
HAL Id: hal-01097200
https://hal.inria.fr/hal-01097200

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Switchable Scheduling for Runtime Adaptation of
Optimization

Lénaïc Bagnères, Cédric Bastoul

To cite this version:
Lénaïc Bagnères, Cédric Bastoul. Switchable Scheduling for Runtime Adaptation of Optimization.
Euro-Par 2014 Parallel Processing, Fernando Silva, Inês Dutra, Vítor Santos Costa, Aug 2014, Porto,
Portugal. pp.222 - 233, �10.1007/978-3-319-09873-9_19�. �hal-01097200�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49570084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01097200
https://hal.archives-ouvertes.fr


Switchable Scheduling for Runtime Adaptation of

Optimization

Lénaïc Bagnères1 and Cédric Bastoul2

1 University of Paris-Sud and Inria
lenaic.bagneres@inria.fr

2 University of Strasbourg and Inria
cedric.bastoul@unistra.fr

Abstract. Parallel applications used to be executed alone until their
termination on partitions of supercomputers: a very static environment
for very static applications. The recent shift to multicore architectures
for desktop and embedded systems as well as the emergence of cloud
computing is raising the problem of the impact of the execution context
on performance. The number of criteria to take into account for that pur-
pose is significant: architecture, system, workload, dynamic parameters,
etc. Finding the best optimization for every context at compile time is
clearly out of reach. Dynamic optimization is the natural solution, but it
is often costly in execution time and may offset the optimization it is en-
abling. In this paper, we present a static-dynamic compiler optimization
technique that generates loop-based programs with dynamic auto-tuning
capabilities with very low overhead. Our strategy introduces switchable
scheduling, a family of program transformations that allows to switch
between optimized versions while always processing useful computation.
We present both the technique to generate self-adaptive programs based
on switchable scheduling and experimental evidence of their ability to
sustain high-performance in a dynamic environment.

1 Introduction

Static compilers are facing the challenge of generating efficient codes for increas-
ingly dynamic execution environments. Two decades ago, optimizing compilation
was referred as building "supercompilers for supercomputers" [20]. Compiler
techniques had to optimize aggressively for complex parallel machines but in
a very static context: usually one program with few dynamic parameters, one
well defined architecture/system and one user. Iterative compilation and auto-
tuning approaches have been developed on top of static compilation as efficient
solutions to find the best optimization parameters and to adapt to various (but
fixed) architectures and problem sizes [2, 19, 12]. The large adoption of multicore
systems and the emergence of cloud computing brings new dynamic factors that
are not captured by iterative compilation or auto-tuning, such as the existence of
competing workloads or the possible migration of the process to another archi-
tecture. This situation raises the need for more dynamic optimization schemes.



2

Just in time compilation is a convenient solution to address dynamic exe-
cution environments. However, it requires very low algorithmic complexity of
the underlying techniques to avoid to offset the optimization it is enabling. Cur-
rent state-of-the-art static automatic optimization and parallelization techniques
rely on an algebraic representation of programs that allows precise analyses as
well as very aggressive program transformations to optimize codes, known as
the polyhedral model [7, 3, 11]. Unfortunately, most polyhedral-based techniques
show exponential complexity [17]. Hence, they are challenging to include in a
dynamic compilation framework, except when a runtime analysis allows to use
this model while it was not possible at static compile time [9]. Our proposal is
a mixed static-dynamic technique, which benefits from the power of polyhedral
frameworks at static compile time, while being able to change the optimization
decision at runtime during the computation itself.

The potential benefit of such a technique is significant because the dynamic
nature of the execution environment comes from several factors that directly
impact performance. First of all, a compiled program may be run on different
architectures with different features such as various cache memories or number
of cores, which have dramatic impact on the best optimization choice. A decision
at the early stage of the execution is not enough: virtual machines and cloud
computing technology allow the architecture to change during execution. Next,
the application may depend on dynamic parameters such as problem size (e.g.,
array size). Hence the best optimization is likely to be different depending on
those parameters that will be known only at runtime. Finally, the operating
system and the system workload are also paramount because processes may affect
each other, e.g., through cache pollution or by stressing the system scheduler.

