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ABSTRACT

Following recent contributions in non-linear sparse represen-

tations, this work focuses on a particular non-linear model,

defined as the nested composition of functions. Recalling that

most linear sparse representation algorithms can be straight-

forwardly extended to non-linear models, we emphasize that

their performance highly relies on an efficient computation of

the gradient of the objective function. In the particular case

of interest, we propose to resort to a well-known technique

from the theory of optimal control to estimate the gradient.

This computation is then implemented into the optimization

procedure proposed by Candès et al., leading to a non-linear

extension of it.

Index Terms— Non-linear sparse representation, dy-

namic programming, ℓ0-norm relaxation

1. INTRODUCTION

The sparse model assumes that a signal can be represented,

exactly or approximatively, by a number of elements much

smaller than its dimension. Exploited for more than twenty

years, this model has proved to be a good prior for many

types of signals in a variety of domains including audio [1]

and image [2] processing and is at the heart of the recent

compressive-sensing paradigm [3].

Standard sparse representation procedures usually focus

on linear observation models, that is

y = Hx+ n, (1)

where y is the observed data, say of dimension N , x is as-

sumed to be sparse (i.e. contain very few non-zero elements)

in a larger space of dimension M ≥ N and n stands for some

observation noise. Recovering x from y then requires to solve

a problem of the form (or some variants thereof):

x̂ = argmin
x

‖x‖0 subject to ‖y −Hx‖22 ≤ ǫ, (2)

where ‖.‖0 denotes the ℓ0 pseudo-norm which counts the

number of non-zero elements in its argument and ǫ > 0
controls the reconstruction error.

In practice, the linear observation model may be poorly

adapted to many situations. As an example, we can mention

the compressive phase retrieval problem, which aims at recov-

ering a sparse signal from the knowledge of the amplitudes of

some complex linear measurements (see e.g., [4, 5]). Hence,

recent contributions have addressed the problem of exploiting

sparse priors with non-linear observation models, that is

y = h(x) + n, (3)

for some non-linear observation operator h : XM → YN ,

where X,Y = R or C. Extending the approach followed in

the linear case, these contributions propose also a generaliza-

tion of the penalty function used in (2) of the form

x̂ = argmin
x

‖x‖0 subject to J(x) ≤ ǫ, (4)

where J(x) is some scalar function (e.g., J(x) = ‖y −
h(x)‖22) accounting for model (3).

In this paper, we are interested in a particular case of non-

linearity, where the penalty function J(x) is defined as the

nested composition of some functions. Formally, we write

J(x) =

L
∑

l=1

Jl ◦ fl ◦ . . . ◦ f1(x), (5)

where {fl}
L
l=1 are some differentiable functions and ◦ stands

for the function-composition operator. This type of model

is for instance of interest in the ubiquitous situations where

one collects partial information on the state of a dynamical

system whose initial condition admits a sparse decomposition

(see section 3). In particular, we emphasize that results from

optimal control [6] can be exploited to provide a fast imple-

mentation of any gradient-based algorithm by taking benefit

of the special structure of the non-linear model (5). We pro-

pose then a practical implementation of this computation into

the optimization procedure proposed in [7].

For a sake of conciseness, we restrict our exposition to

the real case (X = Y = R), but similar reasoning can be

conducted in the complex case.



2. SPARSE REPRESENTATION AND GRADIENT

EVALUATION

2.1. Sparsity-constrained linear models

In the literature addressing the standard sparse representation

problem (2), many computationally-efficient procedures rely

(often implicitly) on the fact that the evaluation of the gradient

of J(x) = ‖y −Hx‖22 involves a low computational burden.

