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REVIEW OF VARIABLE GEOMETRY TECHNIQUES APPLIED TO ENHANCE THE 
PERFORMANCE OF CENTRIFUGAL COMPRESSORS 

A Whitfield 
University of Bath, Claverton Down, Bath BA2 7 A Y 

ABSTRACT 

Most centrifugal compressors are required to operate over a broad range of flow rates and to provide 
a high pressure ratio with high efficiency. In order to meet these demands the application of variable 
geometry techniques is often considered and applied. The potential areas for the application of variable 
geometry procedures lie at inlet to and discharge from the impeller. This paper reviews the application of 
inducer preswirl, variable vaneless diffusers and variable vaned diffusers, and summarises some 
turbocharger compressor results obtained at the University of Bath. 

INTRODUCTION 

In many applications, e.g. small gas turbines, turbochargers and process compressors, the centrifugal 
compressor is required to provide a high pressure ratio with good efficiency together with a broad 
operating range. Developments in user technologies often lead to a demand for increased pressure ratio 
per stage, without sacrifice of efficiency or operating range. Yet as pressure ratio is increased both 
efficiency and operating range are inexorably reduced. The requirement for a broad operating range 
stems from the need for the compressor to match the operating range of the component for which the 
compressed gas is supplied. A process compressor must meet the demand for a wide range of flow rates 
and possible variations in the composition of the gas being compressed. 

The objectives of applying variable geometry techniques are dependent on the operational 
requirements of the compressor. The requirement for a small turbocharger compressor will be for rapid 
response to changing operating conditions and to supply a broad range of flow rates as demanded by the 
engine. A large process compressor may not need to respond to rapid changes in operating conditions, 
but to operate at the best efficiency or deliver a constant pressure over a wide range of flow rates. Other 
applications may require variable geometry to suppress surge and ensure that the compressor can operate 
at lower flow rates than could be normally achieved. The requirement to respond to changing operational 
conditions may be a seasonal one where the changed conditions once set may remain fixed for a 
significant period. Such requirements could be met by manual operation of variable geometry 
components or even by the inclusion of alternative fixed components. In this case it is more a case of 
flexible design, allowing for component changes as required, rather than variable geometry. 

Compressor operating range is limited at high flow rates by choking and at low flow rates by surge. 
An important aspect of many variable geometry applications is the suppression of surge so that the 
compressor can operate safely and efficiently at reduced flow rates. A simple criterion for the onset of 
surge is that it commences at the peak of the pressure ratio/mass flow characteristic, the positive gradient 
part of the curve defining the unstable operating region of the compressor. A stable characteristic is one 
where the pressure ratio increases as the flow rate is reduced; an impeller with a backward swept 
discharge blade is now routinely used to assist with this objective. The terms surge and stall are often 
used to describe unsteady flows, but can refer to quite different phenomena. Stall can be considered to be 
a local phenomenon affecting perhaps the impeller or diffuser only. Surge on the other hand is a system 
phenomenon with the flow pulsations passing through all components. Yoshinaka(l) concluded that 
surge occurred only when the inducer and diffuser are operated at or beyond stall. Techniques to 
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suppress the onset of surge should act to delay, or better eliminate, the tendency for stall to develop in 
any component. The natural areas for the application of variable geometry devices are the regions 
immediately upstream and downstream of the impeller. Inlet guide vanes which generate a swirling flow 
in the direction of rotation of the impeller enhances the underlying stability by developing a rising 
characteristic. This approach has been extensively investigated, e.g. Steinke and Crouse (2), Whitfield et 
al (3) Rodgers (4,5) and Simon et al (6), but has only been widely adopted for process compressor 
applications. Downstream of the impeller the diffuser system, both vaneless and vaned, has been 
considered as an area for the application of variable geometry techniques. Abdel-Hamid(7 ,8,9) 
considered both the vaneless diffuser and the application of small guide vanes at diffuser discharge. The 
shape of the vaneless diffuser, in particular wall convergence, has been investigated by a number of 
researchers including Whitfield et al(lO), Ludtke(ll) and Yingkang and Sjolander(l2). For vaned 
diffusers it is well accepted that they lead to improved efficiency but with reduced operating range. The 
desire to have both high efficiency and improved operating range has led to investigations of both vaned 
diffuser designs and variable geometry techniques. Variable geometry diffusers have been investigated 
by Simon et al(6), Salvage(13) and Sitram and Issac(14). Senoo et al(15) introduced the low solidity 
vaned diffuser which promised improved efficiency over the vaneless diffuser without reduced flow rate. 
Later variable geometry low solidity vaned diffusers were investigated by Sorokes and Welch(16) and by 
Eynon and Whitfield(17). 