Our approach is to design at compile-time programs that can adapt at run-
time to the execution context. The originality of our solution is to rely on switch-

able scheduling, a selected set of program restructuring which allows to swap
between program versions at some meeting points without any rollback. A first
step selects pertinent switchable versions according to their performance behav-
ior on some execution contexts. The second step builds a self-adaptive program
including selected versions. Then at runtime the program keeps choosing the
best version thanks to a low overhead sampling and profiling of the versions,
ensuring during the process that every computation contributes to the final re-
sult. We performed an experimental study on dozens of execution contexts and
demonstrate superior adaptability of our generated codes with respect to state-
of-the-art static optimization technique.

2 Background

The application domain of our technique is loop-based kernels with affine control
and memory accesses, i.e., such that loop bounds, conditions and array subscripts
are affine forms of outer loop counters and constant parameters. This class of
computational kernels is known as SCoPs for Static Control Parts. SCoPs can be
modeled using an algebraic representation called the polyhedral model. Because
of the restriction on the input program form, each dynamic instance of a given



3

SCoP statement can be modeled as an integer point in a union of polyhedra
called the iteration domain of that statement. For example, let us consider the
input code in Figure 1(a). Figure 1(b) shows the iteration domain of the state-
ment S(i,j). Each loop enclosing the statement in the code corresponds to a
dimension of the domain. Several compilers have the ability to raise SCoPs to a
polyhedral form such as GNU GCC 3 and LLVM 4.

Once a SCoP is raised to the polyhedral model, an optimizer can compute a
scheduling by means of scheduling relations that express logical execution dates
for all statement instances, e.g., to achieve data locality or to expose paral-
lelism while satisfying data dependences. In the following, we will only consider
scheduling that does not alter the original program semantics. Figures 1(c1) and
1(c2) show two different possible scheduling relations. They map original input

dimensions, which express original statement instances, to target output dimen-
sions, which express their new order. Scheduling relations are expressive enough
to encode a complex composition of program transformations (including, e.g.,
loop interchange, fusion, fission, skewing, tiling etc.) [8]. Those in Figures 1(c1)
and 1(c2) correspond respectively to the identity transformation and to the re-
versal of the inner loop. Many efficient scheduling algorithms have been designed,
notably the Pluto algorithm for automatic optimization and parallelization [3]
and the Letsee technique based on iterative optimization [11].

Finally a code generator for scanning polyhedra such as CLooG [1] can pro-
duce a syntactic program that implements the new scheduling from the iteration
domains and the scheduling relations. Figures 1(d1) and 1(d2) present the pro-
grams generated back from the corresponding polyhedral representations after
the code generation step. The complete Figure 1 summarizes the usual workflow
of a polyhedral framework with two different scheduling relations that result in
two versions of the input program. Most previous works aim at finding only one

good version. Our work improves this scheme with dynamic capablities, to be
able to chose the right version for the right execution context.

3 Switchable Scheduling

In a polyhedral compilation framework, a program version is generated from the
input program information and a scheduling. The scheduling is in turn expressed
as a list of scheduling relations, one for each statement. In this work, we focus
on particular sets of scheduling called switchable scheduling. Two scheduling
are switchable if and only if there exist meeting points in the corresponding
generated versions such that it is possible to continue the execution from any
of these versions at those meeting points without affecting the program result.
Translated to the polyhedral model terminology, it means that there must exist
a couple of logical dates called switching dates, one for each scheduling, such that
the sets of instances that have been scheduled prior to these dates in each version
is the same, regardless of their respective order. To simplify their computation,

