
HAL Id: hal-01096299
https://hal.inria.fr/hal-01096299

Submitted on 17 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Good, the Bad and the Hacked: Creative Coding on
Objects

Renaud Gervais, Jérémy Laviole, Asier Marzo, Martin Hachet

To cite this version:
Renaud Gervais, Jérémy Laviole, Asier Marzo, Martin Hachet. The Good, the Bad and the Hacked:
Creative Coding on Objects. Proceedings of the 8th International Conference on Tangible, Embedded
and Embodied Interaction Work-in-Progress, Feb 2014, Munich, Germany. 2014, TEI WiP. �hal-
01096299�

https://hal.inria.fr/hal-01096299
https://hal.archives-ouvertes.fr


The Good, the Bad and the Hacked:
Creative Coding on Objects

Renaud Gervais
Potioc Lab
Inria Bordeaux, France
renaud.gervais@inria.fr

Jérémy Laviole
Potioc Lab
Université Bordeaux, France
jeremy.laviole@inria.fr

Asier Marzo
Public University of Navarre
Pamplona, Spain
asier.marzo@unavarra.es

Martin Hachet
Potioc Lab
Inria Bordeaux, France
martin.hachet@inria.fr

Figure 1: A first draft of a computational clock.

Copyright is held by the author/owner(s).
TEI’14, Feb 16 – Feb 19, 2014, Munich, Germany.

Abstract
In a near future scenario, we will replace some of our
everyday objects with counterparts in form of
Computational Objects (COs). COs look similar to the
original object; however, inside them there are input
sensors, output devices such as displays and a CPU.
Furthermore, COs still convey the context and meaning
that the original object had. For instance, a clock is
associated with time and thus users could expect its CO
version to display time-related data. We suggest that any
user should be able to easily code new appearances and
behaviors for his or her own objects. Using creative coding
as a base, we propose to add the notions of affordances
and conventions to this programming context. Moreover,
we suggest that COs could be used as a creativity support
tool although modifying their behavior beyond
conventions could confuse the user. Finally, we reckon
that with the proper tools, users could also make physical
modifications to COs. For example, a retractile cord can
be attached to the clock and be used to pull data out and
display them in a linear layout.

Introduction
The Organic User Interfaces (OUI) vision[10, 11] describes
a world where everyday objects are equipped with
computing capabilities (computational objects – COs).
Holman et al. [11] defines OUI as: “An Organic User



Interface is a computer interface that uses a non-planar
display as a primary means of output, as well as input.
When flexible, OUIs have the ability to become the data
on display through deformation, either via manipulation or
actuation. Their fluid physics-based graphics are shaped
through multi-touch and bi-manual gestures.” This vision
is made possible by the advances in flexible and curved
displays [3] and new touch and sensing technologies
[19, 7]. Holman et al. [10] argue that this new reality
“raises fundamental questions for the user interface
design: how should this organic form be designed?”. In
this vision, designers have a central role and will need new
tools more adapted to organic design. Nonetheless, we
think that designers are only one part of the equation. As
demonstrated by the rise in popularity of the “maker”
culture, users are not only interested in consuming
content but also in producing it.

Designer

User

Programmer

3D modeling
3D printing
Laser cuting

Object

Arduino 
Raspberry Pi

Processing 
VVVV

Designer
User

Programmer

Object

Maker

(a) current 
object creation

(b) envisionned 
future of object creation

Figure 2: With the maker
movement, new emergent
technologies enable easy
prototyping. In this article we
describe the challenge of taking
into account the affordances and
context to code for these new
interactive objects.

Three main roles can be identified in this situation
(Figure 2 (a)): the designer, who designs the objects using
computational materials; the programmer, that creates
the applications running on the COs; and the end-user,
who uses the object. The maker culture tends to blur the
lines between these roles (Figure 2 (b)). We intend to
focus on reducing and even bridging the gap between the
programmer and the end-user roles (green section in
Figure 2 (a)). In this work, we assume the existence of
such COs and abstract the physicality (i.e. how to build
COs) to explore the application development process.

Once computational materials and components have
become more widespread, a key aspect to consider will be
how users will code for their COs. Each COs has its own
sensors and display capabilities. Moreover, unlike a
computer or a smartphone, a CO has a use case scenario,
context, and history that predates its computing

capabilities. Let us consider a computational clock, given
its nature the tasks and applications created for it will be
time related. Nevertheless, it could also be an internet
browser or a calculator, but it could create confusion.