APPLICATION OF INLET SWIRL 

The effect of inlet swirl on the performance of centrifugal compressors has been studied and 
presented by many investigators; for example, Rodgers(4,5) for small gas turbines, Whitfield et al(3, 18) 
for turbochargers, and Simon(6) and Williams (19) for process compressors. The objective of the 
inclusion of preswirl maybe to improve the compressor pressure ratio over the full operating range, in 
which case negative swirl is applied at high flow rates. Alternatively the objective maybe to suppress the 
tendency to surge and positive inlet swirl will be applied at low flow rates only. At the low flow rates 
associated with surge it is necessary to operate at high swirl angles if a significant effect is to be 
achieved. The inlet guide vanes adopted to generate the swirling flow must then operate through a wide 
range of setting angles including zero. This requirement to generate no swirl over part of the operating 
range. has led to the general adoption of flat plate vanes which generate little disturbance to the flow 
when set in the axial direction. 

The effect of prewhirl on the overall performance of a gas turbine compressor with a vaneless 
diffuser, Rodgers(4), is shown in Fig. I. The application of 40° of positive prewhirl provided a significant 
shift of the surge line to reduced flow rates over much of the operating range. It is notable, however, that 
the movement of the surge line at 60% speed is small. The performance of a compressor with a vaned 
diffuser and an impeller with a 40° backswept blade was presented by Rodgers(5). Significant 
displacement of the surge line, with up to 27° of prewhirl, occurred at pressure ratios in excess of 4 only. 
At pressure ratios below 3.5 there was no measurable shift of the surge line through the application of 
27° of preswirl. For these gas turbine compressors operating at high pressure ratio the inlet relative Mach 
number was in excess of unity. As a consequent a low swirl angle was particularly affective as it reduced 
the inlet relative Mach number to subsonic levels. 

For a turbocharger compressor, pressure ratios up to 2.8, Whitfield et al(l8) observed only a small 
shift in the surge line through the application of 400 of swirl. Through an analysis of these data, and the 
results of Rodgers, Whitfield and Abdullah(20) concluded that swirl angles of the order of 70° were 
required if the surge line were to be shifted to reduced flow rates for pressure ratios below 3.0. For a 
single stage process compressor Williams (19) showed that inlet swirl coupled with impellers with large 
backsweep can produce a significant shift of the surge line at pressure ratios of only 1.6 to 1.7. In this 
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case, however, large swirl angles were used, 60° to 70°, and a clear drop in efficiency was shown as a 
consequence. The application of flat plate vanes at high incidence angles lead to significant pressure loss 
and reduced stage efficiency. There is, therefore, a need to generate high swirl angles efficiently. 

Recognising the need for low loss inlet guide vanes Swain(21) designed a tandem vane design located 
in a converging spherical inlet section. The tandem vane design made it possible to develop high swirl 
angles without the losses associated with high incidence angles. The spherical inlet passage eliminated 
the blade hub and tip clearance necessary in a conventional cylindrical duct, and led to reduced losses. 
Through the application of a CFD analysis Coppinger and Swain(22) carried out a detailed design of the 
tandem vane cascade and spherical duct arrangement and showed a significant reduction in pressure toss 
across the guide vane with swirl angles up to 60°. 

Whitfield and Abdullah(23) investigated the development of swirling flow through a vaneless volute 
design. Vaneless volutes, used to generate high swirl rates efficiently at inlet to radial inflow turbines, 
were applied to generate the swirl at compressor inlet, Fig.2. Two variable geometry techniques were 
applied to the inlet volute. That shown in Fig.2 provided maximum swirl when y1=0, no core flow, and 
zero swirl with a fully open axial core flow. A mix of volute and core flows was also investigated. With 
a full volute flow, maximum swirl, the surge flow rate was reduced by 40%, Fig.3. At high flow rates the 
efficiency was substantially reduced due to large impeller incidence angles and the swirl would not be 
used in this region. At low flow rates the measured efficiency, Fig.3, was off the same order as that 
achieved with zero swirl. As the main objective was the suppression of the tendency to surge it was 
envisioned that the application would be one for zero swirl or full swirl without the need to develop 
intermediate swirl flows. The main disadvantage of the arrangement was the need for a dual inlet, one 
providing the axial swirl free flow and the other the high swirl flow through the volute inlet. This 
arrangement could be acceptable for an air compressor but would lead to a complex inlet design for a gas 
compressor. 