3 http://gcc.gnu.org/wiki/Graphite
4 http://polly.llvm.org



4

for (i = 0; i <= N; i++)

for (j = 0; j <= N; j++)

S(i, j);

(a) Input Code

Raising

DS(N) =

{(

i

j

)∣

∣

∣

∣

0 ≤ i ≤ N

0 ≤ j ≤ N

}

(b) Iteration Domain

Scheduling 1 Scheduling 2

θS(N) =

{(

i

j

)

→

(

t1
t2

)
∣

∣

∣

∣

t1 = i

t2 = j

}

θS(N) =

{(

i

j

)

→

(

t1
t2

)
∣

∣

∣

∣

t1 = i

t2 = −j

}

(c1) Scheduling Relation 1 (c2) Scheduling Relation 2

Code Generation Code Generation

for (t1 = 0; t1 <= N; t1++)

for (t2 = 0; t2 <= N; t2++)

i = t1;

j = t2;

S(i, j);

for (t1 = 0; t1 <= N; t1++)

for (t2 = -N; t2 <= 0; t2++)

i = t1;

j = -t2;

S(i, j);

(d1) Output Code 1 (d2) Output Code 2

Fig. 1: Polyhedral Transformation Workflow For Two Example Versions

and without loss of generality, we require that switching dates correspond to
existing instance schedules. The set of switching dates for a scheduling θ to a
scheduling θ

′ is called its switching domain to θ
′.

Property 1. To a given switching date in a scheduling there may exist only a
unique corresponding switching date in another scheduling.

Explanation. Each instance of the original program has a unique image in the
target program. Hence, given a set of already executed instances before a meeting
point in a version, the corresponding meeting point in another version, if it exists,
is the unique instance that will be executed directly after that set. ⊓⊔

Property 2. If the outermost dimensions of two scheduling are mapping input
dimensions in the same order, then the first instance scheduled at any value of
these outermost dimension belongs to the switching domain of the corresponding
scheduling to the other scheduling.



5

Explanation. Logical dates are multidimensional like clocks: the first dimension
may correspond to days (most significant) then the next one to hours (less sig-
nificant), then the next one to minutes and so on. To each value of the outermost
scheduling dimensions corresponds a set of scheduled instances. If the execution
order of such sets is the same in any version, then at the beginning of each set it
is possible to switch between versions, regardless of the scheduling order inside
the set, i.e., of less significant scheduling dimensions. ⊓⊔

From these two properties we derive a practical technique to build a multi-
version code. First for each version we compute a switching domain, as detailed in
Section 3.1. Next we generate the code itself, inserting switching statements for
each integer point of the switching domains, as explained in Section 3.2. Switch-
ing statements themselves rely on a low overhead runtime system described in
Section 3.3.

3.1 Switching Domain Computation

We derive from Property 2 that a (subset of) the switching domain is the set of
output vectors such that:

1. The outermost “common” output dimensions are expressed in the same way
for every scheduling (this ensures that all versions are executing equivalent
subsets of instances in the same order regardless of the order inside those sub-
sets). This condition may be relaxed when information about the scheduling
semantics is available. The most important case we are supporting is strip-
mining and, by extension, tiling, with a restriction on possible tile sizes. Tile
sizes are chosen to be a multiple of the smallest tile size. Hence, we know
statically that, e.g., an iteration at a given dimension in one version corre-
sponds to n iterations of the same dimension in another version. We derive
from this a simple affine constraint on the existence of meeting points.

2. The remaining output dimensions are set to the lexicographic minimum of
the possible values (to ensure the logical date of the switching statement is
at most the same as the first instance scheduled inside the subset). Moreover,
we add another output dimension set to 0 to ensure the switching statement
is executed before the first instance of the subset.

Switching domains are easy to compute from the scheduling using the PIP
tool [6] to compute the lexicographic minimum of the innermost output dimen-
sions. Figures 2(d1) and 2(d2) show the switching domains corresponding to the
scheduling in Figures 1(c1) and 1(c2): the first dimension has the same expres-
sion in both scheduling and has the same range, the second one is set to the
minimum value for each version, and a new one has been added and set to 0.

