enable to dimension the appropriate control unit
required for the waveform.

5.3.3 DSL-Based Dataflow Modeling
As aforementioned, the proposed DSL provides the primitives to capture the organization of a

dataflow structure. Such a dataflow structure is mainly composed of functional blocks (FBs) and
a communication infrastructure. In the context of an FPGA-based SDR, the dataflow structure is
intended to be entirely programmed in the FPGA. To this end, the DSL leverages some libraries of
HLS-based or RTL-VHDL based FBs that can be instantiated on-the-fly so as to build the desired
datapath. In the following sections, we first discuss how to model a dataflow structure with the
proposed DSL and then we will discuss the constraints which can be injected within the model so
as to enable a flexible implementation of the waveform.

DSL-based dataflow description

The dataflow structure is common to most of the signal processing applications. Moreover, its
implementation has been extensively discussed in the literature. The Synchronous Data Flow MoC
provides an intuitive way for describing a dataflow graph. It coarsely fosters an implementation
within which FBs are interconnected via FIFOs of pre-determined depth. The SDF MoC has been
discussed earlier in this document.

To capture such a structure, the proposed DSL first allows the designer to specify some data
rates, which highlight the frequencies at which the FBs operate. Then, interconnections are speci-
fied with the keywords framedata or event. The framedata keyword denotes a dataflow connection
(FIFO) and the event connection denotes an event-like connection such as a control data. Each
of these connections is identified with an arbitrary name, which is provided by the designer. The
specification of an FB starts with the block name followed by the function of which it is an instance.
It also requires to mention the set of fields that will be processed by the instantiated block after
the keyword processing. Indeed, FBs do not often process the entire data frame but only a set
of fields which composes the frame. Thus, the proposed DSL enables to mention explicitly which
fields must be processed by a given block. In addition, it is required to mention the sources of those
fields, which can be a preceding FB or an ADC. This step is done with the keyword from which
is followed by the name of the source. The idea to specify each block on a field-basis is to later
infer a control path which can sketch accordingly the computation for each FB. It is important to
recall that each FB has been well-debugged prior to its integration into the HLS library. Thus, its
instantiation within the DSL implies that it is functionally correct.

Figure 5.5 highlights the specification of the clock and data rates, the interconnections as well
as an FB. The clock is specified by explicitly mentioning its value whereas the internal rates can be
optionally derived. Thus, the sampling rate fe is made equal to 10 MHz while the symbol rate fs

72 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

/*Clock and rate specification*/
clock fclk = 20 MHz;
rate fe = 10 MHz;
rate fs = fe/2;
/*Interconnection declaration*/
connect1 framedata on 6 bits;
connect2 framedata on 6 bits;
connect3 framedata on 10 bits;
connect4 event on 2 bits;

/*Specification of a functional block*/
FB1_i: ip FB1 processing F1 from FBj_x {

read connect1 on port in1 at fe;
read connect2 on port in2 at fe;
write connect3 on port out1 at fs;
write connect4 on port out2;
synthesis catapult;
constraint throughput 2;

}

Figure 5.5: DSL-based description of an FB.

is derived from the sample rate. The specification also consists of four interconnections comprising
framedata connections as well as an event connection. Furthermore, their data width is specified
in number of bits. The specification shows the instantiation of a FB (FB1_i) that processes a
single field (F1) source from another FB (FBj_x). Following this step, the interfaces of the FB
are consistently connected to the interconnection thus building the dataflow graph. The input
connections are specified with keyword read while the output connections are specified with the
keyword write. In addition to this, framedata connections require specifying the expected data rate
as it is shown in Figure 5.5. The resulting FB can be illustrated as Figure 5.6. Its input data are
read from FIFOs connections (connect1 and connect2) and output data are written into a FIFO
and a wired connection. Further connections, such as clock, reset and an enable signal, are added
at synthesis time as it can be seen in Figure 5.6 as well.

A key advantage in using HLS-based FBs resides in the fact that they can be further optimized
by using some design constraints. We have leveraged this feature in the definition of the DSL by
enabling the specification of design constraints while instantiating a given block.

Figure 5.6: FB equivalent architecture.

5.3. CONCEPTUAL ASPECTS OF THE PROPOSED DSL 73

Design Constraints

As aforementioned, the HLS tools allow the designer to specify a set of design constraints in
a given FB specification. Such constraints are intended to guide the synthesis toward a specific
objective. Thus, several optimization can be performed with respect to throughput, area or latency
performances. From then on, a FB which was previously seen as a black box in the proposed DSL,
can now be considered as a black box whose implementation can be made flexible. HLS tools
usually employ some annotations or pragmas to guide the optimization process. In the DSL, we
have defined some similar annotations that can be used in the specification of a block. Specified
with the keyword constraint in the DSL, it is an optional feature which can help exploring and
optimizing the FB implementation. At the time of writing this report, we have only addressed
design throughput and latency constraints in the current version of the DSL. They consist in
explicitly mentioning the target throughput or latency in a number of clock cycles. This approach
enables to explore the space of a design implementation until the requirements can be met. It is
made possible by the use of synthesis scripts which are automatically generated for each FB. In
Figure 5.5 such a constraint is specified on the expected throughput. Indeed, the interpretation
of this constraint specification is that the underlying FB architecture should have a throughput of
two clock cycles.

We have defined a basic allocation strategy for selecting (after synthesis by the HLS tools) the
appropriate FB or IP. Basically, the DSL-Compiler chooses the FB with the lowest area, which
respects the target throughput. However, latency should be taken care of so as to ensure the
correctness of the final design. In Figure 7.7, a block IPx is connected to two other blocks IPx−1
and IPx+1 with an input rate of finx and an output rate of foutx must satisfy the following latency
constraint in number of clock cycles:

Latencyx <
fclk

max(finx , foutx)
(5.1)

where fclk is the design clock. By trading-off in such a way, the compiler can ensure some consis-
tency inside the dataflow graph while exploring different solution.

Moreover, the DSL provides a means to specify the target HLS tool through the keyword
synthesis, which is followed by the name of the tool. As different HLS tools are emerging on
the market, our proposal aspires to take advantage of each of their offerings into a co-design
approach. Thus, synthesis scripts are proposed as an interface to the HLS tool. So far, we have
experienced with Catapult [113] and Vivado HLS [114] and the current version of the DSL supports
the generation of synthesis scripts for the two of them. However, the HLS-based description of a

Figure 5.7: Simplified design constraint management scheme based on a throughput area trade-off.

74 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

FB differs slightly depending on whether the synthesis tool is Catapult or Vivado HLS. Indeed, a
C/C++ specification intended to be synthesized by Catapult can not automatically be synthesized
by Vivado HLS and vice versa. Care must then be taken while specifying the intended synthesis
tool.

In this section we have essentially discussed some conceptual aspects of the proposed DSL. Thus,
some keywords which enable to model an entire FPGA-SDR waveform have been introduced. It
was shown that the proposed DSL allows the designer to capture several aspects of such a waveform
starting from the platform down to the desired datapath. One of the key elements in our proposal
is the automatic generation of a control path which suits to the datapath modeled with the DSL.
In the next section, we will essentially discuss the features of the control unit that is inferred from
a DSL-based description of a given waveform.

5.4 Frame-Based Control Unit

The proposed DSL can thus far be viewed as an enabling technology for assembling signal
processing FBs that are pre-written in some high-level languages. Indeed, HLS tools are used
to synthesize both the RTL implementation of each FB and the communication infrastructure
which is mainly composed of FIFO elements. The assembly of FBs into a datapath will be further
discussed in the next chapter. However, we have addressed the issue of control at the system-level
(waveform-level) by enabling the inference of a control logic from the DSL-based description of a
waveform. The control is derived from the data frame and the FB specifications. It is implemented
as a Hierarchical Finite State Machine (HFSM) which purpose is to orchestrate the data frame
computation through the dataflow graph.

5.4.1 A Hierarchical FSM (HFSM) for FPGA-based Dataflow Control

First of all, a data frame can be considered at distinct levels, namely the bit level, the symbol
level and optionally at the sample level. In the DSL the content of each field is referenced by an
arbitrary variable which default type is the byte. Indeed, this can be seen in Figure 5.4 where a
data frame specification was provided. It is also possible to specified the constant fields content
in form of a link to a sample file containing the samples which compose the field. Further to this,
a frame can be characterized by its duration, its source (e.g. an FB) and it is composed out of
fields as we mentioned before. This structure gathers some exploitable information that we have
leveraged in our proposal to achieve automatic control path inference. The duration of each field
for instance can help generating the read and write clock signals during the appropriate slot of time.
In addition, each block within the dataflow graph is meant to perform a given action on a specific
set of fields. Once this action terminates, the block may no longer be required and then disabled.
For instance, some FBs may address only synchronization blocks while some others only address
data decoding. Such scenarios are quite recurrent in digital transceivers. It is then convenient to
control the activation and deactivation of each FB on a per field basis.

The automatically generated controller consists of a HFSM working in both TX and RX modes.
Its overall structure is given in Figure 5.8, where dash lines denote parallel states while solid lines
denote sequential states.
In TX mode, the controller consists of two major states also called super-states. The first one is
the IDLE super-state which corresponds to the inactive state of the transmitter. After detecting a
start signal from the MAC, it switches from the IDLE super-state to the FRAMING super-state
where data coding is orchestrated. Generally speaking, dataflow transmitters are feed-forward
architectures which means less complex to implement as compared to their associate receiver. The
FRAMING super-state is declined into three parallel sub-states namely, the CODING state, the
INSERT state and finally the BL-RECONF state. In the CODING, the dataflow computation
which is described in the DSL is performed. The output samples are fed to the DACs (Digital
to Analog Converter) prior RF modulation. In parallel to the CODING state, an INSERT state
manages the run-time insertion of specific data in the frame, both at the time (constant fields)
and frequency (pilots) domains. Considering the standards based on the OFDM modulation, they

5.4. FRAME-BASED CONTROL UNIT 75

Figure 5.8: Transceiver Hierarchical FSM.

usually require to insert pilot symbols for coherent detection. The BL-RECONF state handles
the block-level (fine-grained) reconfiguration of the transmitter. Indeed, modern standards require
certain blocks to be adaptive (ACM), i.e. changing their properties on-the-fly. A main stream
approach consists in hard-coding all the possible configurations of the block once and then using
software controlled switch to select the desired configuration at run-time. A second approach is to
reconfigure the block when a given configuration is desired. It is a suitable approach which fits the
best to the paradigm of SDR and would require partial reconfiguration capabilities in the context
of FPGA.

In RX mode, the FSM is composed of three super-states. The IDLE state, as in TX mode,
denotes the inactive state of the receiver. In this state, the receiver monitors the environment
seeking for an incoming signal. Once a signal is detected, by monitoring an RSSI (Received Signal
Strength Indicator) for instance, the receiver switches from the IDLE state to the PRE-SOF
state. The PRE-SOF state consists essentially of synchronization tasks as imposed by most of
the standards. Recall that an sof refers to the start of frame delimiter. Once the system enters
the PRE-SOF state, a set of synchronization elements must be detected and computed within a
certain delay. If not, the system returns in the IDLE state. The detection of these synchronization
elements is referred to as a sof event which is defined in the DSL-based frame specification that
was lately introduced. An sof detection makes the system switch from PRE-SOF to POST-SOF
where a coherent data decoding is sketched. The POST-SOF state is declined into three parallel
sub-states namely, the DECODING state where most of the signal processing is required, the
SYNC-TRACK state in which the system keeps on tracking synchronization elements and finally
the BL-RECONF state to handle the run-time block-level reconfiguration as in TX mode.

5.4.2 Frame-based Control Algorithm

In both modes (TX and RX) or even at a finer grain i.e. for each state, a set of dataflow
computations is intended. In the context of FPGA, the datapath associated to each state or super-
stated is one-time mapped to dedicated resources which are ready to operate as soon as the FPGA
is powered on. We have considered a single clock domain for this work. Thus, one of the roles of
the control unit is to distribute the signal to activate or deactivate the FBs when required. Such

76 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

signals are the clock, the enable signals and the reset signal. We leverage the properties of the data
frame together with the intrinsic structure of the datapath (dataflow) to infer such a control unit.
First, a data frame F is perceived as a collection of fields i.e.:

F = ∪Ni=1Fi, (5.2)

where Fi denotes the i-th field and N represents the number of fields composing the frame. Each
field Fi is characterized by its duration Ti its constant or variable nature State or its transported
data Payload:

Fi = {Ti, State, Payload}. (5.3)

The duration TF of the overall frame F is computed as:

TF =

N∑
i=1

Ti. (5.4)

The data-path, at both the transmitter and receiver side, is a set of interconnected FBs. Each
FB is characterized by its latency (L), throughput (TP), input and output data rates (fin and
fout). Recall that, the notion of throughput in the HLS tools refers to how often (in number of
clock cycles) a function (FB) is called. It is associated to an Initiation Interval (II) whose value
is basically the number of clock cycles between two consecutive function calls. For each block,
whenever the input and output rates are known, the streaming data can be directly handled by
using enable signals. Moreover, each block is activated or deactivated on a per-field basis since
computation happens to be specific to a given field. Thus, let FBj be the j-th FB within the
dataflow graph:

FBj = {finj , foutj , Lj , TPj}. (5.5)

Assuming that FBj processes the field Fi of duration Ti at an input rate of finj and output rate
of foutj , such a block requires being enabled a number of clock cycles equal to:

Ki,j = Tifinj =
Ti
Tinj

. (5.6)

Figure 5.9: Enable distribution for the activation of FBj operating on Fi.

5.4. FRAME-BASED CONTROL UNIT 77

Thus, each block is stamped with a time slot to process a given field whenever this field traverses
the graph. The FBs are therefore activated depending on the ongoing field. For achieving this, the
control unit decides a starting moment for each block in the graph which is referred to as Trefj . This
starting time is computed by considering both the graph structure and the properties (latency and
throughput) of each block composing it. Indeed, each state is associated to a datapath and once the
system enters a state, the processing starts with a specific block that is labeled as a reference block.
The activation moment of the remaining blocks in the data-path is then estimated by computing
their distance compared to the reference block based on the latency and the throughput of the
blocks preceding them. Figure 5.9 shows a time chart for illustrating the activation of the block
FBj to compute the field Fi during Ti. Its reference time Trefj is estimated at compile time and
accordingly used to activate the block. Subsequently, the activated block receives some enable
signals, to control both its input and output streams, from the control unit for a duration of Ti.
After this time has elapsed, the block can be disabled or may keep on processing the next field
if it was specified to process multiple consecutive fields. This scenario is illustrated throughout
Figure 5.10. One can see a data frame which is made up of three fields whose duration are known.
The dataflow graph that is intended to process this frame is illustrated, as well. In this path,
the block FB1 processes the whole data frame while FB2 only processes Field1. The remainder
of the graph, i.e. from FB3 to FB6, is intended to process both Field2 and Field3. Moreover,
FB1 designated as the reference block FBref which means that the computation starts with FB1

therefore, Tref,1 = 0. The activation time-chart is shown at the bottom of the Figure 5.10. It
concerns FB1, FB2 and FB3 and shows the delays that must elapse before the activation of each
of these blocks. Subsequently, the FBs are activated for a duration which depends on which part
of the data frame is being processed. This approach naturally induces the notion of pipelined
architecture as it allows an FB to start processing as soon as a data is available at its inputs.
Indeed, thanks to the attributes of the data frame the graph can be scheduled in a pipeline fashion
where each block is deactivated when no longer required.

Figure 5.10: Control algorithm illustration.

78 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

Figure 5.11: Proposed HFSM modeling and simulation on StateFlow.

The proposed algorithm has first been modeled and validated on the StateFlow [125] environ-
ment and subsequently integrated into the proposed SDR PHYs design flow.