DIFFUSER SYSTEMS 

Vaneless Diffusers 

A wide range of diffusing system designs has been used downstream of the impeller. The vaneless 
diffuser is the simplest and most commonly used when a wide operating range is required. Diffusion is 
accomplished through the conservation of the angular momentum and the reduction of the tangential 
component of velocity. Narrowing of the diffuser passage width has been investigated as a means of 
suppressing surge and extending the operating range by Whitfield et al(l 0) for turbochargers and 
Ludtke(ll) for process compressors; in both cases a radial bladed impeller was used. It was found that a 
parallel diffuser had the highest efficiency and the most unfavourable surge characteristic, whilst a 
constant area diffuser improved the surge characteristic with little detrimental impact on the efficiency 
level. Further reduction of the passage width gave further improvement in the surge characteristic but at 
reduced peak efficiency levels. Whitfield et al(10) considered the application of a flexing diffuser wall to 
provide a variable geometry diffuser that could be utilised to improve the surge characteristic only. 

As a simpler alternative to the flexing diffuser wall Abdel-Hamid(7 ,8) reported the use of a variable 
throttle ring at diffuser exit. This was applied to a turbocharger compressor by Whitfield and Sutton(24), 
and whilst substantial reductions in efficiency occurred at high flow rates significant gains in surge 
margin were achieved. A retractable throttle ring, which would only be introduced at the near surge flow 
conditions, was considered to be a more practical option than a flexing sidewall. Hagelstein et al(25) 
showed that the use of a throttle ring at discharge from a vaneless diffuser improved the circumferential 

Fifteenth International Compressor Engineering Conference at 
Purdue University, West Lafayette, IN, USA- July 25-28, 2000 65 



static pressure distribution at impeller discharge. This may contribute to the improved surge margin 
obtained with the use· of a throttle ring. 

Vaned Diffusers 

Vaned diffusers provide an improved efficiency and reduced operating range. A variable geometry 
design must be adopted if a broad operating range is to be achieved. Aerodynamically shaped vanes and 
thin flat vanes lend themselves to a swivelling design that can be adjusted to ensure a low incidence 
angle for a wide range of flow rates. Simonet al(6) used aerodynamically shaped diffuser vane profiles 
and adjusted the blade angle in conjunction with variable inlet prewhirl vanes. They showed that the 
simultaneously adjustment of the inlet guide vanes and diffuser vanes provided not only an expansion in 
the operating range, but also efficiency improvements over the entire operating range of the compressor. 

For a military turbocharger Harp and Oatway(26) described an application for wedged shaped vanes. 
The diffuser vanes were pivoted close to the leading edge and the vane angle set by pins sliding in slots 
along the chord of the vane. The vane pivot position was chosen so that the diffuser throat area was 
maximized at the minimum stagger angle to allow a high choked flow rate. The result was a variable 
channel diffuser which provided surge free operation over a broad flow range when used with a 
backswept impeller. 

Two variable geometry techniques used with pipe diffusers were described by Salvage(l3). It is 
difficult, probably impossible, to adjust the leading edge of a pipe diffuser to accommodate the varying 
flow conditions. The first design used a split ring arrangement so that one ring could be rotated relative 
to the other, with the dividing radius at 1.223 times the impeller radius. This arrangement acted as a 
throttle when one ring was rotated, and whilst it was predicted that increased losses would be generated 
it was found that surge occurred at reduced flow rates with only 4o of rotation. The second design, shown 
in Fig.4, was referred to as 'the recirculating diffuser'. A portion of the gas flow was recirculated from 
the collector back to the impeller discharge. The flow from the collector passed through deswirl vanes, a 
swirl chamber located above the impeller, and a vaned channel before mixing with the impeller exit flow 
and entering the pipe diffuser. The objective was to maintain a near constant flow through the pipe 
diffuser as the impeller flow rate varied. A shut-off ring that could be used in conjunction with the 
impeller inlet guide vanes controlled the recirculating flow rate. The design was developed through a 
theoretical analysis and a sample of the experimental results is shown in Fig.5. With the recirculating 
flow passage fully open there was a substantial shift of the surge line to reduced flow rates at ail inlet 
guide vane settings. Investigation of the effect of varying the rate of recirculating flow showed that it 
was necessary to open the shut-off ring more than 10% before any beneficial shift in the surge line was 
measured. The maximum shift in the surge line occurred with the shut-off ring open 50%. 