In this article, building on the concepts of smart
objects [2] and OUIs [11], we propose to add new uses to
COs and we discuss how these new uses will impact the
design of such objects. We explore solutions to program
COs, their use as a creativity support tool and ways of
detecting the boundaries that would deprive COs from
their conventions.

Related Work
A future populated by computational objects is described
by different views and paradigms. The Internet of Things
is a paradigm in which objects are able to interact with
each other and cooperate to achieve common goals [2].
Radical Atoms [12] is a vision for human interactions
based on a hypothetical physical material that is
bidirectionally coupled with a digital model. Consequently,
a change in the underlying model is reflected in the
physical shape of the object (actuation) and vice-versa.
Organic User Interfaces (OUI) defined by Holman et al.
[11] describe a future where thin and flexible displays and
touch sensors will wrap everyday objects. Therefore, any
part of an object can be a sensor and/or a display.
Holman et al. also presents the concept of
hyper-contextualization of the interface to emphasis the
fact that some types of COs “should only express a few
essential actions, ones that are subject to their form
factor” [10]. We position ourselves along the OUI vision
although we recognize that these three visions overlap and
complement each other and that they may occur in a near
(OUI) or distant future (Radical Atoms).



The term affordance reflects the actionable properties
between the world (object) and an actor (user).
Therefore, shape- or color-changing objects also change
their perceived affordances. Objects not only convey
affordances but also conventions, as introduced by Gibson
[6] and Norman [15], conventions are often cultural and
learned. Whereas they do not physically prevent an
activity, they prohibit some activities and encourage
others [16]. SketchSpace [9] is an environment that uses a
Kinect and a projector for adding virtual affordances to an
object. Thereby, designers can explore the design
possibilities of computational materials without the
necessity of adding instrumentation such as inertial, touch
and proximity sensors. SketchSpace is aimed at assisting
object designers during the design iterations.

No added affordances

String to pull

Rotating frame

Figure 3: Adding new
affordances to a computational
clock.

Reality Editor [8] enables users to edit the behavior of
smart objects with a mobile augmented reality system.
Users can map inputs and outputs of different devices by
directly pointing the Reality Editor to the smart objects
and drawing connections between them on the screen.
This tool targets end-users whereas we focus more on the
gap between users and programmers.

Creative coding is one of the cornerstone of the maker
culture. Creative coding toolkits such as Processing [17]
or VVVV [1] can help novice programmers and artists.
These tools intent to foster creativity by reducing the loop
between the code writing and the results. Moreover, they
provide high-level interfaces to hardware components such
as cameras, Kinects and game controllers. Furthermore,
they promote experimentation and reusing of existing
code from the community. We consider creative coding as
a suitable approach to encourage users to explore and
modify the functionality of their COs.

In this work, we build on the pre-existing approach of

creative coding and add the notion of affordances and
conventions in the programming framework. Our goal is
to help and guide users in their exploration of COs
capabilities. We also consider that the user may be the
creator of the object, and that he or she could modify its
design to create new applications.

Creative Coding on Objects
Everyday objects advance with fashion and their evolution
is currently lead by the industrial majors. However, during
the next decade, the creation of customized objects with
computing capabilities may change our way of
consumption. In fact, these highly customizable objects
will provide a richer experience than traditional objects. In
this section, we explore the existing and new capabilities
of a hypothetical computational clock.

Building on existing affordances
The creation of an object is guided by the function of the
object and its affordances. Our example of a CO is a
clock. Its function will be to display time. It will be
equipped with physical hands, a tilt sensor to sense its
overall orientation, a circular display and a speaker. It will
have preloaded a default application that displays the
current time using the physical hands, like any other
clock. When a user connects the clock to his development
environment, it will expose its affordances (e.g. hands can
be input or output, screen as output) and conventions
(e.g. time-related purposes). This will allow the user to
quickly explore and experiment with them. Moreover, the
clock will expose its current program so that the user is
not forced to create applications from scratch.

At this point, the user might want to create a new
application that displays his financial transactions of the
current year using the clock. He can change the scale of



the clock to display the twelve months (January to
December) instead of the traditional 1 to 12 numbers.
Then, he can create a bar chart based on his financial
data, map this chart to a circle and render it on the
circular display of the clock. Finally, he can map the
position of the hands to change the date of the displayed
financial information (as was done by Ishii et al. in the
ambientROOM [13]).