More specifically, letting ∇x , [ ∂
∂x1

, . . . , ∂
∂xM

]T , we have

that the gradient of J(x) evaluated at some point x⋆ can be

written as

∇xJ(x
⋆) = −2HT (y −Hx⋆). (6)

We note that the evaluation of ∇xJ(x
⋆) only involves mul-

tiplications by the dictionary H and its transpose HT . In

the case of general dictionaries, the complexity associated

with the evaluation of the gradient thus scales as O(MN).
This constitutes one of the key ingredients of the success

of several procedures efficiently tackling high-dimensional

problems. Among others, we can mention the procedures

based on a relaxation of the ℓ0 pseudo-norm (e.g., FISTA

[8], reweighted ℓ1 norm [7]), the family of thresholding al-

gorithms (e.g., IHT [9]), or the greedy procedures (e.g., MP

[10], OMP [11], CoSaMP [12]) which sequentially update a

support estimate by including the element xj leading to the

highest local descent of J(x) (that is the element with the

largest partial derivative |∂J(x
(k))

∂xj
|, where x(k) is the current

estimate).

2.2. Sparsity-constrained non-linear models

It is noticeable that many algorithms mentioned above, when

expressed in terms of the gradient of J(x), can straightfor-

wardly be applied to non-linear sparse representation prob-

lems. Following this idea, the principles underlying IHT, MP,

OMP and CoSaMP have for example been extended to the

non-linear setting in [13], [14], [15] and [16] respectively.

Similarly, relaxed problems, more specifically based on a ℓ1
relaxation of the ℓ0 pseudo-norm, have been devised for con-

straints of particular form J(x) = ||y − h(x)||22. In [17], the

authors consider the noiseless case (ǫ = 0 in (4)) and pro-

pose to approximate h by its Taylor expansion reducing the

non-linear term to a quadratic expression and allowing then

the use of lifting techniques. A similar idea is applied in [18]

to a non-linear operator h defined as a nested composition of

functions. The initial optimization problem is thus reformu-

late as a quadratic programming problem through a first-order

linearization.

The tractability of these extensions is however highly de-

pendent on the efficient evaluation of the gradient ∇xJ(x).
In this paper, we elaborate on this problem for the particular

family of cost functions J(x) defined in (5). Our exposition

is based on the well-known theory of optimal control which

traces back to the 70’s (see e.g., [6]).

2.3. Efficient gradient computation

Considering (5), the gradient of J(x) evaluated at some point

x⋆ is written as

∇xJ(x
⋆) =

L
∑

l=1

∇x (Jl ◦ fl ◦ . . . ◦ f1) (x
⋆), (7)

by virtue of the linearity of the operator ∇x.

Let us make two remarks. First, the composed function

Jl ◦ fl ◦ . . . ◦ f1 does not have any simple analytical expres-

sion in many situations; in such cases, we have therefore to

resort to the chain rule of derivative for composed functions to

evaluate its gradient. Second, the functions {fl}
L
l=1 appear in

each term of J(x) in a structured manner and this fact should

be taken into account in any efficient evaluation of ∇xJ . This

is the goal of the procedure described hereafter.

Let us define, ∀l ∈ {1, . . . , L}, ∀x ∈ XM ,

sl , fl ◦ . . . ◦ f1(x), (8)

and at the particular point of interest x⋆: s⋆l , fl◦. . .◦f1(x
⋆).

Clearly, with this definition, ∀l ∈ {1, . . . , L}, sl = fl(sl−1),
and (5) evaluated at x⋆ can be rewritten as

J(x⋆) =

L
∑

l=1

Jl(s
⋆
l ). (9)

Therefore, using the chain rule of derivative, we obtain1

∇xJ(x
⋆) =

L
∑

l=1

∇xfl(s
⋆
l−1)

T ∇sl
Jl(s

⋆
l ),

with the convention s0 = x0 (resp. s⋆0 = x⋆
0), and from the

dependence between sl and sl−1,

∇xfl(s
⋆
l−1)

T = ∇xfl(fl−1(s
⋆
l−2))

T ,

= ∇xfl−1(s
⋆
l−2)

T ∇sl−1
fl(s

⋆
l−1)

T . (10)

Applying this expression recursively, we finally have

∇xJ(x
⋆) =

L
∑

l=1





l
∏

j=1

∇sj−1
fj(s

⋆
j−1)

T



 ∇sl
Jl(s

⋆
l ). (11)

On the one hand, we note that the latter expression does

no longer involve the derivation of some composed functions

but is exclusively based on the derivative of each component

function. On the other hand, some care has to be taken in

order to avoid unnecessary computational burden in the eval-

uation of (11). This gives rise to the following backward-

forward procedure:

1If fl(s
⋆
l−1

), [fl,1, ..., fl,N ]T , the operator ∇x applied to fl(s
⋆
l−1

)T

results in the M ×N matrix whose (i, j)-th element is
∂fl,j
∂xi

.