Low Solidity Vaned Diffusers 

As the flow conditions at the throat of a vaned diffuser passage controls both the maximum and 
minimum flow rates Senoo et al(15) suggested the removal of the throat by using low solidity vane 
cascades. They found that low solidity vaned diffusers applied downstream of a backswept blower 
provided a comparable flow range to that of the vaneless diffuser with improved pressure recovery. 
Sorokes and Welch(16) applied an adjustable low solidity vaned diffuser to a single stage process 
compressor of pressure ratio 2 to 1. The vanes could be adjusted from an inlet angle of 58° to 78°. Two 
sets of vanes were investigated; one set had 20 short vanes, and the other 10 long vanes to give identical 
solidities. The vanes were located at radius ratios relative to the impeller of 1.08 and 1.15. It was found 
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that the long vanes located at a radius ratio of 1.08 gave the better results, and by rotating the vanes to 
adjust the inlet angle the surge margin was enhanced. The low solidity diffuser design influenced the 
performance of the downstream return channel and further work was suggested to optimise the vaned 
diffuser design with the return channel. 

Eynon and Whitfield(17) investigated the application of low solidity vaned diffusers to a turbocharger 
compressor and found that a variable geometry arrangement was necessary in order to obtain a broad 
operating range. A 10-vane design with a solidity of 0.69 and a circular arc camber line was used to 
investigate the effect of vane leading and trailing edge angles. Specifying a range of angles through 
which the vanes turned varied the trailing edge angle. Vanes with leading edge angles of 65, 70 and 80" 
were considered together with turning angles of 10, 15 and 20°. Fixed designs were used, the term 
'turning angle' referring to the difference between the vane leading edge and trailing edge angles. The 
effect on compressor performance of varying the leading edge angle, for a vane with 10° of turning, is 
compared with the use of a vaneless diffuser in Fig.6. With the standard vaneless diffuser the peak 
efficiency occurred at an inlet flow angle of approximately 65°. When diffuser vanes with a leading edge 
angle of 65° were applied a premature surge occurred. With vane leading edge angles of 75 and 80° surge 
occurred at reduced flow rates but the operating range was reduced due to poor efficiency at high flow 
rates; a variable geometry arrangement would, therefore have to be deployed. By increasing the vane 
turning angle the rate of reduction of the tangential component of velocity is increased and improved 
diffusion should follow. With a leading edge angle of 800 the effect of increasing the vane turning angle 
is shown in Fig.7. By increasing the vane turning the pressure recovery across the vanes was increased 
leading to increased pressure ratio and improved operating range. With the vaneless diffuser design a 
significant pressure rise occurred across the collecting volute, over 50% at near surge flow rates. This 
was reduced by the introduction of the diffuser vanes with the volute pressure rise decreasing as the vane 
trailing edge angle was reduced from 70 to 45°, Whitfield and Eynon(27). For this low solidity diffuser 
design the diffuser/volute matching needs further consideration. 

CONCLUSIONS 

A review of the application of variable geometry techniques has shown that enhanced compressor 
operating range can be achieved. With inlet guide vanes significant losses can be generated by the high 
incidence conditions required and low loss cascade designs are required. For the application of variable 
vaned diffusers the impact on the operating conditions of the downstream components, collecting volute 
or crossover duct, needs to be considered as part of the design process. In the cases reviewed here the 
variable diffusers techniques were applied to existing design configurations which were not designed 
with the application of variable diffusers in mind. Alternative approaches to those conventionally 
adopted require further consideration, in particular the variable gas flow path techniques adopted by 
Whitfield and Abdullah at impeller inlet and by Salvage at impeller discharge. 
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