Creating new affordances
Affordances

HourHand

TimeString

RotatingFrame

Functions

PlaySound

DisplayOnScreen

DisplayTime

DisplayOnWall

Figure 4: A class diagram
exposes the affordances and
functions of a CO.

The direct manipulation of the hands of a clock is not a
natural thing to do according to conventions. This issue
could appear while modifying other COs. Consequently,
we propose the possibility of adding new affordances. The
first additional affordance that we propose is to create a
rotating frame. It can be used to select a time without
touching the hands (Figure 3 (bottom)). Another
desirable feature would be to display parts of the chart in
a linear layout to better compare the values. We could
attach a retractable wire on the side of the clock’s canvas.
When pulled, the wire drags the chart out of the screen
and displays it on the wall (Figure 3 (center)). When the
wire is released, the chart returns to its original shape
inside the clock.

Discussion
Exposing Affordances
One approach to expose the functionality of COs is to
consider them as programming objects. Therefore, a
corresponding class diagram included in the CO
instructions will expose its affordances in form of
attributes and functions, as illustrated in Figure 4.
Nonetheless, this method is close to the programmer view.

Conventions will aid the user to intuit the affordances of
the objects that will be available during the programming

task; however this only suppose a help. We suggest that
visual clues on the CO will create a natural understanding
of the possible affordances. For instance, the different
output elements can be highlighted with different colors or
change their values when the user selects their
corresponding attribute. The hand of the clock would
glow green and start to rotate quickly when the user
chooses this affordance in the help of the object.
Correspondingly, for input affordances, the value of its
current status can be drawn on them. Incidentally,
semantic definition of computational objects may provide
richer descriptions of their affordances to the users.

Programming
Similarly to Processing, it is possible to use a 4th
generation programming language as the instructions that
dictate the behavior of computational objects.
Programming languages are proximate to the computer
scientist; however, visual coding (e.g. vvvv [1]) could
remove the necessity of writing code and the possibility of
committing syntax errors. It has been shown that children
can learn to program using visual blocks that represent
code instructions [18]. Moreover, following the idea of
Picode [14] images can be used as representations of
different states of the computational object.
Consequently, users could indicate to the CO the desired
behavior in an easier way. Reality Editor [8] propose to
program CO by wiring components. In spite of not being
an expressive or versatile method, users understand the
metaphor easily. It seems interesting to explore other
metaphors that facilitate end-user programming.

Programming Environment
The device used to program can mold the way of coding
and the user experience. We consider important to
explore programming on different settings. Coding on a



Personal Computer seems like the most versatile
environment, suited even for power programmers. A
Tablet is more portable and appropriate for visual
programming. Nevertheless, programming on the surface
of the CO or in a projection close to it will situate
programming into context.

The Value of COs as a Creativity Support Environment

Object

Generic Object

Augmented Object
(time related data)

Confusing Object

Hacked Object

Figure 5: A CO can be either
very close to its original purpose
(top), have data and
functionalities related (middle
top) or unrelated (middle
bottom) to its original function
or be completely hacked away
from its original purpose.

A computational object could be seen as an expressive and
adaptable proving ground for creative exploration. There
are specific guidelines designed to measure the creativity
support index (CSI) of a tool [5]. In a future experiment
we plan to compare the CSI of a computational object
and a pure virtual version of it. We expect that
affordances will guide the programming experience of the
computational object. Thereby, the user will use
conventions as creative seeds that mitigate the blank page
problem. If a computational object can be the clay in
which artists sculpt, a room with several of these objects
offers more possibilities and can serve as a full installation.
Although conventions could be taken into account by the
user, creativity and artistic exploration also reside in the
boundaries. Therefore, creative coding of COs may help
to explore the border between conventions and discords.

To What Extent Can Functionalities Be Extended Without
Losing the Advantages Of Conventions?
Transferring some of the tasks from multipurpose devices
such as computers and smartphones to computational
objects aims at leveraging users conventions. However,
the functionality of the computational object can get out
of the scope of its conventions (Figure 5). We reckon that
a better understanding of user’s conventions is necessary.
For doing so, we can measure the usability of a CO as a
system [4] while running different applications.
Furthermore, it is possible to determine the accuracy of a

user describing what an application does, using for
instance the applications derived from the creativity
support experiment.