The code generation step detailed in Section 3.2 uses switching domains to
insert “switching statements” in the final code: to each integer point in this do-
main will correspond an execution of the switching statement. It is not desirable
to execute the switching statement at each meeting point because of the over-
head it may introduce. Switching domains can be easily restricted to fit the



6

need. A first solution is to intersect it with a convenient lattice. In this way,
switching statements will be executed at constant intervals along scheduling di-
mensions. A second solution with the same effect is to apply a special strip-mine
onto some scheduling dimensions. In this case, selected scheduling dimensions
are decoupled into three dimensions in the switching domains and the scheduling
relations. The outer dimension iterates over strips, the middle one is set to 0 for
the switching domain and to 1 for all the scheduling relations, and the inner one
is set to 0 for the switching domain and iterates over integer points inside strips
for the scheduling relations. This does not affect the order of the instances, but
it inserts a switching date before each strip. While the first solution is simpler,
the second one allows to consider switching along parallel dimensions: the di-
mension over strips has to be sequential, but the one over points inside strips
may be parallel.

3.2 Multi-Version Code generation

Generating a code that includes multiple versions of the original program with
the ability of switching between them is a three step process. First we extend the
original scheduling with one innermost output dimension set to 1. It ensures that
the switching statement will be executed before any existing instance if they are
scheduled at the same logical date, since that output dimension has been set to
0 for the switching domain5. Figures 2(e1) and 2(e2) show the extended schedul-
ings of Figures 1(c1) and 1(c2). Next, we generate the code from the original
domains and scheduling as in a classical polyhedral framework, with the CLooG
tool [1]. The only difference is that we generate a code for each version and that
we add the corresponding switching domain to each code generation problem.
Each integer point of the switching domain corresponds to an execution of the
switching statement. Finally some glue code is added to support switching: addi-
tional variables are created to communicate current common output coordinates
while switching and labels/gotos are inserted to jump to the end of the code
once one version terminates.

The switching statement itself is made of two parts. First, the switching

source includes calling the runtime to decide about switching or not, commu-
nicating of current common output coordinates and actual switching (through
goto statements). Second, the switching sink includes a label to be used as the
target of a switch, receiving the common output coordinates and setting back
the remaining output coordinates to the lexicographic minimum. Figure 2(f)
shows the final code (spanning two columns) for our running example started
in Figure 1. The switching source corresponds to the if part of the switching
statement while the sink corresponds to the else part.

3.3 Runtime

The runtime switching decision system is as simple as possible to minimize the
overhead. It is based only on the execution time and has two modes called

5 If the last output dimension is not a common dimension, another solution without
scheduling extension is to subtract 1 to its expression in the switching domain.



7

Switching Domain Switching Domain

Dsw(N) =

{(

t1
t2
t3

)
∣

∣

∣

∣

∣

0 ≤ t1 ≤ N

t2 = 0
t3 = 0

}

D
′

sw(N) =

{(

t1
t2
t3

)
∣

∣

∣

∣

∣

0 ≤ t1 ≤ N

t2 = −N

t3 = 0

}

(d1) Switching Domain 1 (d2) Switching Domain 2

Extended Scheduling Extended Scheduling

θ×
S
(N) =

{

(

i

j

)

→

(

t1
t2
t3

)
∣

∣

∣

∣

∣

t1 = i

t2 = j

t3 = 1

}

θ′×
S
(N) =

{

(

i

j

)

→

(

t1
t2
t3

)∣

∣

∣

∣

∣

t1 = i

t2 = −j

t3 = 1

}

(e1) Extended Scheduling Relation 1 (e2) Extended Scheduling Relation 2

Code Generation

int global_t1;