5.4.3 Simulation of the proposed HFSM on the StateFlow Environment

The StateFlow environment enables modeling and simulating combinatorial and sequential
decision logic based on state machines and flow charts. It is fully integrated to the Matlab/Simulink
tool while offering a graphical representation to model state machines. We chose to model and
simulate the proposed HFSM so as to further analyze the expected behavior of the control unit
regarding the enable signals distribution. The model which is shown in Figure 5.11 has been
enhanced with some Matlab functions (at the bottom of the diagram) which compute the time
references for a set of six FBs. Remember that for each FB, a distance which corresponds to an
activation delay is computed between the block and a reference block. In Figure 5.11, the activation
delay and its duration can be observed on the resulting timeframe which were defined in RX mode
(the lower state).

The architecture of the control unit has thus been modeled and simulated prior to its integration

5.5. LIBRARY OF HLS/RTL-BASED FUNCTIONAL BLOCKS 79

to the proposed SDR design flow. We strongly believe that such an architecture captures the
behavior of the frame-based coherent transceivers, especially for an FPGA implementation. In the
following section, we will discuss the FBs that have been developed to support our approach.

5.5 Library of HLS/RTL-based Functional Blocks
Our proposal has considered two digital transceivers as case studies. The two transceivers have

been depicted earlier in this document, namely the IEEE 802.15.4 and the IEEE 802.11a baseband
transceivers. The work has consisted in developing the FBs composing these transceivers with
either HLS tools or hand-written VHDL language. We have also leveraged some blocks that were
developed by other fellow colleagues or even provided by the HLS tools.

A typical FB has some interfaces which enable to connect with the outside world. We have
chosen, in the context of HLS, to define such interfaces as pointers or arrays. Indeed, pointers and
arrays are automatically synthesized as memory elements by the HLS synthesis tools. It was then
convenient to select these interfaces for implementing dataflow architectures where most of the
connection between FBs is done via FIFOs channels. Figures 5.12 and 5.13 show the specification
of the matched filter which is required in the receiver of the IEEE 802.15.4 PHY and developed with
Vivado HLS and Catapult respectively. In both cases, the filter is developed as an FIR filter whose
interfaces are mostly pointers or arrays. They both leverage a particular class of shift register,
provided by the tool, to buffer the input stream as it is required in a classical FIR implementation.
Thus, this specification highlights an advantage of the HLS tools which is the reuse of class of
functions which were programmed at a higher level.

Figure 5.12: IEEE 802.15.4 transceiver matched filter specification in Vivado HLS.

The resulting RTL description of a given block usually consists of a top level function which is
composed of a core entity, an internal state machine and some interfaces (FIFOs channels). The
internal FSM aims at scheduling the function so that it can meet with the requirements at the
block-level. Thus, whenever some optimization are selected by the designer, the FSM helps with
the actual implementation of the optimization. In other words, loop unrolling or loop pipeling
techniques or resource sharing are partly enabled by the internal FSM. The top level function
employs classical RTL interfaces, i.e., the std_logic interface, the std_logic_vector interface and
so on. The tools also propose some schematic views of the generated functions which enable to
readily grasp they structure. The RTL source code on the other hand is not a readable code even
more so because it is usually longer than a dozen of thousands of lines.
We have also implemented the proposed SDR design flow so that it can support some hand written
VHDL functions. Such functions must be specified with some input and output interfaces of
std_logic or std_logic_vector types. Further to this, a clock signal, an asynchronous reset signal
and an enable signal are mandatory for each block. Our aim is to provide an environment which
supports heterogeneous FBs which means that FBs specified by different HLS technologies or
hand-written VHDL could be employed in the same project. This was a reason to standardize

80 CHAPTER 5. A DOMAIN-SPECIFIC LANGUAGE (DSL) FOR FPGA-BASED SDRS

Figure 5.13: IEEE 802.15.4 transceiver matched filter specification in Catapult.

the interfaces which allow such a scenario. The current version of the DSL-Compiler does not
entirely support this heterogeneity however we are still working on its extension. In other words,
the DSL editor enables to specify some heterogeneous blocks within the same project but it is not
yet entirely supported by its compiler.

5.6 Conclusion
Throughout this chapter we have introduced our proposal for modeling and implementing

FPGA-SDRs. The proposal was implemented in form of an external DSL which enables cap-
turing different aspects of an SDR waveform. These aspects range from the platform model down
to the datapath of the waveform. Moreover, the conceptual aspects of the proposed DSL have been
illustrated with some generic examples. Thus, an FPGA platform model, a data frame model as
well as an FB model have been provided.

Afterwards, the architecture of the inferred control path has been introduced and further dis-
cussed. It consists of a HFSM which provides the control signal for orchestrating the data com-
putation. Finally, it has been shown how the proposed flow is featured with the HLS technology,
which allows rapid prototyping in the context of FPGA.

At the first glance, our proposal can support a conceptual model of an FPGA-SDR. However,
the implementation of the waveform should be automatically derived from the model so that it
can be claimed to be an SDR design flow. For this purpose, we have defined a DSL compiling
framework to support our approach and its features are discussed in the subsequent chapter.

Chapter 6

The DSL-Compiling Framework

Contents
6.1 Introduction . 82
6.2 DSL Implementation . 82

6.2.1 Parsing . 82
6.2.2 Abstract Syntax Tree (AST) . 83

6.3 DSL Compiler Flow . 83
6.3.1 AST Verification . 83
6.3.2 Waveform Generation . 85

6.4 Platform Programming . 88
6.5 Conclusion . 89

81

82 CHAPTER 6. THE DSL-COMPILING FRAMEWORK

6.1 Introduction

In the previous chapter, we have introduced and discussed the big-picture of our proposal, which
consists of an FPGA-based SDR design flow. The proposed flow relies on a DSL that was

defined to help capturing the structure of an SDR waveform at a higher level of abstraction. In
this chapter, we would like to emphasize more on its compiler by discussing some of its main
features. As aforementioned, the Xtext/Xtend framework allows defining a DSL together with its
associated compiler. The Xtext/Xtend framework offers a customized editor to specify some DSL-
based applications as well. Our design flow has required to develop a compiler which implements
some algorithms and also generates several artifacts such as VHDL source code and synthesis
scripts. The overall compilation process of a program written in a DSL is composed of two majors
steps. The first step consists in producing an intermediate representation of the program also
called Abstract Syntax Tree, abbreviated AST. Following the AST generation, it can be further
analyzed and later used to produce the desired outputs. Sections 6.2 and 6.3 discuss the two
compilation steps while Section 6.4 provides an insight on how a modeled and generated waveform
is programmed on the platform. Conclusions are drawn in Section 6.5.

6.2 DSL Implementation

6.2.1 Parsing

A DSL implementation requires first to define an adequate grammar which enables modeling
an instance of a domain application. Once a program is written with the DSL, the next step is
to make sure that the program respects the syntax of the DSL. To this aim, a lexical analysis is
performed by a lexer or a scanner. It consists in converting the program into a set of tokens which
represents the atomic elements of the program such as the keywords, the identifiers, variables or
the operators. Subsequently, a syntactic analysis takes place to make sure that each sequence of
tokens forms a valid statement in the language. These two steps constitute the parsing stage of a
DSL and they can be relatively complex to define depending on the features of the DSL. However
some tools, referred to as parser generator, generate automatically the parser from a grammar
definition. The Xtext/Xtend framework includes a parser generator.

Figure 6.1: Generic AST representation.

6.3. DSL COMPILER FLOW 83

6.2.2 Abstract Syntax Tree (AST)

After a program is parsed and partly checked for correctness, the parsed program is stored in
memory with a particular representation. This representation has a tree structure and it is usually
called the Abstract Syntax Tree (AST). The AST enables not to parse over and over the same
text. With the AST, further verification can be done so as to ensure the consistency of the parsed
program. For instance, type checking should be performed after the AST has been generated to
make a semantic analysis of the program. In the AST, each node represents a construct of the
program. A generic AST is represented in Figure 6.1. It appears as a hierarchical representation
of the program (in memory). This example can be interpreted as an assignment operation which
includes operators, variables and constant values. Once the AST is successfully checked, it is used
for the final step of the implementation which can be the interpretation of the program or source
code generation.

In the Xtext/Xtend framework, the AST is built from two main elements. On the one hand,
some Java classes are written for each language construct. Thus, corresponding attributes and
methods can be used to customize the interpreter. On the other hand, some annotations which
consist in Java code blocks can be added to the grammar specification so as to force some specific
actions on the AST.

In summary, the parsing and the AST generation steps represent the early stages of a DSL
implementation. They provide a tree-like structure whose nodes correspond, in the specific case of
the Xtext/Xtend framework, to a set of Java classes. Following these stages, a DSL designer must
implement some methods which allow traversing the AST, to perform some customized analysis and
finally produce some desired artifacts. For our FPGA-based SDR design flow, we have developed
such a compiler whose features are discussed in the forthcoming sections.

6.3 DSL Compiler Flow

A synoptic of the proposed DSL compiling framework is illustrated in Figure 6.3. Its entry
point is an AST which first goes through a customized verification process. After the AST has
been successfully checked, it is fed to a compiler which essentially produces some VHDL source
codes and some synthesis scripts (tcl scripts). The synthesis scripts are used to interface with HLS
tools in order to generate the RTL description of each FB instantiated in the DSL source code.
Besides that, we have also implemented the control algorithm that was introduced in the previous
chapter and which analyzes the AST and then produces a VHDL description of the control path.
Finally the waveform composed of a datapath and a control unit is assembled. The outputs of the
compiler can therefore be listed as follows:

– A set of tcl scripts for synthesizing each FB with the HLS tools.
– A datapath in VHDL which instantiates the synthesized FBs.
– A control unit in VHDL.
– A top level VHDL that instantiates both the generated datapath and control unit.
– At a medium term, a tcl script for programming the FPGA platform.

6.3.1 AST Verification

The AST verification stage is intended to check whether the parsed program (or model) satisfies
a set of conditions or not. First of all, a program can be parsed only if it is a valid program. In other
words, a program should be grammatically correct so that it can be parsed and used to generate an
AST. Some customized verification methods can be performed on the generated AST afterwards.
A zoom into a UML-like representation of the AST is illustrated in Figure 6.3. In our design flow,
the AST includes information about the platform, the data frame, the datapath together with their
interrelations. For each verification, we extract the subgraph representing either the platform or
the data frame or the datapath. Thus, we have implemented the following verification methods:

– Platform verification methods which consist partly in checking if the specified FPGA is
supported by the provided HLS tools and also checking whether the input or output data

84 CHAPTER 6. THE DSL-COMPILING FRAMEWORK

Figure 6.2: DSL-compiling framework.

samples precision match with the dynamic of the ADCs or DACs precision. If not, an
additional re-scaling scenario is performed to interface with the converters.

– Data frame verification methods which consist in checking if constant fields are entirely
known at compile-time. Indeed, constant fields can be specified at either the bit level or at
the symbol level or the sample level in the DSL. An optional approach consists in sourcing
the constant field’s payload directly from a file. On the other hand, variable fields are checked
to verify whether their duration can be bounded at compile-time or not. In the specific case
of a variable field with a variable duration a different control scheme is provided for each FB

Figure 6.3: Zoom into the actual AST representation.

6.3. DSL COMPILER FLOW 85

intended to process that field. At the data frame level, the compiler makes sure that all the
instantiated fields are used to build the final frame and also that a start-of-frame (sof) has
been designated.

– Some methods to check the consistency of the modeled datapath after its extraction from the
AST. The methods check among others the data type consistency at the inputs and outputs
of each block as well as the possible conflicting interconnections between FBs. For instance,
connecting multiple outputs to a single block input is a conflicting situation which results in
an error.

We do agree that further verification scenarios should be integrated into the proposed design
flow so as to enable a "correct by construction" implementation of the waveform. However, within
the time limits allotted to this work, we have focused more on the conceptual aspects of the flow.

6.3.2 Waveform Generation
The implementation of the final waveform consists of different stages. Each of these stages

performs a specific aspect of the compiling framework by using the specification provided by the
user. The first stage deals essentially with the implementation of the control path which satisfies the
specified dataflow graph. After this, each FB composing the flow graph is separately synthesized
with the intended HLS tools. Finally the waveform is assembled at the RTL-level.

Control Unit Generation

The automatic control unit generation is the most added value of the proposal. Indeed, we
previously argued that HLS tools properly handle the control at the block-level. We have also
pointed out the fact that such tools did not address the specification and implementation of state
machines which could be used as control units at the waveform level. To tackle this issue, the DSL
specification enables the inference of such a state machine.

At a finer-grain, i.e., at the block level, the HLS adds a timing notion into a specified FB
through a scheduling process. Scheduling decides when each operation in the DataFlow Graph
(DFG) is performed. An example of such a schedule is shown in Figure 6.4 for the computation
of dout = a+ b+ c+ d. The operation is scheduled in four different clock cycles and registers are
inserted between the operations. The control of this schedule is performed with a state machine
which is illustrated at the right of the same figure. The state machine requires, in this specific case,
four states which correspond to the four clock cycles needed to execute the schedule. These states
are often referred to as control steps or c-steps in HLS. Thus, via this representation, one can get
a clear idea of the latency and the throughput for each FB. Latency and throughput estimations
are usually reported by the HLS tool after synthesis took place.

At a coarser-grain, i.e., at the waveform level, the DSL compiler labels each FB with its reported
latency and throughput in clock cycles. Following that, the implementation of the waveform control

Figure 6.4: Scheduled Design and Datapath Sate Diagram at the block-level.

86 CHAPTER 6. THE DSL-COMPILING FRAMEWORK

logic relies on the specification of the data frame which was provided by the user. As a reminder,
the data frame specification within the DSL exhibits a set of features which can be leveraged for
inferring control with respect to the specified flow graph. Further to this, the specification of
the flow graph uses the frame specification by explicitly mentioning which fields are processed by
a given block. Moreover, the origin (an ADC or another FB) of each field inside the graph is
mentioned while specifying the block. These information enable to capture the overall structure of
flow graph. The compiler uses this specification in addition to the control algorithm that we have
lately introduced to build a consistent control path capable of orchestrating the computation. Thus,
the current version of the controller generates essentially some enable signals within the appropriate
slot of time for each FB. Some further extensions so as to handle run-time reconfiguration issues
at the block-level are under consideration.

Functional Block Implementation

Each FB within the flow graph is generated or sourced (for hand-written VHDL blocks) sepa-
rately as an IP core. To this aim, our scenario consists in generating a synthesis script for each FB.
We leverage the tcl scripting language that is usually employed by the Electronic Design Automa-
tion (EDA) tools as an alternative entry point. A tcl script is essentially composed of directive
commands, which are intended to guide the synthesis process. Thus, the synthesis process can be
fully automated and tcl scripting can also help quickly generating different solutions for the same
design by setting different optimization directives as shown in Figure 6.5. Figure 6.5 is a snapshot
of a tcl script generated by our design flow for the matched filter lately introduced. The first part
(from the beginning until the go analyze directive) informs the name of the FB under consider-
ation together with its associated files. It also sets some default variables which are required for
the synthesis process. The second part, from go analyze to go compile, deals with the underlying
technology and the control protocol, including clock, reset or enable signals. The third part, from
go compile to go extract, addresses the FB optimization. For instance, a loop constraint is applied
on loop labeled MAC so that it can be unrolled with a factor of five. A constraint on the FB so
as to get an initiation interval of 1 (highest throughput) is set as well. One can also note how the
FIFOs depths are specified in the same part of the script. Such a scenario enables to achieve local
optimization which are mandatory whenever DSE must take place however the depth of the FIFOs
should be determined at the compile-time. Figure 6.6 shows a hierarchical view of the generated
RTL for a given FB. It is composed of a core function, which comprises a data path and local FSM,
and some I/O interfaces which can be implemented as memory storage or simple wires.

Furthermore, we can argue that generating each block in such a way partly ensures the porta-
bility of each IP or even the overall waveform over different FPGA solutions. Indeed, HLS tools
such as Catapult allow the designer to target different families of FPGAs, thus the specification
of the FPGA device within the platform description in the DSL can be used to generate some
synthesis scripts that are tailored to the target. On the other hand, for specialized tools like the
Vivado HLS tool which only supports Xilinx FPGA, the generated RTL will be definitely further
optimized for the target FPGA.