• The sequence {s⋆l }
L
l=1 is evaluated via the forward re-

cursion

s⋆l = fl(s
⋆
l−1), (12)

s⋆0 = x⋆. (13)

• All multiplications by a same matrix ∇sl−1
fl(s

⋆
l−1)

T

are gathered in one single operation. This is done

through the backward recursion

pL = ∇L−1fL(s
⋆
L−1)

T ∇sL
JL(s

⋆
L), (14)

pl = ∇l−1fl(s
⋆
l−1)

T (∇sl
Jl(s

⋆
l ) + pl+1), (15)

leading finally to p0 = ∇xJ(x
⋆). In that way, the mul-

tiplication by each matrix ∇sl−1
fl(s

⋆
l−1)

T is only per-

formed once during the whole recursion.

This backward-forward procedure is widely used in geophys-

ical applications (e.g., [19]). However, to the best of our

knowledge, the explicit (and motivated) use of this technique

into contexts of sparsity-constrained problems has never been

considered. In particular, in [18] which focuses on a similar

non-linear model, this efficient computation of the gradient is

not proposed.

3. SPARSE REPRESENTATIONS IN DYNAMICAL

MODELS

We emphasize that the structure of the cost function in (5) is

well-suited to the characterization of dynamical systems with

partial state information. Let us indeed consider a dynamical

system characterized by a generic state evolution equation

sl = fl(sl−1) ∀l ∈ {2, . . . , L}. (16)

Assume moreover, that noisy partial observations of the states

are collected at each time, that is

yl = gl(sl) + n. (17)

A typical problem encountered in many domains of appli-

cations consists in recovering the sequence of {sl}
L
l=1 from

the collected observation {yl}
L
l=1. In the quite common case

where the dimension of the collected data is inferior to the

number of unknowns, one has to include an extra constraint

on the sought vector in order to hope achieving a consistent

estimation. Hereafter, we will assume that the initial state is

sparse in some redundant dictionary H, that is

s1 = Hx, (18)

for some sparse vector x. One possible formulation of the

state estimation problem is therefore as follows

min
x

‖x‖0 subject to

{
∑L

l=1 ‖yl − gl(sl)‖
2
2 ≤ ǫ,

sl = fl(sl−1), s1 = Hx.
(19)

Obviously, this problem can be reformulated as (4) with a cost

function satisfying (5) by setting Jl(z) , ‖yl − gl(z)‖
2
2. The

methodology described in this paper is therefore well-suited

for gradient evaluation in this type of setup.

It is noticeable that many dynamical models typically

evolve in high-dimensional spaces, leading in turn to sparse-

representation problems of very high dimensions. In such

settings, an efficient evaluation of the gradient of J(x) turns

out to be crucial for the tractable search of a solution of (4).

In particular, any attempt to evaluate ∇xJ(x) by any standard

numerical means (e.g., finite differences) is computationally

intractable.

4. RESULTS: APPLICATION TO SQG MODEL

As an example of the methodology presented in this paper, we

consider a non-linear sparse-representation problem in a par-

ticular geophysical application. More specifically, we focus

on the characterization of the state of the ocean by exploiting

the Surface Quasi-Geostropic (SQG) dynamical model [20].

The SQG model assumes that some geophysical quantity

s(u, t) (the so-called “buoyancy”) obeys the following partial

differential equation

∂

∂t
s(u, t) + (∇⊥∇−1/2s(u, t))T ∇us(u, t) = 0, (20)

in which u ∈ R2 and t ∈ R play the respective roles of

spatial and temporal variables, and ∇⊥∇−1/2 is a vectorial

differential operator whose definition can be found in [20]. In

the sequel, we will consider a discretized version of (20), of

the form of the state equation (16). This discretized model is

built by means of a standard 4th-order Runge-Kutta numerical

integration scheme [21].