// Version 1

for (t1 = 0; t1 <= N; t1++)

t2 = 0;

t3 = 0;

if (switch_decision())

global_t1 = t1;

goto v2;

else

v1: t1 = global_t1;

t2 = 0;

t3 = 1;

S(t1, t2);

for (t2 = 1;

t2 <= N; t2++)

t3 = 1;

S(t1, t2);

goto end;

// Version 2

for (t1 = 0; t1 <= N; t1++)

t2 = -N;

t3 = 0;

if (switch_decision())

global_t1 = t1;

goto v1;

else

v2: t1 = global_t1;

t2 = -N;

t3 = 1;

S(t1, t2);

for (t2 = -N + 1;

t2 <= 0; t2++)

t3 = 1;

S(t1, -t2);

end: ;

(f) Final Code Including Two Versions That May Switch To Each Other

Fig. 2: (Our Alternative End of Fig. 1) Generation of a Multi-Version Code

watching and sampling. In watching mode, the runtime simply checks that the
performance is stable by measuring the time spent between two calls. Since
switching statements are inserted at constant strides along output dimensions
and SCoP execution time is typically not affected by data values, this measure



8

is precise enough for our purpose. If it is the first call to the runtime or if the
watching mode detected a performance variation, due to, e.g., changes on the
execution context or on the workload executed between two calls to the runtime,
the sampling mode is enabled. This mode switches quickly between versions to
detect the best performing one. Then a switch is performed to that version while
the runtime is set back to the watching mode. A very important property of this
strategy is that every computation contributes to the final result: no rollback is
necessary if a bad optimization decision has been made.

4 Selecting Pertinent Versions

A key aspect of our optimization strategy is the selection and the ordering of
the switchable versions to be part of the multi-version code. For this purpose
we rely on a dedicated version generation phase and on an extensive empirical
study of the version behavior.

To generate versions, we rely on the polyhedral compiler PoCC6 which uses
both the Pluto algorithm [3] and the Letsee iterative optimization engine [11] to
compute efficient scheduling. Generating switchable versions is done by enforcing
additional constraints discussed in Section 3.1: from a base version, other versions
are generated by calling Letsee or Pluto with different strategies and/or tile sizes,
such that they share common output dimensions. Different scheduling may often
end up to the same executable code (a shifting on an output dimension may be
removed by a loop normalization by the compiler). Such versions are discarded.

Once a set of versions has been generated for a given input code, they are
evaluated separately by running them on pre-defined contexts. Contexts include
various architectures, data sizes and system workloads. One context is a com-
bination of these factors. Only the versions that are the best in at least one
context are considered to be selected. Our results show that they are still too
many. Some of them are performing the same way in several contexts: those
duplicates are detected and discarded (in our study, we accept a performance
loss of 10%). Finally to select a pre-defined maximum number of versions (in our
study, 8), we associate an “efficiency” coefficient to each version on each context
(depending on how far it is from the best version) and we model and solve the
choice as a linear optimization problem to maximize the overall efficiency.

The order in which the selected versions are used during sampling by the
runtime described in Section 3.3 is critical: small loops are likely to be entirely
executed before the sampling is done. For this reason, best performing versions
in most contexts including small problem sizes are used for sampling first.

5 Experimental Results

We evaluate the switchable scheduling approach on a selection of realistic exe-
cution contexts. Experimental results demonstrate the ability of this technique

6 http://pocc.sf.net



9

to generate programs that can adapt themselves to their environment. Overall,
its geomean speedup over a fixed optimization of a state-of-the-art automatic
optimization and parallelization is 1.49 for our test cases.