The proposed design flow considers hand-written FB in VHDL RTL, as well. The main goal is
to allow the reuse of functional units which have been developed and tested in VHDL. However, no
optimization can be performed on such blocks and we have only proposed a selection scenario to
select the optimal design. The selection trades-off between area and throughput. Say, we have two
distinct hand-written implementations of an FB in VHDL with different features such as latency,
throughput or area. Remember that the DSL-based specification of the FB enables to specify some
design constraints with respect to throughput at a higher-level. Our selection scenario basically
gives the priority to the FB which satisfies the specified constraints. The keyword to specify for
hand-written VHDL FBs is #rtl. After each FB was synthesized (HSL-based FBs) or sourced
(hand-written FBs), the following step addresses the assembly the waveform at the RTL level.
This step is discussed in the subsequent section.

6.3. DSL COMPILER FLOW 87

Figure 6.5: Example of tcl script generating RTL code with loop constraints.

88 CHAPTER 6. THE DSL-COMPILING FRAMEWORK

Figure 6.6: Hierarchical view of generated RTL for a given FB.

Figure 6.7: Waveform assembly view.

Waveform Assembly

The final stage of the waveform generation consists in assembling the generated blocks and the
control path. After collecting the generated or sourced FBs, the compiler uses the DSL descrip-
tion of the flow graph to perform this step. The datapath is thus built and the control logic is
connected afterwards. Some additional checking routines are also performed to make sure of the
type consistency between the interconnected blocks. A generic view of the resulting waveform is
illustrated in Figure 6.7 where three FBs are assembled into a datapath connected to a generated
control logic.

A heterogeneous waveform implementation, i.e. made up of FBs generated by different HLS
tools or hand-written VHDL, would require defining some VHDL wrappers capable to interface all
FBs at the RTL level. To this aim, the wrappers should mainly implement some data exchange
protocols. Such VHDL wrappers have not yet been defined and automated in the proposed flow
and thus the current version only supports a single HLS tool at time for a given waveform.

6.4 Platform Programming
The very last stage of the compilation flow consists in programming the waveform on the

intended FPGA platform. Indeed, each FPGA family requires specific compilers to synthesize
an application bitstream. Thus, this stage turns out to be deeply dependent on the bitstream
generation tools that are provided by the FPGA vendors and this creates some limitations since

6.5. CONCLUSION 89

each tool has its specific compilation flow. However, tcl scripting is also used as entry point for
most of these tools but they all come with specific tcl scripts which are usually optimized for each
tool. For these reasons, the platform programming stage is so far handled manually in the proposed
SDR design flow. We have experienced with tcl scripting on our platform however this approach
can be rapidly obsolete if we decide to test our solution on a different platform. On the platform
which is at our disposal, the waveform testing process is performed with the help of run-time signal
analysis tools which are supported by the FPGA compilation flow. Thus, performance analysis
can be performed on the final waveform with some analysis tools, such as chipscope, regarding the
Xilinx FPGAs. Further details are provided in the next chapter.

6.5 Conclusion
This chapter has introduced the compiling framework which is associated to the proposed DSL.

It comprises an additional verification step and a set of functions which purpose is to generate
the desired artifacts such as synthesis scripts and synthesizable VHDL-RTL source code. Even
though its current version supports such primary aspects of an SDR waveform implementation, in
the sense that further extension should be performed, we have nonetheless successfully used it to
model and implement two waveforms in demonstration purpose. The experimentation of the flow
is discussed in the following chapter.

90 CHAPTER 6. THE DSL-COMPILING FRAMEWORK

Chapter 7

A Case Study: DSL-based
Specification and Implementation of
PHYs

Contents
7.1 Introduction . 92
7.2 Testbed Description . 92

7.2.1 Nutaq Perseus 6010 Motherboard . 93
7.2.2 Radio420X Radio Front-end Daughterboard 93
7.2.3 Perseus 6010 Software Development Tools 93

7.3 DSL-based Platform Modeling . 96
7.4 DSL-based IEEE 802.15.4 PHY . 97

7.4.1 IEEE 802.15.4 PHY Data-Frame Modeling 97
7.4.2 IEEE 802.15.4 PHY Transceiver Modeling 98

7.5 DSL-based IEEE 802.11a PHY . 102
7.5.1 IEEE 802.11a PHY Data-Frame Modeling 102
7.5.2 IEEE 802.11a PHY Transceiver Modeling 104

7.6 The "adaptive" keyword . 106
7.7 Validation and Synthesis Results . 107
7.8 A few remarks regarding the development time 109
7.9 Conclusion . 109

91

92CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

7.1 Introduction

The experimentation of the proposed flow has consisted in modeling and implementing two
waveforms. This step aims at proving the correctness of our approach while bringing to light

the possible improvements. We leverage a testbed which is made up of FPGA motherboards
coupled with radio front-end daughterboards. The FPGA board, referred to as Nutaq Perseus
6010, embeds a large Virtex-6 FPGA claimed to support MIMO transceivers and the Wimax
protocol. Furthermore, we leverage some signal analysis equipment such as a spectrum analyzer, an
oscilloscope and a Vector Signal Analyzer (VSA) in order to perform some real-time signal analysis.
The platform programming is essentially done with the bitstream generation tools provided by
Xilinx. Thus, the previously described waveforms (in Chapter 3), namely the IEEE 802.15.4 and
the IEEE 802.11a baseband transceivers, have been modeled and programmed on the platform.
For each model we emphasize on the model of the intended data frame as well as the model of the
flow graph. A DSL-based description of the FPGA platform model of the platform is provided,
as well. Section 7.2 introduces the underlying platform while Sections 7.4 and 7.5 discuss the
experimentation on the two waveforms. Finally, Section 7.9 makes some conclusions.

7.2 Testbed Description

As mentioned previously, the experimentation testbed consists of FPGA boards associated with
RF front-ends. It also involves some signal analysis equipment for a real-time evaluation of the
programmed waveform together with some antennas that enable transmission in the 2.4 GHz ISM
band. An illustration of the testbed is provided in Figure 7.1 where some of the core elements
have been highlighted. In addition to this, Figure 7.2 shows the environmental conditions in which
the experimentation was carried out. The subsequent sections outline the FPGA boards, the RF
front-ends and finally the software development tools which support the platform programming.

Figure 7.1: Testbed Description.

7.2. TESTBED DESCRIPTION 93

Figure 7.2: Validation and Testing Environment.

7.2.1 Nutaq Perseus 6010 Motherboard

The Perseus 6010 FPGA board is a commercial platform referred to as Nutaq Perseus 6010
whose block diagram is given in Figure 7.3. It is built around a Xilinx Virtex-6 LXT FPGA and
includes some large external memories (1 GB 64-bit DDR3 SODIMM, 128 MB 8-bit DDR3 SDRAM
and 64 MB bottom-boot Flash memory) while benefiting from multiple high-pin-count, modular,
add-on FMC-based I/O cards. The Perseus 6010 is intended for high-performance, high-bandwidth,
low latency processing applications. To this aim, the platform comes with fully compliant AMC
backplane connector as well as a high-pin-count VITA 57.1 FMC expension site for I/Os. It includes
GTX base clocks (100 MHz, 125 MHz and 156.25 MHz) and a JTAG interface.

7.2.2 Radio420X Radio Front-end Daughterboard

The Perseus 6010 board can be augmented with a RF front-end, for carrier frequency trans-
position, through its FMC connectors. Our testbed is equipped with two of these RF front-ends
referred to as Radio420X, which are claimed to be agile SDR RF transceiver modules. They are
designed around the Lime Microsystems LMS6002D RF transceiver which is suitable for multimode
SDR and advanced telecommunication. The LMS6002D transceiver is depicted in Figure 7.4. The
transmitter demultiplexes the incoming baseband signal and then feeds the samples to a pair of
12-bit DACs. After conversion, the signal is filter on both channels I and Q with a Low Pass Filter
(LPF). The transmitter includes some amplifier together with a mixer circuitry for transposition on
the required frequency band. Recall that, this work addresses the 2.4 GHz ISM band. The receiver
circuitry like the transmitter includes mixers, amplifiers and LPFs. It is featured with a pair of
12-bit ADCs and a multiplexer for multiplexing both channel I and Q samples before transmitting
them to the baseband receiver. Finally, the Radio420X relies on Serial Peripheral Interface (SPI)
ports and parallel I/Os for controlling the overall behavior.

7.2.3 Perseus 6010 Software Development Tools

The software development tools which support the Perseus board are of two types. The first type
is the optional Perseus Model-Based Design Kit (MBDK) which allows to program digital signal
processing systems in the FPGA with the Matlab/Simulink design environment and extensive IP
libraries from Xilinx. The second software toolset is the Board Software Development Kit (BSDK)

94CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

which is a framework for embedded applications development. It includes the Xilinx Platform
Studio (XPS) software tool which allows the designer to build, connect and configure embedded
processor-based (MicroBlaze) systems.

Model-Based Design Kit (MBDK)

The MBDK flow relies on the Xilinx system generator to generate the low-level FPGA imple-
mentation. Thus, with MBDK a design can be developed with the help of specific Xilinx’s and
Nutaq’s blocksets integrated in a Simulink library. Figure 7.5 shows the structure of an IEEE
802.15.4 transceiver implemented with the MBDK flow. The transceiver was first described and
tested in handcrafted RTL-VHDL and then the MBDK blocksets were used to encapsulate each
function of the transceiver so as to create the graphical representation of the transceiver. As the
reader can note, the transmitter is composed of a Symbol-to-Chip FB (ChipGen) followed by a
shaping filter (TxFilter). The Symbol-to-Chip FB (ChipGen) reads raw symbols from a memory
which implies the lack of a Modulation FB. A Delay FB (Sample Delay) is inserted on channel
Q after the filter and then, channel I and Q are multiplexed and fed to the DACs. The receiver
first demultiplexed the incoming baseband signal in two channels I and Q. Channel I is delayed
in order to compensate the delay inserted between the two channels at the transmitter. Subse-
quently, a matched filter FB (RxFilter) processes the data from channel I and Q and its output
data are fed to the synchronization FB (Synchro). The Synchro FB computes the preamble and
issues some timing and frequency information. After synchronization, a Decision FB performs a
set of sliding correlation to recover the transmitted symbols. In addition, the radio front-ends on
both transmitter and receiver can be handily connected to the transceiver through the graphical
interface. However, it remains an inactive block which informs about the connection at the time
of bitstream generation. A chipscope signal analyzer can be configured through the GUI so as to
capture and analyze the real-time baseband signals. Thus, the whole transceiver was graphically
represented and then programmed in the FPGA.

Figure 7.3: Perseus block diagram

7.2. TESTBED DESCRIPTION 95

Figure 7.4: LMS6002D transceiver block diagram.

Board Software Development Kit (BSDK)

The BSDK flow is a script based low-level design kit, which relies on XPS. It enables to pro-
gram the desired design around a MicroBlaze softcore which can be entirely configured by using
C programs or a set of commands/directives through a Command Line Interface (CLI). The in-
stantiated MicroBlaze can significantly help for the development of the rest of the stack protocol
while the implementation of the transceiver is done in the reconfigurable logic part connected to
the MicroBlaze via a logic bus. This architecture is illustrated in Figure 7.6 which was taken from
the Nutaq website. At the left side of the Figure, one can see the user application which can be
configured from an external or an embedded PC. Thus, software tools like CLI, SDK or GNU
Radio can be used to define the application intended to be run on the platform. At the right side
of the same Figure, one can see the internal configuration of the FPGA where the User Logic part
is intended to host and run the user’s RTL transceiver while being connected to the MicroBlaze
softcore through an AXI bus. We have experienced with the BSDK flow by programming the
IEEE 802.15.4 transceiver. The MicroBlaze application was specified with both C programs and
CLI commands. The RTL transceiver was programmed in the user logic section whit the help of
XPS.

MBDK and BSDK in a nutshell

The Xilinx System Generator, which provides system modeling and automatic code generation
from Simulink and Matlab, is a key component of MBDK design kit. Furthermore, it provides
many features such as resource estimator or hardware co-simulation. The designing is quite straight
forward as a drag-and-drop due to Simulink GUI, but it uses a lot of computer resources to compile
and run the program. FPGA design is restricted due to available Xilinx blocksets in Simulink
library hence for extending the design, Xilinx black box can be helpful, but it may encounter some
VHDL integration problem.

On the other hand, BSDK is a low-level designing approach, which uses less computer resources

96CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

Figure 7.5: MBDK-based hand-coded ZigBee transceiver design.

in order to mitigate a wrong generation of bitstream. However a BSDK designing needs a good
understanding of Xilinx tools and HDL programming. BSDK design has a full flexibility of de-
signing due to inclusion of custom IP. Moreover, BSDK design in XPS can also be included to ISE
software, which provides a full summary on the FPGA design like resource estimation.

In our opinion, the MBDK flow can be fully leveraged in our design flow since it enables scripting
as entry point. Indeed, the user application can be entirely programmed with some C source codes
or CLI commands while the user logic programming can be handled with XPS (featured with ISE
13.4). Moreover, XPS takes tcl script as entry point, as a result programming the transceiver could
be automated by generation tcl scripts for XPS from the high-level specification of the waveform.

7.3 DSL-based Platform Modeling

The Nutaq platform has served as the underlying hardware platform for validating our design
flow. It quickly turned out to be necessary to provide a model of the platform since some details
could not be inferred uniquely from the model of the waveform. Such a platform model is intended
to provide some descriptions of the key components of the platform. A model of the Perseus 6010
platform is given in Figure 7.7. The model provides a characterization of the converters, namely
the data precision, the sampling bandwidth and their serial/parallel nature. The data precision
enables to automatically re-scale the data at the outputs and the inputs of the baseband transceiver
while the sampling bandwidth informs of the limits of the information signal that can be properly
recovered. The nature of the converters tells us whether they are interfaced with the outside world
by using serial or parallel connections. In each of these cases, multiplexing and demultiplexing
scenarios can be forecast and automatically handled.

A model of the intended FPGA fabric is provided in the specification, as well. It requires
providing the device family, its speed grade as well as the exact reference (part). The DSL compiler
exploits these information when generating the tcl scripts for each FB.

7.4. DSL-BASED IEEE 802.15.4 PHY 97

Figure 7.6: MBDK-based hand-coded ZigBee transceiver design.

Thus, a lightweight description of the platform is given at a high-level of abstraction to enable
inferring some hardware element at a lower-level while generating appropriate tcl scripts for the
HLS synthesis tools. However, the platform modeling part of the DSL was inspired from the unique
Perseus 6010 platform experience. It would be more convenient to validate our approach on a more
important variety of platforms. The platform modeling step is followed by the data frame and the
datapath models. The following two sections outline those steps for the two previously introduced
waveforms, namely the IEEE 802.15.4 and the IEEE 802.11a.

7.4 DSL-based IEEE 802.15.4 PHY
The IEEE 802.15.4 standard has been introduced in the Chapter 3 of this document. As a

reminder, it specifies both the MAC and PHY layers of the ZigBee technology which is meant for
low rate and low power wireless communications. We have considered its PHY layer for evaluation
purpose and we have thus modeled and implemented a compliant baseband transceiver with the
proposed SDR design flow.

7.4.1 IEEE 802.15.4 PHY Data-Frame Modeling
The IEEE 802.15.4 PHY data frame is illustrated in Figure 7.8 as it is described with the help

of the DSL. It consists first of a PREAMBLE, made up of a regular pattern of a repetitive known
data symbols. Recall that a symbol refers to a group of 4 bits in this PHY. The Start of Frame
Delimiter (SFD) field, which follows the PREAMBLE is appended for symbol synchronization and
consists of a pattern of two known symbols hence a fixed size/length. The SFD field is followed
by a PHR which informs the size in bytes of the conveyed data payload. Its size is fixed but
nonetheless its content may vary since the size of the data payload is variable. The DATA field

98CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

/* ADC specification */
ADC LTC2641ADC { /*ADC declaration*/
precision 16 bits; /*ADC input data precision*/
bandwidth [1 MHz - 80 MHz]; /*ADC bandwidth*/
nature serial; /*ADC’s feature*/

}

/* DAC specification */
DAC LTC2641DAC { /*DAC declaration*/
precision 14 bits; /*DAC input data precision*/
bandwidth [1 MHz - 80 MHz]; /*DAC bandwidth*/
nature serial; /*DAC’s feature*/

}

/* FPGA specification */
FPGA V6 { /*FPGA declaration*/
family VIRTEX-6; /*FPGA’s family declaration*/
speed 1; /*FPGA speed grade*/
part VLX75TLFF484; /*FPGA precise reference*/

}

Figure 7.7: DSL-based Perseus 6010 platform description.

contains the data payload from the upper layer and its size can vary from 4 bytes up to 128 bytes
as specified by the standard. At the transmitter, the fields are transmitted from PREAMBLE to
DATA and obviously received in the same order at the receiver.