Conclusion
Computational objects have the potential to drastically
change how we interact with our everyday items. We
think that it is worthwhile to develop and implement a
view where users are empowered by the ability of shaping
the behavior and appearance of the entities that surround
them. To this end, we will produce prototypes, using tools
from the maker community, to add new affordances to
common objects. Then, we will explore how to clearly
expose their affordances to the coder and evaluate how
COs can stimulate creativity. Finally, we will evaluate the
boundaries where an object’s design begin to break apart.
We think that, given the proper tools, creative users can
discover useful and interesting designs of their everyday
objects.

References
[1] vvvv. http://vvvv.org.
[2] Atzori, L., Iera, A., and Morabito, G. The internet of

things: A survey. Computer Networks 54, 15 (2010),
2787 – 2805.

[3] Brockmeyer, E., Poupyrev, I., and Hudson, S.
Papillon: Designing curved display surfaces with
printed optics. In Proceedings of the 26th Annual
ACM Symposium on User Interface Software and
Technology, UIST ’13, ACM (New York, NY, USA,
2013), 457–462.

[4] Brooke, J. Sus-a quick and dirty usability scale.
Usability evaluation in industry 189 (1996), 194.

[5] Carroll, E. A., Latulipe, C., Fung, R., and Terry, M.
Creativity factor evaluation: Towards a standardized
survey metric for creativity support. In Proceedings

http://vvvv.org


of the Seventh ACM Conference on Creativity and
Cognition, C&C ’09, ACM (New York, NY, USA,
2009), 127–136.

[6] Gibson, J. J. The ecological approach to visual
perception. Houghton, Mifflin and Company, 1979.

[7] Harrison, C., Benko, H., and Wilson, A. D.
Omnitouch: Wearable multitouch interaction
everywhere. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and
Technology, UIST ’11, ACM (New York, NY, USA,
2011), 441–450.

[8] Heun, V., Hobin, J., and Maes, P. Reality editor:
Programming smarter objects. In Proceedings of the
2013 ACM Conference on Pervasive and Ubiquitous
Computing Adjunct Publication, UbiComp ’13
Adjunct, ACM (New York, NY, USA, 2013),
307–310.

[9] Holman, D., and Benko, H. Sketchspace: designing
interactive behaviors with passive materials. In CHI
’11 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’11, ACM (New York,
NY, USA, 2011), 1987–1992.

[10] Holman, D., Girouard, A., Benko, H., and Vertegaal,
R. The design of organic user interfaces: Shape,
sketching and hypercontext. Interacting with
Computers 25, 2 (2013), 133–142.

[11] Holman, D., and Vertegaal, R. Organic user
interfaces: designing computers in any way, shape, or
form. Commun. ACM 51, 6 (June 2008), 48–55.

[12] Ishii, H., Lakatos, D., Bonanni, L., and Labrune,
J.-B. Radical atoms: Beyond tangible bits, toward

transformable materials. interactions 19, 1 (Jan.
2012), 38–51.

[13] Ishii, H., Wisneski, C., Brave, S., Dahley, A., Gorbet,
M., Ullmer, B., and Yarin, P. ambientroom:
Integrating ambient media with architectural space.
In CHI 98 Cconference Summary on Human Factors
in Computing Systems, CHI ’98, ACM (New York,
NY, USA, 1998), 173–174.

[14] Kato, J., Sakamoto, D., and Igarashi, T. Picode:
Inline photos representing posture data in source
code. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13,
ACM (New York, NY, USA, 2013), 3097–3100.

[15] Norman, D. A. The psychology of everyday things.
Basic books, 1988.

[16] Norman, D. A. Affordance, conventions, and design.
interactions 6, 3 (May 1999), 38–43.

[17] Reas, C., and Fry, B. Processing: a programming
handbook for visual designers and artists, vol. 6812.
Mit Press, 2007.

[18] Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., and Kafai,
Y. Scratch: Programming for all. Commun. ACM
52, 11 (Nov. 2009), 60–67.

[19] Sato, M., Poupyrev, I., and Harrison, C. Touché:
Enhancing touch interaction on humans, screens,
liquids, and everyday objects. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, ACM (New York, NY, USA,
2012), 483–492.


	Introduction
	Related Work
	Creative Coding on Objects
	Building on existing affordances
	Creating new affordances

	Discussion
	Exposing Affordances
	Programming
	Programming Environment
	The Value of COs as a Creativity Support Environment
	To What Extent Can Functionalities Be Extended Without Losing the Advantages Of Conventions?

	Conclusion