Satellites collect partial information {yl}
L
l=1 about the

buoyancy at different time instants. We assume hereafter that

each observation yl is related to the state of the system sl (but

not directly to x) by a noisy linear observation model:

yl = Gl sl + n, (21)

where Gl ∈ RN×N .

The goal is then to recover the buoyancy from the low-

dimensional information provided by the satellite by exploit-

ing: i) the geophysical model (20), nesting the buoyancy at

different time instants; ii) the sparse decomposition of the ini-

tial condition s1 in some redundant dictionary H (18).

At this point, the question is posed about the choice of the

optimization procedure. As emphasized in section 2.2, pro-

viding an efficient evaluation of the gradient of the cost func-

tion, different well-known sparse optimization algorithms can

be considered. Here, we propose to formulate the optimiza-

tion problem as

min
x

L
∑

l=1

‖yl −Gl(fl ◦ . . . f2(Hx))‖22 + λ r(x), (22)
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Fig. 1. Relative MSE versus the number of non-zero coeffi-

cients K in the sparse vector.

where λ > 0 and r(x) is some sparsity-enforcing regularizing

function. In our simulation, we chose r(x) =
∑

m log(xm +
ǫ), with ǫ = 10−1. Then our optimization procedure follows

the majorization-minimization technique exposed in [7]; at

each iteration an upper bound on the goal function is con-

structed by majorizing r(x) by a weighted ℓ1 norm. We look

for the minimum of each of these majorizing functions by

means of descent procedures involving the gradient of J(x)
evaluated as presented in section 2.3.

Particularized to the SQG model, the evaluation of the for-

ward and backward recursions (12)-(15) have a complexity

of order O(ML). By comparison, using a finite-difference

scheme to evaluate the gradient requires to run (at least) two

forward recursions by element of x, leading to an overall

complexity of O(M2L). This order of complexity thus pre-

cludes us from using this type of approach in moderate-to-

high dimensional problems.

The simulation setup considered in this paper is as

follows. The state vectors sl are assumed to live in 256-

dimensional space. The initial condition is supposed to have

a sparse decomposition in a dictionary H ∈ R256×512 made

up of sine and cosine functions. These dimensions have been

chosen for the sake of running extensive simulation. We

note that in practical SQG setups, the dimension of x is of

the order of 5122 or 10242. The observations yl ∈ R32 are

collected at four different time instants and the observation

matrices Gl correspond to random subsampling operators.

The ratio between the number of observations and the di-

mension of x is therefore equal to (32 × 4)/512 = 1/4. In

Fig. 1, we represent the relative mean-square error (MSE)

||x̂−x||22/||x||
2
2 achieved by the minimization of (22) via the

majorization-minimization procedure described above. As a

point of comparison, we run the same algorithm on a linear

sparse representation problem having the same problem di-
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Fig. 2. Error probability versus the number of non-zero coef-

ficients K in the sparse vector.

mensions. For each data point, we average the performance

over 50 trials.

We can notice that the considered procedure can achieve

an acceptable relative mean square error over a wide range of

sparsity levels. We note also that the non-linear setup suffers

from a reasonable degradation with respect to the linear setup.

This tendency is confirmed in Fig. 2 which illustrates the

probability of making at least one error on the support of the

sought sparse vector.

5. CONCLUSION

In this paper, we address the problem of sparse representa-

tions in a non-linear setting. We emphasize that, unlike in

the linear setting, the computation of the gradient of the cost

function may be a bottleneck for the extension of standard es-

timation procedures. We show that this computation may be

handled efficiently, by applying principles from the theory of

optimal control, as long as the cost function satisfies some de-

sirable structural property. Our derivations are illustrated on

a particular example dealing with the estimation of the state

of a geophysical system from partial observations.
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