The DSL description of the IEEE 802.15.4 PHY data frame is given in Figure 7.9. The PREAM-
BLE consists of a repetition of 8 symbols zero. It has a fixed duration of 128 µs. Likewise, the
SFD field is a constant field with a known payload of a fixed duration of 32 µs. Both fields are
specified with the keyword #fieldC. Conversely, the PHR field is a variable field which is specified
with the keyword #fieldV. Its content varies at run-time, however it has a fixed size of 8 bits which
is known at compile-time. Duration and size are interchangeable since they both imply the same
timing notion in the sense that duration is equivalent size multiply by the appropriate symbol pe-
riod. In the DATA field specification, the length of its payload is specified by an interval. Indeed,
the standard do specifies the payload’s length in form of an interval. We have added a default
duration information in this context to also enable a fixed payload size default implementation
of the control path. Finally the data frame is specified as a collection of the specified fields. It
is defined as a complex frame, which implies that the output of the baseband transmitter and
the input of the baseband receiver should consist of two channels I and Q. Further to this, the
PREAMBLE field is designated as the start-of-frame (sof), which implies that its detection will
be used for synchronization purpose at the receiver as it was previously explained.

7.4.2 IEEE 802.15.4 PHY Transceiver Modeling

After the frame modeling step, the transmitter is specified by creating the equivalent dataflow
graph from the instantiation and consistent interconnection of different blocks. Recall that, each
block specification requires mentioning explicitly the set of data fields that it is intended to process
as well as their respective sources. The rest of the specification of a given FB consists mainly

Figure 7.8: DSL-based IEEE 802.15.4 PHY data frame representation.

7.4. DSL-BASED IEEE 802.15.4 PHY 99

in setting up its connections and specifying some design constraints. Thus, the IEEE 802.15.4
PHY transmitter is specified out of four FBs, namely the Modulation FB, the Symbol-to-Chip FB
(ChipGen), the TxFilter FB (Shaping filter) and finally the Delay FB. The specification of the
transmitter is given in Figure 7.10. It also includes the specification of the clock as well as the
specifications of the intended data rates. The interconnections are performed within each block
specification and design constraints are defined as well.

A synopsis of the transmitter was first illustrated back in Figure 3.2 where it was depicted
as a feed forward architecture, which modulates the incoming bits prior to transmission. At the
transmitter, the data frame description helps refining the actual implementation of the intended
datapath. Indeed, whenever a frame from the MAC layer is available for transmission, the proposed
scenario consists in framing it so as to create a PHY frame. In other words, some additional
fields are computed and appended to the frame. Such fields usually convey some frame specific
information, which in the case of ZigBee is the size of the data payload (PHR field). Moreover,
constant fields such as the PREAMBLE field, which are also appended at the PHY, are one-time
computed and multiplexed to the rest of the frame at run-time. The DSL provides two scenarios
for inserting the constant fields. The first scenario inserts the fields at the symbol-level while the
second scenario operates the insertion at the sample-level i.e. before DACs. For inserting at the
symbol-level, the symbols composing each constant field must be provided in their specification.
Recall that, a constant field’s specification includes a constant term declaration, which are zero
and sfdfield respectively for the PREAMBLE and the SFD fields. Those constant symbols must
be declared prior to the data frame specification in the DSL. In Figure 7.10 the constants zero
and sfdfield are declared in hexadecimal. Their insertion is implicitly performed at the symbol-
level since their respective fields are processed from the chipgen_i FB up to the DAC. Indeed, the
modulation_i FB only processes the PHR and the DATA FB. The insertion of the constant fields
at the sample-level is discussed and illustrated in the forthcoming sections. The block diagram of
the generated IEEE 802.15.4 PHY transmitter through the proposed flow can then be represented
as in Figure 7.11. It includes an additional framing FB, which organizes the incoming data into
a PHY frame as well as a constant field insertion FB, which inserts the constant fields, at the
symbol-level, in the rest of the frame at run-time. In addition, each block is labeled with the set
of fields that it is intended to process. The automatically generated control unit is associated to

/*Specification of the preamble field*/
#fieldC PREAMBLE { /*Preamble field declaration */

constant zero; /* Preamble constant data */
redundancy 8; /*Highlighting redundancy within the preamble*/
duration 128 us; /*Preamble duration */

}
/* Specification of the SFD field */
#fieldC SFD { /*SFD field declaration */

constant sfdfield; /* SFD constant data*/
duration 32 us; /*SFD duration specification*/

}
/* Specification of the PHR field */
#fieldV PHR { /*PHR field declaration */

data phrvalue; /* PHR field content data*/
size 8 bits; /*PHR size or length*/

}
/* Specification of the DATA field */
#fieldV DATA { /*DATA field declaration */

data datasample; /*DATA field content data*/
maxsize 128 bytes; /*DATA field maximal length*/
minsize 4 bytes; /*DATA field minimal length*/
duration 4096 us; /*DATA field default duration*/

}
/* Data frame specification */
complex frame PPDU { /*Complex frame declaration*/

PREAMBLE SFD PHR DATA /*Listing all the fields composing the frame*/
} sof after PREAMBLE /*Start-of-Frame designation*/

Figure 7.9: DSL-based IEEE 802.15.4 PHY data frame description.

100CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

/*Clock and rate specification*/
clock clk = 16 MHz;
rate fe = 8 MHz;
rate fc = fe/4;
rate fb = fe/32;
rate fs = fe/128;
rate fc2 = fe/8;
/*Constant fields payload*/
constant zero = 0x0;
constant sfdfield = 0xA7;

...
/*Modulation FB specification*/
modulation_i: ip modulation processing PHR DATA from MAC {

read datain on port src at fb;
write symbol on port sb at fs;
synthesis catapult;
constraint latency 4;

}
/*ChipGen FB specification*/
chipgen_i: ip chipgen processing PREAMBLE SFD PHR DATA from modulation_i {

read symbol on port sb at fs;
write chip_i on port ich0 at fc2;
write chip_q on port qch0 at fc2;
synthesis catapult;

}
/*TxFilter FB specification*/
txfilter_i: ip txfilter processing PREAMBLE SFD PHR DATA from spliter_i {

read chip_i on port ich0 at fc2 ;
read chip_q on port qch0 at fc2;
write delay_connect on port ich1 at fe;
write DAC on port qch1 at fe;
synthesis catapult;
constraint throughput 2;

}
/*Delay FB specification*/
delaytx_i : ip delaytx processing PREAMBLE SFD PHR DATA from txfilter_i {

read delay_connect on port input at fe;
write DAC on port output at fe;
synthesis catapult;
constraint throughput 2;

}

Figure 7.10: DSL-based IEEE 802.15.4 PHY transmitter description.

the datapath so as to sketch the overall data frame transmission process.
The receiver DSL-based specification comes after the transmitter specification. Each FB com-

posing its flow graph is instantiated and consistently interconnected with the ADC or another
FB. A synoptic of the receiver was illustrated in Figure 3.3. It is composed of a matched filter,
which reshapes the signal from the ADC while improving the SNR. Its output samples are first
fed to a synchronization FB which purpose is to recover timing and frequency information based
on the preamble field. Once the synchronization is performed, a decimation and compensation
FB is activated to process the rest of the frame issued by the matched filter. Its purpose is to
down-sample the incoming samples at the right period while compensating the phase error on each
sample. Following this stage, the compensated samples are fed to a correlation bench which re-
covers the transmitted symbols by computing a sliding correlation between the incoming samples
and the 16 possible chip sequences. Finally the demodulator block converts the decoded symbols
into bits. Figure 7.13 highlights the specification of the receiver with the DSL. Thus, three of the
aforementioned FBs are specified and consistently interconnected. The first FB is the matched
filter (rxfir), which processes the whole PPDU frame from the ADC. It reads the input data at the
rate fe and write its output data at the same rate. It is set up with a throughput constraint of two
cycles which implies that a new iteration of this function should be started every two clock cycles.
Subsequently, the synchronization FB (synchro) is instantiated as processing the PREAMBLE

7.4. DSL-BASED IEEE 802.15.4 PHY 101

Figure 7.11: DSL-based IEEE 802.15.4 PHY transmitter implementation.

field issued by the matched filter. Thus, this block reads its input data from the filter’s output at
the rate fe while writing its output data in an event interconnection. Indeed, the outputs of the
synchronization FB are not part of the data frame, thus they are declared as an interconnection
of type event which do not require a rate specification. In addition, the synchronization FB is set
up with a latency constraint of PBDETECLDL that is a delay after which the block must output
the computed synchronization data (optimal sampling period, phase error). Otherwise, the data
frame is dropped. When the PREAMBLE is successfully detected, the rest of the data frame is
fed to the decimation and compensation FB (decimadjust). Indeed, the compensation FB pro-
cesses the remainder of the data frame, namely the SFD, the PHR and the DATA fields. It reads
its input data from the matched filter FB together with the data issued by the synchronization
FB. Roughly, its output data are down-sampled and compensated version of the input data. A
throughput constraint of 2 cycles is specified as well. Each of these three FBs is intended to be
synthesized by the Catapult HLS tool, hence the explicit specification of the tool’s reference with
the DSL-based instantiation of the FBs. A synoptic of the generated receiver is given in Figure 7.18
where dashed arrows denote control signals and solid arrows denote the framedata and event like
interconnections. In addition, each block is labeled with the set of fields that it is intended to
process. The automatically generated control unit is associated to the datapath so as to sketch the
overall data frame reception process.

Figure 7.12: DSL-based IEEE 802.15.4 PHY receiver implementation.

102CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

/*RxFilter FB Specification*/
rxfir_i: ip rxfir processing all PPDU from ADC {

read from_adcI on port ich2 at fe;
read from_adcQ on port qch2 at fe;
write ich_rxfilter on port ich3 at fe;
write qch_rxfilter on port qch3 at fe;
synthesis catapult;
constraint throughput 2;

}
/*Synchronization FB Specification*/
synchro_i: ip synchro processing PREAMBLE from rxfir_i {

read ich_rxfilter on port ich4 at fe;
read qch_rxfilter on port qch4 at fe;
write topt_connect on port topt;
write phiI_connect on port phiI;
write phiQ_connect on port phiQ;
write detect_connect on port pbdetect;
synthesis catapult;
constraint latency PBDETECTDL;

}
/*Compensation FB Specification*/
decimadjust_i: ip decimadjust processing SFD PHR DATA from rxfir_i {

read ich_rxfilter on port ich5 at fe;
read qch_rxfilter on port qch5 at fe;
read topt_connect on port topt;
read phiI_connect on port phiI;
read phiQ_connect on port phiQ;
read detect_connect on port pbdetect;
write ich_decim on port ich6 at fc;
write qch_decim on port qch6 at fc;
synthesis catapult;
constraint throughput 2;

}

Figure 7.13: DSL-based IEEE 802.15.4 PHY receiver description.

In summary, the data frame specifications have been employed to build an IEEE 802.15.4 com-
pliant transceiver dataflow graph through the proposed DSL. Indeed, each of the FBs composing
the graph has been described by including the frame attributes as well as some design constraints.
Recall that such a specification intends to enable the inference of the control unit. The ensuing
results are discussed later in this chapter.

7.5 DSL-based IEEE 802.11a PHY

The IEEE 802.11a standard specifies both the MAC and the PHY layers of the WiFi technology.
It is a widespread technology which is now part of our daily lives. In addition, the standard is
intended for high data rate communication with a target throughput of up to a few dozens of
Mbits/s. Its PHY layer implements the OFDM modulation as well as the ACM technique which
was introduced in the first chapter. Thus, the IEEE 802.11a transceiver appeared to be a good
candidate for the evaluation of our proposal.

7.5.1 IEEE 802.11a PHY Data-Frame Modeling

The IEEE 802.11a PHY data frame is composed of three fields as it was shown in Figure 3.5.
The first field consists of a preamble field (PREAMBLE), which is appended for synchronization
purpose. Indeed, the standard suggests using it for both fine grained and coarse grained synchro-
nization at the receiver. The PREAMBLE is thus divided into two subfields, namely the short
training sequence and the long training sequence intended for coarse grained and fine grained
synchronization respectively. Following the PREAMBLE field, the SIGNAL field conveys frame-
specific information, namely data rate and the payload length. The last field is the DATA field
which carries the useful information i.e. the MAC payload. A representation of the data frame as

7.5. DSL-BASED IEEE 802.11A PHY 103

Figure 7.14: DSL-based IEEE 802.11a PHY data frame representation.

/*Short training field specification*/
#fieldC SHORTPB {

constant ShTrainingSb: ./shpb.dat;
redundancy 10;
duration 8 us;

}
/*Long training field specification*/
#fieldC LONGPB {

constant LgTrainingSb: ./lgpb.dat;
redundancy 2;
duration 8 us;

}
/*Header(SIGNAL) field definition*/
#fieldV HEADER {

data hdpayloal;
size 3 bytes;
duration 4 us;

}
/*DATA field specification*/
#fieldV DATA {

data dtpayload;
maxsize 2312 bytes;
minsize 0 bytes;
duration 256 us;

}
/*OFDM PPDU specification*/
complex frame PPDU {

SHORTPB LONGPB HEADER DATA
} sof after SHORTPB

Figure 7.15: DSL-based IEEE 802.11a PHY data frame description.

specified in the DSL is given in Figure 7.14 where the short training sequence and the long training
sequence are denoted SHORTPB and LONGPB respectively.

The specification of the IEEE 802.11a PHY data frame with the proposed DSL is illustrated
in Figure 7.15. As the reader can see, the specification of the preamble field is twofold. First
the short training sequence (SHORTPB) subfield is specified as a constant field with the keyword
#fieldC. It is followed by the long training sequence (LONGPB) specification which is a constant
field, as well. Their contents are sourced from different files whose links are given in each field’s
specification. Indeed, this specification illustrates the second type of constant field insertion at the
transmitter. The insertion is operated at the sample level as opposed to the first type where the
insertion is operated at the symbol level. The short training sequence is specified as a repetition of
10 known symbols with the keyword redundancy. It has a fixed duration of 8 microseconds whereas
the long training sequence is the repetition of two known sequences with the fixed duration of 8
microseconds as well. The SIGNAL field is a variable field which must be computed at run-time.
It is specified as a variable field with the keywords #fieldV of a fixed duration of 4 microseconds.
The DATA field is also specified as a variable field of a variable size specified through an interval.
Default duration of 256 microseconds is set as well. The resulting data frame is specified as a
complex frame which is composed of the aforementioned data fields. Moreover, the Start-of-Frame

104CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

/*Coarse Time-Frequency Synchronization*/
ctfs_i: ip CoarseTimeFreqSync processing SHORTPB from ADC
{

read adc_data on port frame_in at fe;
write sync0 on port sync_data0;
write sync1 on port sync_data1;
synthesis catapult;
constraint latency SHORTPBDL;

}
/*Cyclic Prefix Removal*/
cpremoval_i: ip CpRemoval processing LONGPB HEADER DATA from ADC
{

read adc_data on port frame_in at fe;
read sync0 on port sync_data0;
read sync1 on port sync_data1;
write cpRemov on port frame_out at fe;
synthesis catapult;
constraint latency 1;

}
/*FFT instantiation*/
fft_i: adaptive ip FFT processing LONGPB HEADER DATA from cpremoval_i
{

read cpRemov on port fft_in at fe;
write cplx_sbl on port fft_out at fs;
synthesis catapult;
constraint latency N;

}
/*Fine Time synchronization*/
fts_i: ip FineTimeSync processing LONGPB from fft_i
{

read cplx_sb on port cplx_fts at fe;
write sync1 on port sync_data1;
synthesis catapult;

}
/*LongPreamble-based Channel Estimation*/
equa_i: ip ChannelPhaseTrack processing LONGPB from fft_i
{

read cplx_sb on port fft_in_eq at fs;
write cplx_sb_eq on port eq_out at fs;
synthesis catapult;

}
/*De-mapping*/
demapper_i: adaptive ip DeMapper processing HEADER DATA from fft_i
{

read cplx_sb_eq on port cplx_in at fs;
write coded_bit on port bit_out at fc;
synthesis catapult;

}

Figure 7.16: DSL-based IEEE 802.11a PHY receiver description.

(sof) is designated after SHORTPB.
The IEEE 802.11a PHY data frame specification resemble the IEEE 802.15.4 PHY one, expect

for the specification of the constant fields which are directly sourced from a sample file. Indeed,
this approach is intended to enable constant field insertion at the sample-level. The rest of the data
frame specification is similar on both standards. Another path that we would also like to explore
is the automatic pilot insertion which is often required in OFDM-based standards. Indeed, we
believe that such a data frame specification can be leveraged to handle pilot insertion at a higher
level of abstraction. At the time of writing this report, the author had not yet come to a mature
approach for automating this step.

7.5.2 IEEE 802.11a PHY Transceiver Modeling
Following the data frame modeling, the transmitter dataflow graph is created by instantiating

and consistently interconnecting all the blocks composing the graph. A block diagram of the trans-

7.5. DSL-BASED IEEE 802.11A PHY 105

Figure 7.17: DSL-based IEEE 802.11a PHY transmitter implementation.

mitter was previously shown on Figure 3.6. For implementation purpose, an additional framing
stage is added as the first stage of the transmitter. A synoptic of the generated transmitter is
shown in Figure 7.17 where each FB is labeled with the set of fields that it is intended to process.
Thus, once a data frame is available for transmission, framing consists in computing the frame
specific information which compose its SIGNAL field as it was done on the IEEE 802.15.4 trans-
mitter for its PHR field. Indeed, the SIGNAL field carries the data rate and the payload length
which are known only at run-time. Following the framing step, a Mapper FB converts the data
bits into complex numbers representing BPSK, QPSK, 16-QAM or 64-QAM constellation points.
This conversion is made according to Gray-coded constellation mappings. The resulting complex
numbers are then fed to the IFFT block in groups of 48 for conversion into time-domain. The IFFT
FB is intended to insert the pilot symbols, too, which are BPSK modulated in the IEEE 802.11a
standard. The standard also requires the insertion of a CP in each OFDM symbol generated by
the IFFT FB. Remember that, CP insertion is intended to tackle the ISI issue during an OFDM
symbol reception. Finally, an additional FB is integrated for inserting the constant fields, namely
the short preamble and the long preamble sequences, at the sample level i.e. before the DACs.
The whole transmission process is orchestrated by a control unit which is inferred from the DSL
specification.

The receiver dataflow graph is also defined through the DSL by instantiating and consistently

Figure 7.18: DSL-based IEEE 802.11a PHY receiver implementation.

106CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

interconnecting the FBs. A synoptic of the receiver was previously given in Figure 3.7. Its DSL-
based specification is provided in Figure 7.16. Ideally, this specification should include a Windowing
FB which purpose is to reshape the incoming signal. As a result, this block should process the
entire data frame, thus it should be specified with the keyword processing all followed by the
reference of the frame issued by the ADC. We did not include such an FB in the provided DSL
specification and we assume that the receiver starts with a coarse synchronization FB (ctfs_i). The
synchronization FB processes the first part of the preamble field in the incoming frame, namely
the short training sequence (SHORTPB). To this aim, this block is specified as processing the
SHORTPB field from the ADC. The block reads its input data from the ADC and writes the results
on two interconnections of type event. It is specified with a latency constraint of SHORTPBDEL
cycles, which is the required delay for computing the synchronization outputs. Once the coarse
synchronization FB has successfully performed, the incoming data from the ADC are fed to the CP
Removal and Compensation block (cpremoval_i). This FB is intended to remove the CP from each
OFDM symbol and compensate these data thanks to the output data of the synchronization FB.
It is followed by the FFT FB (fft_i) which converts the OFDM symbols from the time domain to
the frequency domain. It deals with the remainder of the data frame, namely from the LONGPB
field to the DATA field. The FFT FB is set with a latency constraint of N cycles, where N is the
number of FFT points. The specification of the fine synchronization FB (fts_i) comes after the
FFT specification. It is intended to process the long preamble field (LONGPB) so as to make a finer
frequency and timing acquisition. This block is left without any constraint specification. After this,
the equalizer FB (equa_i) is specified to process the rest of the frame, namely the SIGNAL and the
DATA fields. This block operates the channel equalization based on both the pilot symbols and the
fine synchronization outputs. Finally, the demapper FB (demapper_i) converts the compensated
complex data into group of bits according to the mapping scheme employed at the transmitter.
The receiver’s FBs are intended to be synthesized by the Catapult HLS tool, hence the specification
of Catapult preceded by the keyword synthesis. A synoptic of the generated receiver is provided
in Figure 7.18 where dashed arrows denote control signals and solid arrows denote the framedata
and event like interconnections. The receiver is featured with a control unit which distributes the
control signals responsible in activating or deactivating each block.

7.6 The "adaptive" keyword

We have defined the adaptive keyword so as to handle run-time flexible FBs. Indeed, the
SDR fosters high reconfiguration capabilities in the intended waveforms both at the block and the
waveform (standard) levels. To this end, we have introduced the keyword adaptive in the DSL in
order to highlight all the blocks which require to be reconfigured at run-time. The ACM technique
which was introduced in the first chapter is such an example where run-time reconfiguration of a
unique block can be needed. It is usually implemented through multi-mode blocks which can switch
from one mode to another at run-time. Conversely, our goal was to leverage the dynamic and partial
reconfiguration capabilities of the FPGAs to automate such run-time reconfiguration scenarios in
the design flow. At the time of writing this report, we did not come to some valuable results
which would deserve to be published. An ongoing research work has been set up to address this
aspect of an SDR through the proposed flow. As an example, two FBs have been declared adaptive
in Figure7.16, namely the fft_i and the demapper_i FBs. Regarding the FFT, its size (number
of FFT points) may be required to change on the fly, for instance switching from the 64-point
FFT to a 128-point FFT. This behavior could be captured in advance in the DSL specifications.
The demapper_i FB could also be required to operate in different modes, for instance switching
from BPSK to QPSK or 16-QAM demodulation. The adaptive keyword could allow capturing
such behavior in the DSL. The underlying idea is to generate a synthesis script for each working
mode of an adaptive FB and then generating the equivalent RTL description with the HLS tool.
Subsequently, partial bitstreams could be synthesized out of the generated FB and dynamically
employed at run-time to switch between two modes of a given adaptive block.

7.7. VALIDATION AND SYNTHESIS RESULTS 107

Figure 7.19: Transmitted (left) and received (right) IEEE 802.15.4 baseband signals.

7.7 Validation and Synthesis Results

The DSL-based specifications of the two transceivers are compiled by the DSL compiler which
first generates a synthesis script (tcl) for each FB composing the transceiver dataflow graph. After
this, the scripts are fed to the HLS tool together with the underlying C specification of the FB, in
order to produce the equivalent VHDL-RTL description. Subsequently, the DSL compiler assembles
the generated VHDL description into a datapath by following the dataflow model specified in the
DSL. A control unit is generated for both the transmitter and receiver with the help of the data
frame specification and the datapath specification, as well. Control units and datapaths for both
the transmitter and the receiver are assembled into a waveform architecture by the compiler.

The waveforms are separately compiled into a bitstream with the help of the XPS tool, which
is featured with the version 13.4 of ISE. The IEEE 802.15.4 baseband signals, at both transmitter
and receiver, were captured with the help of a chipscope routine and highlighted in Figure 7.19.
It is also made possible to observe the same baseband signals directly from the platform by using

Figure 7.20: Decoding the transmitted IEEE 802.15.4 signal with VSA.

108CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

Figure 7.21: OFDM (left) and ZigBee (right) spectrum.

an oscilloscope connected the UFL connectors that are available on the platform. Furthermore,
the VSA equipment as shown in Figure 7.20 has been used to decode the transmitted signal.
Indeed, this experiment intended to prove the compliance of the transceiver with the standard. In
Figure 7.20, one can observe the constellation that was recovered from the transmitted signal. The
corresponding eye diagram is represented as well. Thus, the experiment has enabled validating the
transmitter architecture. The associated bandpass signal which is around the carrier frequency (2.4
GHz) is shown on the spectrum analyzer at the right of Figure 7.21. Figure 7.21 also provides a
snapshot of the IEEE 802.11a spectrum which was captured with the help of the spectrum analyzer.
These results primarily intend to prove the correctness of the synthesized waveforms. However,
owing to lack of time we did not get to complete further analysis such as bit error rates or packet
error rates.

Table 7.1 gives the synthesis results obtained for the two waveforms receivers. These results
are collected after place and route and aim at validating the proposed flow. Besides that, some
resource optimization have been performed at a higher-level while specifying the waveforms with
the help the HLS tools since the DSL can fully leverage the automatic Design Space Exploration
(DSE) capabilities offered by the tools on a given FB. The exploration aims essentially at meeting
performance requirements and represents an important add value to the HLS tools. They make
it possible within a few clicks to explore various solutions of the same design. In Figure 7.7, a
DSE is performed on a CorrBench block, part of the PHY IEEE 802.15.4, in order to trade-off
between the area and the throughput of the block. Each curve on this figure corresponds to a level
of internal loop pipelining, which represents how often, in clock cycles, a loop iteration is started.
Thus, the less the Initiation Interval (II) is the deeper the pipeline will be. One can see from these
curves that low throughput in cycles (high in frequency) is achieved when the design is pipelined
to a maximum (II=1). Loop unrolling (U) impacts considerably the design throughput. However,
both loop unrolling and pipelining require more resources hence an increasing area, as it can be
seen on Figure 7.7 which shows a DSE for a 256-point FFT, performed with Catapult to obtain
different solutions for same FB. The DSE is performed automatically from the scripts generated
by the DSL-Compiler. The exploration of the FFT block exhibits an increasing number of slices
versus the achievable data rate. Hence, suitable solution can be chosen to compose the desired
waveform.

In sum, the current version of the flow handles block-level configuration, it enables to select the
architecture of an adaptive block depending on the constraints. This compile-time reconfiguration
takes advantage of the HLS capabilities. An extension would be to make the generated controller
able to manage at run-time the handover between two configurations of an adaptive block. In
practice, it could leverage the dynamic and partial reconfiguration features available on recent
FPGA devices. To this end, each adaptive block could be interfaced with large memory resources
to store the streaming data when a reconfiguration is required.

7.8. A FEW REMARKS REGARDING THE DEVELOPMENT TIME 109

Slices FF LUT DSP BRAM

IEEE 802.15.4 543 1630 1058 1 0

IEEE 802.11a 961 803 2832 8 5

Table 7.1: Resource estimation for the IEEE 802.15.4 and IEEE 802.11a receivers.

7.8 A few remarks regarding the development time
Throughout this section, we would like to give a feedback on the design methodologies that we

have experienced with all along this research work. Indeed, we have started this work by developing
PHY descriptions from handcrafted RTL-VHDL specification. This approach allowed us to provide
precise description of the intended waveforms however, it led to some inflexible specifications which
were quite complex to modify or optimize. Afterwards, we undertook the development of the same
PHY by employing the HLS technology. This approach has offered more flexibility over the design
process since it we could modify or optimize the underlying architectures in a few clicks. The
development time required for each of these approaches was significantly different. Indeed, hand-
written VHDL turned out to be error-prone hence requiring multiple iteration before reaching the
target performance. HLS, on the other hand was quite straight forward and required much less
time so as to come up with the first working prototypes.

We have built a DSL on top of the HLS so as to leverage this technology (HLS) in an FPGA-
SDR design flow. The DSL raises the level of abstraction of the design process while adding some
new features such as frame modeling. The development time required to specify a waveform with
the DSL is relatively short once the FBs are developed.

Moreover, the validation platform offered two entry points, namely the MBDK and the BSDK.
The MBDK flow can be limiting due to its association to the Simulink library which can lack of
some signal processing blocks. We have chosen to only use the BSDK flow since it allows scripting
for programming the platform. Our goal being to automate the platform programming stage from
the DSL specification.

7.9 Conclusion
In this chapter, we have presented the underlying testbed which is composed of two FPGA

boards associated with two RF front-end. In addition to this, some real-time signal analysis
equipment are employed in the testbed. After this, the modeling process of two waveforms with
the proposed DSL has been depicted. This process involves data frame and the transceiver modeling
by instantiating and interconnecting the required blocks as well as setting some implementation
constraints. The results of the experimentation have been illustrated in form of real-time signals
snapshots as well as some synthesis results.

110CHAPTER 7. A CASE STUDY: DSL-BASED SPECIFICATION AND IMPLEMENTATION OF PHYS

0 5 10 15 20 25 30 35
1300

1400

1500

1600

1700

1800

1900

2000

2100

Throughput (in number of cycles)

Ca
ta

pu
ltC

 A
re

a
es

tim
at

io
n

Pipeline II=1

Pipeline II=2

Pipeline II=3

No pipeline

U=4

U=8

U=10
U=8

U=8

U=4

Pareto front U=4

U=0
U=2

U=2

U=10

U=10
U=8

U=2
U=4

U=14

U=10

U=2

5 10 15 20 25 30 35
900

1000

1100

1200

1300

1400

1500

Throughput (Mbit/s)

N
u
m

b
es

r
o
f

sl
ic

e

Chapter 8

Conclusion and Perspectives

As the FPGA technology evolves, it turns out to be a good candidate for implementing SDRs.
Indeed, it is more and more claimed that recent FPGAs can support complex waveforms implemen-
tation which requires considerable resources and throughput. However, the FPGA programming
model, which relies essentially on HDLs, has always been a serious impediment to its usage on
SDR platforms. Recent proposals have tackled this issue by raising the level of abstraction of the
programming model. Usually called HLS, they enable to program FPGA from high-level languages
such as C/C++ or Matlab. The work presented in this document has consisted in defining and
developing a design flow for FPGA-based SDR.

Summary

Chapter 1 consists of an introduction of the work depicted in this document. To this aim, it
provides the general context of this work while listing our contributions.

Chapter 2 has introduced the notion of digital radio from a signal processing perspective as
well as the underlying technologies. Thus, some important aspects of digital transceivers have been
covered so as to illustrate both the theoretical principles and the requirements at the system-level.
Furthermore, the flexible radio, which can operate thanks to the digital radio, has been discussed
and illustrated through some examples. Finally, a big picture of the SDR concept was presented
together with both the existing platforms and the design methodologies.

In Chapter 3, we have depicted two digital transceivers namely an IEEE 802.15.4 and IEEE
802.11a compliant transceivers. They are intended for low-rate and high-rate wireless communi-
cation respectively. The chapter has also provided the generalities of the two standards together
with a brief survey of their implementation in an SDR context.

The fourth chapter has dealt with the design methodologies for implementing digital transceivers.
Thus, the concepts of MDE and HLS, which both consist in raising the level of abstraction of a
design flow, have been broadly discussed as well as examples of MDE projects and HLS tools.
Finally, the chapter provided a brief discussion on how to bring together the two concepts into an
FPGA-based SDR design flow.

Chapter 5 has introduced our proposal, which consists of a DSL for modeling SDR waveforms
intended to be run on FPGA platforms. Thus, each stage of the proposal has been conceptually
explained and depicted through generic examples. Furthermore, willing to automate the imple-
mentation of the waveform’s control path, a data frame based algorithm which has been proposed
was covered in the chapter.

The sixth chapter has discussed the underlying mechanisms of the proposal namely, the com-
piling framework. It was shown that a modeled waveform is represented in form of an AST that is
further processed so as to perform some verification or generate some artifacts such as source code
or synthesis scripts for the HLS tools. Moreover, the current approach which is used to program
the FPGA platform with the generated waveform architecture has been discussed.

The experimentation of the proposed design flow on two well-known waveforms has been dis-
cussed in Chapter 7. First, the testbed with which the experimentation took place has been intro-

111

112 CHAPTER 8. CONCLUSION AND PERSPECTIVES

duced along with its programming methodology. Following this, the modeling stages for each of the
two waveforms have been covered. The ensuing results have been analyzed and some conclusions
have been drawn.

Throughout this research work, we have defined and implemented an environment for developing
FPGA-SDRs. A novel approach, which leverages a data frame model, has been proposed. Its
main goal is to enable automatic control inference by considering the intrinsic structure of the
frame. Furthermore, this environment has addressed the programmability of the FPGA by taking
advantage of the nascent HLS capabilities. A customized compiler has been associated to the
proposed flow so as to automate as many steps as possible in the FPGA-SDR design process. Two
waveforms have been considered for validation purpose, namely the IEEE 802.15.4 and the IEEE
802.11a transceivers. The waveforms have consisted of FB which have been entirely developed in
HLS/C++ and synthesized with the help of the Catapult HLS tool. The experimentation was
carried out in the Nutaq Perseus 6010 FPGA board which was connected the Radio420X RF front-
end for transposition around the carrier frequency. Thus, we were able to assess the performance
of the proposed methodology on a commercial platform while bringing to light some interesting
perspectives.

Perspectives

The SDR is an outstanding technology and throughout this Ph.D thesis we have proposed an
SDR design methodology based on the HLS principles. However, different perspectives arise with
this brand new approach.

We are working on enriching the library of HLS-based signal processing blocks. Indeed, it was
shown that the HLS technology enables a rapid prototyping of the final waveform. Our proposal
takes advantage of the HLS capabilities so as to allow the users to focus only on the waveform
specification. To this aim, such library should include further blocks so that it could support
the specification any waveform. In addition to this, each HLS tool fosters a specific HLL-based
description. An interesting perspective should be to unify the description of the HLS FB, by
using macros for instance, so that a given block could be synthesized by any of the available HLS
tools. This would undoubtedly help achieving better performance since each tool has its specific
approach when it comes to optimize the design. Thus, the user could easily trade-off between
different solutions issued from diverse HLS tools.

As regards the DSL, the model of the FPGA platform was essentially inspired from the Nutaq
Perseus 6010 FPGA board. Thus, the platform modeling stage was first thought to support the
integration of the solution in this specific platform. We believe that this model can be further
improved with respect to its style and its content. In fact, the current version of the platform
model is limited to the definition of the converters along with the FPGA device. Such model could
be enriched with the specification of the memory units that are available on the platform or the
frequency bands supported by the RF transceiver but still with keeping in mind not to over-specify
the platform. Besides that, the specification of the intended data frame must be augmented so as to
support dynamic pilot symbol insertion which is common requirement in OFDM-based transceivers.
Such a specification should enable to enhance the control unit’s capabilities in order to handle the
pilot insertion at the transmitter whenever it is required. Moreover, the data frame structure could
also be extended to support more complex frame such as downlink frames which may convey data
packets for multiple users. The waveform model leverages the data frame attributes while enabling
the specification of some design constraints. It is quite a novel approach combining those aspects
of a waveform however, we strongly believe that a graphical specification of the waveform would
be more intuitive thus requiring a lower learning curve.

The DSL compiling framework supports the generation of different artifacts so as to automate
several steps in the FPGA-SDR design process. Thus far, the platform programming step is
manually performed since the platform was released with some software dependencies. Nonetheless,
scripting could be employed to automate some of the steps in this stage and we are investigating
the feasibility of such an approach. Furthermore, with the capability of instantiating a microblaze
softcore on the FPGAs under consideration, the waveform’s control path could be deployed on

113

the softcore rather than the programmable logic. This scenario would enable to devote more
computing resources to the datapath while the control could leverage a software architecture. To
this aim, the DSL compiler must be extended so as to support the generation of C scripts intended
to program the softcore and the generation of a C-based description of the control path on the
other side. An interesting perspective would be to support the other types of platforms such as
DSP microprocessors or GPPs from a DSL-based specification. This would require extending the
platform model and supporting such processors from the DSL-based specification.

The dynamic reconfiguration of the final waveform has not properly been addressed in this work.
However, we have featured the generated control units with a block level reconfiguration state that is
intended to support the run-time reconfiguration requirements at the block-level. FPGAs dynamic
and partial reconfiguration capabilities were also identified as the key enabling technologies for
implementing reconfiguration scenarios in FPGA-SDRs. Standard level reconfiguration should be
addressed too.

114 CHAPTER 8. CONCLUSION AND PERSPECTIVES

The Author’s Publications

The work presented in this document was subject to different publications which can be listed
as follows:

Journal Paper
G. S. Ouedraogo, M. Gautier and O. Sentieys, "A Frame-Based Domain-Specific Language for
Rapid Prototyping of FPGA-Based Software Defined Radios", in EURASIP Journal on Advances
in Signal Processing (accepted for publication).

International Conferences
G. S. Ouedraogo, M. Gautier and O. Sentieys, "Frame-based Modelling for Automatic Synthesis of
FPGA-Software Defined Radio", in International Conference on Cognitive Radio Oriented Wireless
Networks (CrownCom 2014), Finland, June 2014.

M. Gautier, G. S. Ouedraogo and O. Sentieys, Design Space Exploration in an FPGA-Based Soft-
ware Defined Radio, in Euromicro Conference on Digital System Design (DSD 2014), Italy, August
2014.

V. Bhatnagar, G. S. Ouedraogo, M. Gautier, A. Carer and O. Sentieys, An FPGA Software-Defined
Radio Platform with a High-Level Synthesis Design Flow, in IEEE International Conference on
Vehicular Technology (VTC Spring 2013), Germany, June 2013.

Book Chapter
M. Gautier, E. Casseau, H. Yviquel, G. S. Ouedraogo, M. Raulet and O. Sentieys, Rapid Proto-
typing for Video Coding over Flexible Radio Links, In Multimedia over Cognitive Radio Networks:
Algorithms, Protocols, and Experiments. Edited by Fei Hu and Sunil Kumar, CRC Press, Decem-
ber 2014.

National Conferences
G. S. Ouedraogo, M. Gautier, and O. Sentieys, Description de haut niveau de forme d’ondes pour
la radio logicielle sur des architectures reconfigurables, Colloque GRETSI 2013, Brest, sept. 2013.

G. S. Ouedraogo, M. Gautier and O. Sentieys, Vers un langage spécialisé pour la radio logicielle
sur FPGA, Colloque du GDR SOC-SIP 2013, Lyon, juin 2013.

115

116 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Appendices

117

Appendix A

HLS Specifications

This chapter is intended to describe the C/C++ source code, which specifies the PHYs that
we have considered for this work. The code is compliant with the Catapult synthesis tool and
it comprises both the transmitter and the receiver specifications. The IEEE 802.15.4 PHY was
entirely specified by the authors whereas the IEEE 802.11a PHY has consisted of some specifications
that were provided by the tool or written by some fellow colleagues.

A.1 IEEE 802.15.4 PHY HLS specification
The IEEE 802.15.4 PHY HLS specification comprises three main files, namely the pack.h file,

the tx.cpp and the rx.cpp files. The former file is a header file where different macros and functions
prototypes are defined. Moreover, some specific data types of an arbitrary precision are speci-
fied within the header file. The prototypes consists of void functions including some arguments
of pointers and arrays type. The arguments represent the input and output connections of the
functions. The latter two files specify the transmitter and the receiver of the ZigBee transceiver.

A.1.1 Transmitter
The IEEE 802.15.4 PHY specifies three main blocks, namely the modulation block, the spread-

ing block and the shaping filter block. The former block coverts group of block into 16 different
symbols. The second block spreads each symbol into a sequence of 32 chips. The sequence of chip
is later split up into two channels I and Q. The latter block shapes the incoming chips (on both
channel I and Q) with the half sine filter. Finally, a delay block is inserted on channel Q to enable
continuous phase change.

A.1.2 Receiver
The receiver specification includes a delay block, which compensates the delay between channel

I and channel Q. Following this stage, a matched filter reshapes the incoming stream by maximizing
the SNR. The reshaped samples are then fed to the synchronization block, which computes the
sampling period, the phase and the frequency offset. Once these elements are computed, the syn-
chronization block switches off and filter’s output samples are fed to the compensation block which
downsamples and compensates the phase and the frequency error on the samples. Afterwards, the
compensated samples are correlated with the known chips sequences through a sliding correlation
bench which enables to recover the transmitted symbols. Each symbol is converted into bits by a
de-modulator.

119

1D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\pack.h

1 /*%%
2 IEEE 802.15.4 PHY LAYER
3 %%
4 %%%%%%%%%%%%
5 TRANSMITTER
6 %%%%%%%%%%%%
7
8 ************ *********** chips ******** samples
9 * * * *------>* *---------------->I

10 bit * *symbol* * 1MHz * * OUTPUTFREQ MHz
11 --->*modulation*----->*chipgen * * txfir*
12 * * * * chips * * *******
13 * * * *------>* *----*delay*----->Q
14 ************ *********** ******** *******samples
15 OUTPUTFREQ MHz
16
17
18 %%%%%%%%%%%
19 RECEIVER
20 %%%%%%%%%%%
21
22
23 ******* ******** ************ *************
24 --->*delay*--->* *----->* * * *
25 ******* * * | * * * *
26 *rxfir * | *decimation*----->* corrbench *---->symbol
27 * * | * * * *
28 -------------->* *---|->* * * *
29 ******** || ******^***** *************
30 || |
31 || |
32 || ***********
33 | -->* *
34 | * synchro *
35 ---->* *
36 ***********
37
38
39 %%%*/
40 #ifndef __PACK_ZIGBEE__
41 #define __PACK_ZIGBEE__
42 #include <stdio.h>
43 #include <ac_fixed.h>
44 #include <ac_int.h>
45 #include <ac_channel.h>
46 #include <math.h>
47 #include "shift_class.h"
48
49 using namespace std;
50
51 #define NBCHIP 32
52 #define IQNBCHIP NBCHIP/2
53 #define OUTPUTFREQ 10
54 #define N IQNBCHIP*OUTPUTFREQ
55 #define d OUTPUTFREQ/2
56 #define DATAWIDTHRX 5
57 #define DATAWIDTHTX 5
58 #define RXFIRDATAWD 2*DATAWIDTHRX + 4
59 #define CORRDATA RXFIRDATAWD + 5
60 #define GARDNER 1
61 #define CFO 4
62 #define GARDNERDEL GARDNER*(NBCHIP/2)*OUTPUTFREQ
63 #define CFODEL CFO*(NBCHIP/2)*OUTPUTFREQ
64 #define NBPHASE 8
65 #define PBDETECT 3
66 #define PBDETECTDEL PBDETECT*(NBCHIP/2)*OUTPUTFREQ
67 #define PBTRH 15000
68
69 typedef ac_int<1,false> bit;

2D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\pack.h

70 typedef ac_int<4,false> symbol;
71 typedef ac_int<DATAWIDTHTX,true> sample_tx;
72 typedef ac_int<DATAWIDTHTX,true> txfircoeff;
73 typedef ac_int<DATAWIDTHTX,true> rxfircoeff;
74 typedef ac_int<DATAWIDTHRX,true> sample_rx;
75 typedef ac_int<RXFIRDATAWD,true> data_fir;
76 typedef ac_int<DATAWIDTHRX,true> rxfircoeff;
77 typedef ac_int<CORRDATA ,true> corr;
78 typedef ac_int<4,false> syncwd;
79 typedef ac_int<2,true> chip;
80
81 /***
82 TRANSMITTER
83 ***/
84
85
86 //Modulation of the input bit stream at rate 250KHz
87 //Output symbol at rate 62.5KHz
88 void modulation(bit src[4],
89 symbol *sb);
90
91 // Chip sequence mapping with input at rate 62.5KHz
92 //and output at rate 2MHz
93 void chipgen(symbol *sb,
94 bit ich0[IQNBCHIP],
95 bit qch0[IQNBCHIP]);
96
97 //Delay between I and Q channel
98 void delaytx(sample_tx input[N],
99 sample_tx output[N]);

100
101 // Transmitter signal conditionning
102 void txfir(bit ich0[IQNBCHIP],
103 bit qch0[IQNBCHIP],
104 sample_tx ich1[N],
105 sample_tx qch1[N]);
106
107
108 /***
109 RECEIVER
110 ***/
111
112 //Matched filtering for rehaping the incoming signal
113 void rxfir(sample_rx *ich2,
114 sample_rx *qch2,
115 data_fir *ich3,
116 data_fir *qch3);
117
118 //Delay compensation on channel I
119 void delayrx(data_fir *input,
120 data_fir *output);
121
122 //Synchronization by computing the optimal sampling
123 //period as well as the phase error on both channel
124 //I and channel Q
125 void synchro(data_fir *ich4,
126 data_fir *qch4,
127 syncwd *topt,
128 syncwd *phiI,
129 syncwd *phiQ,
130 bool pbdetect);
131 //A different version of the synchronization block
132 void synchrohamming(data_fir *ich4,
133 data_fir *qch4,
134 syncwd *topt,
135 syncwd *phiI,
136 syncwd *phiQ,
137 bool *pbdetect);
138 //Compensation block which decimates and compensates

3D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\pack.h

139 //data after synchronization
140 void decimadjust(data_fir *ich5,
141 data_fir *qch5,
142 syncwd *topt,
143 syncwd *phiI,
144 syncwd *phiQ,
145 bool *pbdetect,
146 data_fir *ich6,
147 data_fir *qch6);
148 //Correlation bench to recover the transmitted symbols
149 void corrbench(data_fir *ch0,
150 symbol *sb_rx);
151
152 #endif
153

1D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\tx.cpp

1 /***********************
2 CATAPULT C PROJECT
3 ***********************/
4 #include "pack.h"
5
6 /*********************************
7 Transmitter specification
8 *********************************/
9

10 /*Modulation converts bits into symbols*/
11
12 using namespace std;
13
14 void modulation(bit src[4], symbol *sb)
15 {
16 symbol tmp= (symbol)src[0];
17 for(int i= 1; i < 4; i++){
18 if (src[i]== 1){
19 tmp += 2<<(i-1);
20 }
21 }
22 *sb = tmp;
23 }
24 /* ChipGen generates 32 chips corresponding */
25 /* to each symbol and split up into two channels*/
26
27 void chipgen(symbol *sb, bit ich0[IQNBCHIP], bit qch0[IQNBCHIP])
28 {
29 symbol sbtmp = 0;
30 sbtmp = *sb;
31 bit chips[16][NBCHIP]=
32 {{1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0},
33 {1,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0},
34 {0,0,1,0,1,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,1,0,1,0,1,0,0,1,0},
35 {0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,1,0,1,0,1},
36 {0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,1},
37 {0,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0},
38 {1,1,0,0,0,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,1,1,0,0,1},
39 {1,0,0,1,1,1,0,0,0,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,1},
40 {1,0,0,0,1,1,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1},
41 {1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1},
42 {0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1},
43 {0,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,1,0,1,1,0,0,0,0,0},
44 {0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,1,0,1,1,0},
45 {0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,1},
46 {1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,0,0},
47 {1,1,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0}};
48
49
50 for(int i= 0; i< NBCHIP; i++){
51 if(i%2==0){
52 ich0[i>>1]= chips[sbtmp][i];
53 }
54 else {
55 qch0[(i-1)>>1]= chips[sbtmp][i];
56 }
57 }
58
59 }
60 /*Tx_fir shapes each chip prior to transmission*/
61 void txfir(bit ich0[IQNBCHIP], bit qch0[IQNBCHIP], sample_tx ich1[N], sample_tx qch1[N])
62 {
63 const txfircoeff txcoeff[OUTPUTFREQ]= {0, 5, 9, 12, 14, 15, 14, 12, 9, 5};
64 for(int i= 0; i< IQNBCHIP; i++){
65 bit temp_i = ich0[i];
66 bit temp_q = qch0[i];
67 for(int j= OUTPUTFREQ*i; j< OUTPUTFREQ*(i+1); j++){
68 ich1[j]= (2*temp_i-1)*txcoeff[j-OUTPUTFREQ*i];
69 qch1[j]= (2*temp_q-1)*txcoeff[j-OUTPUTFREQ*i];

2D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\tx.cpp

70 }
71 }
72 }
73
74 /*delaytx performes the required delay on channel Q*/
75 void delaytx(sample_tx input[N], sample_tx output[N])
76 {
77 static shift_class<sample_tx,N+d> reg;
78
79 static bool delay = false;
80 if(!delay){
81 for(int i= 0; i<N; i++){
82 reg << input[i];
83 }
84 for(int i= 0; i<d; i++){
85 reg[N+i]= 0;
86 }
87 for(int i = N-1; i>=0; i--){
88 output[N-1-i] = reg[i+d];
89 }
90 delay = true;
91 }
92 else{
93 for(int i= 0; i<N; i++){
94 reg << input[i];
95 }
96 for(int i = N-1; i>=0; i--){
97 output[N-1-i] = reg[i+d];
98 }
99 }

100 }
101
102
103

1D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\rx.cpp

1 #include "pack.h"
2
3 /*******************************
4 Receiver specification
5 *******************************/
6
7 using namespace std;
8
9 /*Matched filter specification*/

10 void rxfir(sample_rx *ich2, sample_rx *qch2, data_fir *ich3, data_fir *qch3)
11 {
12
13 static shift_class<data_fir, OUTPUTFREQ> i_reg, q_reg;
14 rxfircoeff rxcoeff[OUTPUTFREQ]= {0, 5, 9, 12, 14, 15, 14, 12, 9, 5};
15 i_reg << *ich2;
16 q_reg << *qch2;
17
18 data_fir temp_i = 0;
19 data_fir temp_q = 0;
20 MAC: for(int i= OUTPUTFREQ-1; i>= 0; i--){
21 temp_i += i_reg[i]*rxcoeff[OUTPUTFREQ-1-i];
22 temp_q += q_reg[i]*rxcoeff[OUTPUTFREQ-1-i];
23 }
24
25 *ich3= temp_i;
26 *qch3= temp_q;
27 }
28
29 /*Delay compensation on channel I*/
30 void delayrx(data_fir *input, data_fir *output)
31 {
32 static shift_class<data_fir, d+1> reg;
33 static bool delay = false;
34 if(!delay){
35 reg << *input;
36 for(int i= 1; i<d+1; i++){
37 reg[i] = 0;
38 }
39 *output = reg[d];
40 delay = true;
41 }
42 else{
43 reg << *input;
44 *output = reg[d];
45 }
46 }
47
48 syncwd minindex(int array[OUTPUTFREQ]){
49 int min = array[0];
50 syncwd idxtp = 0;
51
52 for(int i= 1; i < OUTPUTFREQ; i++){
53 if(array[i] < min){
54 min = array[i];
55 idxtp = i;
56 }
57 }
58 return idxtp;
59 }
60
61 syncwd maxindex(corr array[NBPHASE]){
62 corr max = array[0];
63 syncwd idxtp= 0;
64 for(int i= 1; i < NBPHASE; i++){
65 if(array[i] >= max){
66 max = array[i];
67 idxtp = i;
68 }
69 }

2D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\rx.cpp

70
71 return idxtp;
72 }
73 /*Synchronization block computes sampling period and phase offset*/
74 void synchro(data_fir *ich4, data_fir *qch4, syncwd *topt, syncwd *phiI, syncwd *phiQ,

bool pbdetect)
75 {
76 static shift_class<data_fir, OUTPUTFREQ+1> regI, regQ;
77 static shift_class<data_fir, NBCHIP> inbuff;
78 static int count0 = 0;
79 static ac_int<4, false> count1, count2, count3, topt0, phiI0, phiQ0 = 0;
80 static shift_class<data_fir, IQNBCHIP> regICFO[NBPHASE], regQCFO[NBPHASE];
81 static int peak = 0;
82 static ac_int<3,false> nbpeak = 0;
83 corr tpI, tpQ = 0;
84 data_fir tempI, tempQ = 0;
85 static corr corrcfoI[OUTPUTFREQ], corrcfoQ[OUTPUTFREQ];
86 static int error[OUTPUTFREQ] = {0};
87 int err_i, err_q = 0;
88 const chip code0[NBCHIP]={1,1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,-

1,-1,-1,1,-1,1,1,1,-1};
89 const chip code0I[IQNBCHIP]= {1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1,

1};
90 const chip code0Q[IQNBCHIP]= {1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -

1};
91 const ac_int<6, true> cosphi[NBPHASE] = {-16, -11, 0, 11, 16, 11, 0,-11};
92 const ac_int<6, true> sinphi[NBPHASE] = {0,-11, -16, -11, 0, 11, 16, 11};
93 if(count0 < OUTPUTFREQ){
94 regI << *ich4;
95 regQ << *qch4;
96 }
97 else if ((count0 >= OUTPUTFREQ) && (count0 < GARDNERDEL-1)){
98 regI << *ich4;
99 regQ << *qch4;

100 err_i = regI[OUTPUTFREQ/2]*(regI[OUTPUTFREQ]-regI[0]);
101 err_q = regQ[OUTPUTFREQ/2]*(regQ[OUTPUTFREQ]-regQ[0]);
102 int temp = error[count1];
103 int err_i_sht = err_i >> 10;
104 int err_q_sht = err_q >> 10;
105
106 error[count1] = temp + (err_i_sht*err_i_sht + err_q_sht*err_q_sht);
107 count1++;
108 if (count1 == OUTPUTFREQ){
109 count1 = 0;
110 }
111 }
112 else if (count0 == GARDNERDEL-1){
113 topt0 = minindex(error);
114 *topt = topt0;
115 }
116 else if ((count0>= GARDNERDEL)&&(count0 < GARDNERDEL + CFODEL -1)){
117 if (count2==topt0){
118 tempI = 0;
119 tempQ = 0;
120 static ac_int<4,false> cpt = 0;
121 tempI = *ich4 >> 5;
122 tempQ = *qch4 >> 5;
123 for(int i = 0; i< NBPHASE; i++){
124 regICFO[i] << tempI*cosphi[i]-tempQ*sinphi[i];
125 regQCFO[i] << tempI*sinphi[i]+tempQ*cosphi[i];
126 }
127 if(cpt == IQNBCHIP-1){
128 for(int ii= 0; ii< NBPHASE; ii++){
129 tpI = 0;
130 tpQ = 0;
131 for(int jj= IQNBCHIP-1; jj>= 0; jj--){
132 tpI += code0I[IQNBCHIP-1-jj]*regICFO[ii][jj];
133 tpQ += code0Q[IQNBCHIP-1-jj]*regQCFO[ii][jj];
134 }

3D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\rx.cpp

135 corrcfoI[ii] += tpI;
136 corrcfoQ[ii] += tpQ;
137 }
138 cpt = 0;
139 }
140 else {
141 cpt++;
142 }
143 }
144 if (count2 == OUTPUTFREQ-1){
145 count2 = 0;
146 }
147 else{
148 count2++;
149 }
150 }
151 else if (count0 == GARDNERDEL + CFODEL - 1){
152
153 if(topt0 == OUTPUTFREQ-1){
154 tempI = *ich4 >> 5;
155 tempQ = *qch4 >> 5;
156 for(int i = 0; i< NBPHASE; i++){
157 regICFO[i] << tempI*cosphi[i]-tempQ*sinphi[i];
158 regQCFO[i] << tempI*sinphi[i]+tempQ*cosphi[i];
159 }
160 for(int ii= 0; ii< NBPHASE; ii++){
161 tpI = 0;
162 tpQ = 0;
163 for(int jj= IQNBCHIP-1; jj>= 0; jj--){
164 tpI += code0I[IQNBCHIP-1-jj]*regICFO[ii][jj];
165 tpQ += code0Q[IQNBCHIP-1-jj]*regQCFO[ii][jj];
166 }
167 corrcfoI[ii] = (corrcfoI[ii]+tpI)/CFO;
168 corrcfoQ[ii] = (corrcfoQ[ii]+tpQ)/CFO;
169 }
170 }
171 else {
172 for(int i= 0; i< NBPHASE; i++){
173 corrcfoI[i] = corrcfoI[i]/CFO;
174 corrcfoQ[i] = corrcfoQ[i]/CFO;
175 }
176 }
177 phiI0 = maxindex(corrcfoI);
178 phiQ0 = maxindex(corrcfoQ);
179 *phiI = phiI0;
180 *phiQ = phiQ0;
181 }
182 else if ((count0 >= GARDNERDEL + CFODEL)&&(count0 < GARDNERDEL+CFODEL+PBDETECTDEL-1))

 {
183 corr corroutput = 0;
184 if(count3 == topt0){
185 tempI = *ich4 >> 4;
186 tempQ = *qch4 >> 4;
187 inbuff << tempI*cosphi[phiI0]-tempQ*sinphi[phiI0];
188 inbuff << tempI*sinphi[phiQ0]+tempQ*cosphi[phiQ0];
189 for(int i= NBCHIP-1; i>= 0; i--){
190 corroutput += code0[NBCHIP-1-i]*inbuff[i];
191
192 }
193 if (corroutput - PBTRH > 0) {
194 peak += corroutput;
195
196 nbpeak++;
197 }
198 }
199 if (count3 == OUTPUTFREQ-1){count3 = 0;}
200 else {count3++;}
201 }
202 else if (count0 == GARDNERDEL + CFODEL + PBDETECTDEL -1){

4D:\Profils\adminganda\workspace\CATAPULT\sul5\CATAPULTC\ZIGBEETRX0\rx.cpp

203
204 if (topt0 == OUTPUTFREQ-1){
205 corr corroutput = 0;
206 tempI = *ich4 >> 4;
207 tempQ = *qch4 >> 4;
208 inbuff << tempI*cosphi[phiI0]-tempQ*sinphi[phiI0];
209 inbuff << tempI*sinphi[phiQ0]+tempQ*cosphi[phiQ0];
210 for(int i= NBCHIP-1; i>= 0; i++){
211 corroutput += code0[NBCHIP-1-i]*inbuff[i];
212 }
213 if (corroutput - PBTRH > 0) {
214 peak += corroutput;
215 nbpeak++;
216 }
217
218 }
219 if(nbpeak != 0){
220 peak = peak/nbpeak;
221 }
222
223 if (peak - PBTRH > 0) {
224 pbdetect = true;
225 }
226 }
227 count0 ++;
228 }
229
230 /*Compensation block for decimating and compensating the samples after
231 synchronization*/
232 void decimadjust(data_fir *ich5, data_fir *qch5, syncwd *topt, syncwd *phiI, syncwd *phiQ

, bool *pbdetect, data_fir *ich6, data_fir *qch6)
233 {
234 const ac_int<6, true> cosphi[NBPHASE] = {-16, -11, 0, 11, 16, 11, 0,-11};
235 const ac_int<6, true> sinphi[NBPHASE] = {0,-11, -16, -11, 0, 11, 16, 11};
236 if(*pbdetect){
237 static ac_int<4, false> count0 = 0;
238 static syncwd topt0, phiI0, phiQ0 =0;
239 topt0 = *topt;
240 phiI0 = *phiI;
241 phiQ0 = *phiQ;
242 data_fir i, q = 0;
243 if(count0 == topt0+1){
244 i = *ich5 >> 5;
245 q = *qch5 >> 5;
246 *ich6 = i*cosphi[phiI0]-q*sinphi[phiI0];
247 *qch6 = i*sinphi[phiQ0]+q*cosphi[phiQ0];
248 }
249 if (count0==OUTPUTFREQ-1){
250 count0=0;
251 }
252 else {count0++;}
253 }
254 }
255
256

A.2. IEEE 802.11A PHY HLS SPECIFICATIONS 129

A.2 IEEE 802.11a PHY HLS specifications
As mentioned previously, regarding the IEEE 802.11a PHY, we have leveraged some OFDM

blocks which are provided by the Catapult tool as well as some blocks which were specified by
some fellow colleagues. Since this material does not belong to the author, they chose not to
publish the underlying HLS specifications for some obvious copyrights reasons. However, for fur-
ther information we refer the reader to the Catapult documentation which provides the necessary
documentation.

130 APPENDIX A. HLS SPECIFICATIONS

Bibliography

[1] H. Kopetz, Internet of Things. Real-Time Systems Series, Springer US, 2011.
[2] R. H. Weber and R. Weber, Internet of Things. Springer Berlin Heidelberg, 2010.
[3] F. K. Jondral, “Software-defined radio: Basics and evolution to cognitive radio,” EURASIP

J. Wirel. Commun. Netw., vol. 2005, pp. 275–283, Auugust 2005.
[4] J. Mitola III and G. Maguire Jr., “Cognitive radio: making software radios more personal,”

IEEE Personal Communications, vol. 6, pp. 13–18, Aug 1999.
[5] J. Palicot, De la radio logicielle à la radio intelligente. Hermes Science Publications, 2010.
[6] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication in wireless net-

works,” Communications Magazine, IEEE, vol. 42, pp. 74–80, Oct 2004.
[7] L. Xiao, T. Fuja, J. Kliewer, and C. D, “A network coding approach to cooperative diversity.,”

IEEE Transactions on Information Theory, vol. 53, p. 3714âĂŞ3722, Oct 2007.
[8] S. Jayaweera, “Virtual mimo-based cooperative communication for energy-constrained wire-

less sensor networks,” Wireless Communications, IEEE Transactions on, vol. 5, pp. 984–989,
May 2006.

[9] C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. M. Grant, H. Haas, J. Thompson,
I. Ku, C.-X. Wang, T. A. Le, M. Nakhai, J. Zhang, and L. Hanzo, “Green radio: radio
techniques to enable energy-efficient wireless networks,” Communications Magazine, IEEE,
vol. 49, pp. 46–54, June 2011.

[10] I. Mitola, J., “Software radios: Survey, critical evaluation and future directions,” IEEE
Aerospace and Electronic Systems Magazine, vol. 8, pp. 25–36, April 1993.

[11] J. Mitola, “The software radio architecture,” Communications Magazine, IEEE, vol. 33,
pp. 26–38, May 1995.

[12] G. Kalivas, Digital Radio System Design. A John Wisley and Sons, Ltd, Publication, 2009.
[13] J. G. Proakis, Digital Communications. McGraw Hill Higher Education, 2000.
[14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice-Hall, Inc,

1989.
[15] M. Frerking, Digital Signal Processing in Communications Systems. Springer, 1994.
[16] R. Woods, J. McAllister, G. Lightbody, and Y. Yi, FPGA-based Implementation of Signal

Processing Systems. A John Wisley and Sons, Ltd, Publication, 2008.
[17] C. E. Shannon, “A mathematical theory of communication,” Reprinted with corrections from

the Bell System Technical Journal, pp. 379–423,623–656, October 1948.
[18] H. Nyquist, “Certain factors affecting the telegraph speed,” Bell System Technical Journal,

pp. 324–346, 1924.
[19] H. Nyquist, “Certain topics in telegraph mission theory,” Reprint as classic paper in: Proc.

IEEE 90(2), February 2002.
[20] “Ieee standard for information technology: Wireless medium acess control (mac) and physical

layer (phy) specifications for low-rate wireless personal area networks (wpans),” IEEE Std
802.15.4, 2006.

[21] “Ieee standard for local and metropolitan area networks: Part 16: Air interface for fixed
broadband wireless acess systems,” IEEE Computer Society, 1999.

131

132 BIBLIOGRAPHY

[22] “Supplement to ieee standard for information technology: Wireless lan medium access con-
trol (mac) and physical layer (phy) specifications,” IEEE Computer Society and the IEEE
Microwave Theory and Techniques Society, 2001.

[23] “Etsi: Radio broadcasting systems; digital audio broadcasting (dab to mobile, portable and
fixed receivers,” DAB Standard by EBU, June 2006.

[24] “Etsi: Digital video broadcasting (dvb); second generation framing, channel coding and mod-
ulation systems for broadcasting, interactive services, news gathering and other broadband
satelite application (dvb-s2),” DVB Standard by EBU-UER, August 2009.

[25] “Agilent technologies: Understanding gsm/edge transmitter and receiver measurements for
base transceiver stations and their components,” Application Note 1312, August 2002.

[26] J. Zyren and W. McCoy, “Overview of the 3 gpp long term evolution physical layer,” White
Paper, freescale, July 2007.

[27] M. Franceschini, G. Ferrari, and R. Raheli, LDPC Coded Modulations. Springer, 2009.
[28] C. Berrou and A. Glavieux, Turbo Codes. John Wiley & Sons, Inc., 2003.
[29] S. Heath, DSP processor fundamentals: architectures and features. Newnes, 1995.
[30] P. Lapsley, Microprocessor Architectures, Second Edition: RISC, CISC and DSP. IEEE

Press, 1997, 2010.
[31] L. W. Fook, VLIW Microprocessor Hardware Design: On ASIC and FPGA. McGraw-Hill

Professional, 2007.
[32] Z. Xuping and P. Jianguo, “Energy-detection based spectrum sensing for cognitive radio,”

Wireless, Mobile and Sensor Networks, 2007. (CCWMSN07). IET Conference on, pp. 944–
947, December 2007.

[33] V. Turunen, M. Kosunen, A. Huttunen, S. Kallioinen, P. Ikonen, A. Parssinen, and J. Ryy-
nanen, “Implementation of cyclostationary feature detector for cognitive radios,” EURASIP
Journal on Wireless Communications and Networking, pp. 1–4, June 2009.

[34] D. Noguet, L. Biard, and M. Laugeois, “Cyclostationarity detectors for cognitive radio: Ar-
chitectural tradeoffs,” Cognitive Radio Oriented Wireless Networks and Communications,
2009. CROWNCOM ’09. 4th International Conference on, August 2010.

[35] M. Gautier, M. Laugeois, and P. Hostiou, “Cyclostationarity detection of dvb-t signal: testbed
and measurement,” In International Conference on Advances in Cognitive Radio (Cocora
2011), April 2011.

[36] C. Kuo and J. Wong, “Multi-standard dsp based wireless system,” Signal Processing Pro-
ceedings, 1998. ICSP ’98. 1998 Fourth International Conference on, vol. 2, pp. 1712–1728,
1998.

[37] S. Gul, C. Moy, and J. Palicot, “Two scenarios of flexible multi-standard architecture designs
using a multi-granularity exploration,” Personal, Indoor and Mobile Radio Communications,
2007. PIMRC 2007. IEEE 18th International Symposium on, pp. 1–5, September 2007.

[38] E. Grayver, Implementing Software Defined Radio. Springer, 2013.
[39] R. Walden, “Analog-to-digital converter survey and analysis,” Selected Areas in Communica-

tions, IEEE Journal on, vol. 17, pp. 539–550, April 1999.
[40] M. Dardaillon, K. Marquet, T. Risset, and A. Scherrer, “Software defined radio architecture

survey for cognitive testbeds,” IEEE International Wireless Communications and Mobile
Computing Conference (IWCMC), pp. 189–194, August 2012.

[41] O. Anjum, T. Ahonen, F. Garzia, J. Nurmi, C. Brunelli, and H. Berg, “State of the art
baseband dsp platforms for software defined radio: A survey,” EURASIP Journal on Wireless
Communications and Networking, June 2011.

[42] http://www.ettus.com.
[43] M. et al., “Kuar: A flexible software-defined radio development platform,” In 2nd IEEE

International Symposium on New Frontiers in Dynamic Spectrum Acess Networks, pp. 428–
439, April 2007.

BIBLIOGRAPHY 133

[44] B. D. S. B Bougard and D. Verkest, “A coarse-grained array accelerator for software-defined
radio,” IEEE Micro, pp. 41–50, 2008.

[45] k Van Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss, “Vector processing as
an enabler for software-defined radio in handled devices,” EURASIP Journal on Advances in
Signal Processing, pp. 2613–2625, 2005.

[46] T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus, M. Tavares, G. Fettweis,
H. Ahlendorf, and P. Robelly, “A fully programmable 40 gops sdr single chip baseband for
lte/wimax terminals,” In Solid-State Circuits Conference, ESSCIRC. 34th European, pp. 466–
469, September 2008.

[47] “Embb, a generic hardware and software architecture for digital signal processing.”
http://embb.telecom-paristech.fr/.

[48] F. Clermidy, R. Lemaire, X. Popon, D. Ktenas, and Y. Thonnart, “An open and reconfig-
urable platform for 4g telecommunication: Concepts and application.,” In Euromicro Con-
ference on Digital System Design, Architectures, Methods and Tools, pp. 449–456, August
2009.

[49] D. Nussbaum, K. Kalfallah, C. Moy, A. Nafkha, P. Lerary, J. Delorme, J. Palicot, J. Martin,
F. Clermidy, B. Mercier, and R. Pacalet, “Open platform for prototyping of advanced software
defined radio and cognitive radio techniques.,” In 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools, pp. 435–440, August 2009.

[50] http://warp.rice.edu.
[51] http://www.nutaq.com.
[52] G. Jianxin, Y. Xiaohui, G. Jun, and L. Quan, “The software communication architecture

specification: Evolution and trends,” IEEE Conference on Computational Intelligence and
Industrial Applications (PACIIA 2009), November 2009.

[53] R. R. et al, “Space telecommunications radio system (strs) architecture standard.,” NASA
glenn research center, Clevelend, TM 2010-216809, 2010.

[54] E. D and Willink, “The waveform description language: Moving from implementation to
specification,” IEEE Military Communications Conference (MILCOM 2001), pp. 208–212,
2004.

[55] Y. Lin, R. Mullenix, M. Woh, S. Mahlke, T. Mudge, A. Reid, and K. Flautner, “Spex:
A programming language for software defined radio,” In Software Defined Radio Technical
Conference and Product Exposition (SDR-Forum 06), November 2006.

[56] J. Gonzalez-Pina, R. Ameur-Boulifa, and R. Pacalet, “Diplodocusdf, a domain-specific mod-
elling language for software defined radio applications,” pp. 1–8, Sept 2012.

[57] “Prismtech spectra sdr: Spectra cf high performance low footprint sca core framework,”
PrismTech Corporation, PrismTech Limited and PrismTech (France) SARL.

[58] A. Gelonch, X. RevÃĺs, V. Marojevik, and R. Ferrús, “P-hal: a middleware for sdr applica-
tions,” SDR Forum Technical Conference, November 2005.

[59] E. Grayver, H. S. Gree, and J. L. Roberson, “Sdrphy - xml description for sdr physical
layer.,” The 2010 Military Communications Conference - Unclassified Program - Systems
Perspectives Track, 2010.

[60] “Gnu radio, the free and open software radio ecosystem.” www.gnuradio.org.
[61] “Ieee, advancing technology for humanity.” http://www.ieee.org/index.html.
[62] “Etsi, world class standards.” http://www.etsi.org/.
[63] T. Cooklev, Book Chapter: Standards for Wireless Personal Area Networking (WPAN).

Wiley-IEEE Standards Association, 2004.
[64] “Zigbee alliance.” http://www.zigbee.org/.
[65] F. L. LEWIS, Wireless Sensor Networks. in Smart Environments: Technologies, Protocols,

and Applications ed. D.J. Cook and S.K. Das, John Wiley, 2004.
[66] C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Wireless Sensor Networks. Springer-

Verlag New York Inc, 2004.

134 BIBLIOGRAPHY

[67] U. Pesovic, D. Gliech, P. Planinsiz, Z. Stamenkovic, and S. Randic, “Implementation of
ieee 802.15.4 transceiver on software defined radio platform.,” Telecommunications Forum
(TELFOR), 2012 20th, pp. 376–379, November 2012.

[68] S. Knauth, “Implementation of an ieee 802.15. 4 transceiver with a software-defined radio
setup.,” Lucerne University of Applied Sciences, 2008.

[69] J. Sabater, J. Gomez, and M. Lopez, “Towards an ieee 802.15.4 sdr transceiver.,” Electronics,
Circuits, and Systems (ICECS), 2010 17th IEEE International Conference on, pp. 323–326,
December 2010.

[70] L. Choong, “Multi-channel ieee 802.15.4 packet capture using software defined radio.,” UCLA
Networked & Embedded Sensing Lab, 2009.

[71] Xilinx, “Virtex-5 fpga user guide,” UG190 (v5.4), March 2012.
[72] C. L. W. Kiat, “Software defined radio design for an ieee 802.11a transceiver using open source

software communications architecture (sca) implementation::embedded (ossie).,” Master The-
sis, December 2006.

[73] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Towards an open source ieee 802.11p
stack: A full sdr-based transceiver in gnu radio.,” Vehicular Networking Conference (VNC),
2013 IEEE, pp. 143–149, December 2013.

[74] A. Tran, D. Truong, and B. Baas, “A complete real-time 802.11a baseband receiver imple-
mented on an array of programmable processors.,” Signals, Systems and Computers, 2008
42nd Asilomar Conference on, pp. 165–170, October 2008.

[75] P. Coulton and D. Carline, “An sdr inspired design for the fpga implementation of 802.11a
baseband system.,” Consumer Electronics, 2004 IEEE International Symposium on, pp. 470–
475, September 2004.

[76] “Omg, common object request broker architecture (corba).”
http://www.omg.org/spec/CORBA/.

[77] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM J. Res. Develop.,
vol. 10, pp. 278–291, 1966.

[78] M. Schulz, E. Trischler, and T. Sarfert, “Socrates: a highly efficient automatic test pat-
tern generation system,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 7, pp. 126–137, January 1988.

[79] J. Darringer, D. Brand, J. V. Gerbi, W. Joyner, and L. Trevillyan, “Lss: A system for
production logic synthesis,” IBM Journal of Research and Development, vol. 44, pp. 157–
165, Jan 2000.

[80] L. Stok, D. Kung, D. Brand, A. Drumm, A. Sullivan, L. Reddy, N. Hieter, D. J. Geiger,
H. H. Chao, and P. Osler, “Booledozer: Logic synthesis for asics,” IBM Journal of Research
and Development, vol. 40, pp. 407–430, July 1996.

[81] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” Design Test of
Computers, IEEE, vol. 26, pp. 18–25, July 2009.

[82] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-level synthesis
for fpgas: From prototyping to deployment,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 30, pp. 473–491, April 2011.

[83] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.
[84] M. Fowler and R. Parsons, Domain-Specific Languages. The Addison-Wisley Signature Series,

2011.
[85] J. McCarthy, “Lisp for share distribution,” MIT Press, pp. 93 – 99, 1962.
[86] “Rails: Web development that doesn’t hurt.” http://rubyonrails.org.
[87] D. Flanagan and Y. Matsumoto, The Ruby Programming Language. O’Reilly Media, 2008.
[88] E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM, vol. 13,

pp. 377–387, June 1970.
[89] E. T. Ray, Learning XML. O’Reilly Media, 2003.

BIBLIOGRAPHY 135

[90] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF, Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2008.

[91] O. M. Group, “Mof 2.0/xmi mapping, version 2.1.1,” formal/2007-12-01, 2007.
[92] http://www.garshol.priv.no/download/text/bnf.html.
[93] L. Bettini, Implementing Domain-Speicific Languages with Xtext and Xtend. Packt Publish-

ing, 2013.
[94] http://www.antlr.org/.
[95] O. M. Group, “Unified modeling language (uml) superstructure specification, version 2.3,”

formal/2010-05-05, 2010.
[96] O. M. Group, “Meta object facility (mof) core specification, version 2.4 beta 2.0,” ptc/2010-

12-08, 2010.
[97] O. M. Group, “Mda guide version 1.0.1,” omg/2003-06-01, June 2003.
[98] “Sysml open source specification project.” http://www.sysml.org/.
[99] O. M. Group, “Uml profile for marte: Modeling and analysis of real-time embedded systems,

version 1.0,” On line: http://www.omg.org/spec/MARTE/, 2010.
[100] “Obect group management: Uml profile for schedulability, performance, and time.”

http://www.omg.org/spec/SPTP/.
[101] “The uml profile for marte: Modeling and analysis of real-time and embedded systems.”

http://www.omgmarte.org/.
[102] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet, “A co-design approach for

embedded system modeling and code generation with uml and marte,” Design, Automation
Test in Europe Conference Exhibition, 2009. DATE ’09., pp. 226–231, April 2009.

[103] “Xilinx core generator system.” http://www.xilinx.com/tools/coregen.htm.
[104] “Altera megafunctions.” http://www.altera.com/products/ip/altera/mega.html.
[105] S. Edwards, “The challenges of synthesizing hardware from c-like languages,” Design Test of

Computers, IEEE, vol. 23, pp. 375–386, May 2006.
[106] N. Ranganathan, R. Namballa, and N. Hanchate, “Chess: a comprehensive tool for cdfg

extraction and synthesis of low power designs from vhdl,” Emerging VLSI Technologies and
Architectures, 2006. IEEE Computer Society Annual Symposium on, pp. 6 pp.–, March 2006.

[107] Q. Wu, Y. Wang, J. Bian, W. Wu, and H. Xue, “A hierarchical cdfg as intermediate repre-
sentation for hardware/software codesign,” Communications, Circuits and Systems and West
Sino Expositions, IEEE 2002 International Conference on, vol. 2, pp. 1429–1432 vol.2, June
2002.

[108] C.-J. Tseng and D. P. Siewiorek, “Automated synthesis of data paths in digital systems.,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 5, no. 3, pp. 379–395, 1986.

[109] C. H. Gebotys and M. I. Elmasry, “Vlsi design synthesis with testability.,” in Proc. of the
25th ACM/IEEE Design Automation Conference, DACâĂŹ88, pp. 16–21, 1988.

[110] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list schedules for parallel
processing systems.,” Communications of the ACM, vol. 17, pp. 685–690, December 1974.

[111] K. Wakabayashi, “C-based behavioral synthesis and verification analysis on industrial design
examples.,” in Proceedings ASPDAC, pp. 344–348, 2004.

[112] E. Martin, O. Sentieys, H. Dubois, and J.-L. Philippe, “Gaut: An architectural synthesis
tool for dedicated signal processors,” In Proceedings of the Design Automation Conference,
EURO-DAC’93, pp. 14–19, 1993.

[113] S. McCloud, “Catapult-c, synthesis-based design flow: speeding implementation and increas-
ing flexibility,” White paper, Mentor Graphics, 2004.

[114] Xilinx, “Vivado design suite.,” White Paper, June 2012.
[115] Cadence, “C-to-silicon high-level synthesis tool,” On line: http://www.cadence.com/ product-

s/sd/silicon_compiler/.

136 BIBLIOGRAPHY

[116] I. Accelerated, “Impulse-c high-level synthesis tool,” On line: http://www. impulseacceler-
ated.com/.

[117] Altera, “Implementing fpga design with the opencl sandard.,” White Paper, November 2013.
[118] K. Shagrithaya, K. Kepa, and P. Athanas, “Enabling development of opencl applications on

fpga platforms.,” Application-Specific Systems, Architectures and Processors (ASAP), pp. 26–
30, June 2013.

[119] G. Economakos, “Esl as a gateway from opencl to fpgas: Basic ideas and methodology eval-
uation.,” Panhellenic Conference on Informatics, pp. 80–85, October 2012.

[120] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs.
Kluwer Academic Press, 1996.

[121] G. Kahn, “The semantic of a simple language for parallel programming,” Information pro-
cessing, pp. 471–475, 1974.

[122] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE,
vol. 31, no. 1, pp. 24–35, 1987.

[123] H.-H. Wu, H. Kee, N. Sane, W. Plishker, and S. Bhattacharyya, “Rapid prototyping for
digital signal processing systems using parameterized synchronous dataflow graphs,” Rapid
System Prototyping (RSP), 2010 21st IEEE International Symposium on, pp. 1–7, June 2010.

[124] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and Y. Xiong, “Taming
heterogeneity - the ptolemy approach,” Proceedings of the IEEE, vol. 91, pp. 127–144, January
2003.

[125] “Stateflow: Model and simulate decision logic using state machines and flow charts.”
http://www.mathworks.com/products/stateflow/index.html.