Our experimental setup is three-dimensional. First, target architectures in-
cludes one ARM and several flavours of Intel x86 architectures: Olimex A20
ARM Cortex-A7 dual-core, Intel Core2 Quad CPU Q9550 2.83GHz, Intel Core2
Quad CPU Q6600 2.40GHz and Intel Core2 Quad CPU Q8200 2.33GHz. This
selection notably spans different number of cores and cache sizes. Next, problem
size ranges are small and medium as they are defined in the target benchmarks.
Lastly, 5 workloads have been investigated: the target process may be running
alone, with low (one process) or high (one process per core) computation inten-
sive workload and with low or high memory access intensive workload.

We consider 12 benchmarks, typical compute-intensive kernels extracted from
the PolyBench suite7. Our selection focuses on kernels including one main loop
since it is the main target of our technique. We report below for all benchmarks
a short description. Column #versions gives the number of different versions that
have been generated using PoCC (duplicates have been removed); #best reports
the number of best versions reported in the 40 contexts; and #nodup removes
from the previous column the versions that behave in the same way as another
one if we accept up to a 10% performance loss. It illustrates that the best version
is indeed dependant on the execution context, but also that a limited number
of versions is enough most of the time, hence with a reasonable impact on the
generated code size.

benchmark description #versions #best #nodup

2mm Linear algebra (BLAS3) 40 9 2
adi Stencil (2D) 67 9 4
choleski Cholesky Decomposition 16 12 4
durbin Toeplitz system solver 23 17 4
fdtd-apml Stencil (3D) 50 10 2
gemm Matrix-multiply and addition 37 18 4
gramschmidt Gram-Schmidt decomposition 59 12 2
jacobi-1d Stencil (1D) 24 11 3
jacobi-2d Stencil (2D) 19 7 4
lu Matrix decomposition 19 8 2
mvt Matrix Vector Product and Transpose 16 8 2
seidel-2d Stencil (2D) 17 7 4

Figure 3 reports normalized mean performance for all execution contexts for
each benchmark, worst corresponds to the worse (context-wise) version, baseline

is the mean of all versions, roughly corresponding to the average performance a
random strategy is likely to provide, best corresponds to the best (context-wise)
solution, pluto is the default static Pluto (version 0.10) solution and switchable is
the switchable scheduling solution. Overall, the difference between baseline and
best with geomean 4.98 is the maximum speedup of the solution, it corresponds
to an iterative compilation strategy, a high potential already demonstrated by
previous work [12]. switchable corresponds to our solution with an overall ge-
omean speedup of 4.36 against a random strategy, including a sensible yet ac-
ceptable overhead of the switching strategy, and of 1.49 over the default Pluto

7 http://polybench.sf.net



10

solution. size growth shows the compiled switchable scheduling kernel size growth
with respect to Pluto’s solution, a limited increase. Sampling on bad versions
may degrade performance significantly (e.g., gemm case). Also in jacobi-1d case,
our strategy has lower performance than Pluto. This corresponds to situations
where Pluto’s solution is good enough while the overhead of switchable schedul-
ing overcomes its benefits. We may complement our technique with a dynamic
test as Pradelle et al. suggested [13] to prevent using switchable scheduling in
such situation.

benchmark worst baseline best pluto switchable size growth

2mm 0.38 1 3.56 1.48 3.14 1.13
adi 0.13 1 4.46 2.98 4.08 1.07
choleski 0.74 1 1.89 1.35 1.52 1.02
durbin 0.25 1 2.14 1.74 1.90 1.04
fdtd-apml 0.08 1 2.77 2.19 2.61 1.07
gemm 0.31 1 8.42 1.39 5.70 1.04
gramschmidt 0.10 1 18.27 17.34 17.36 0.99
jacobi-1d 0.17 1 19.15 16.30 15.71 1.10
jacobi-2d 0.25 1 8.24 4.08 7.87 1.38
lu 0.24 1 4.42 3.02 4.82 1.04
mvt 0.55 1 2.28 1.54 2.12 1.06
seidel-2d 0.26 1 5.37 2.21 4.97 1.11

Fig. 3: Potential and Operational Performance Results (mean of all contexts,
the baseline is the mean performance of all versions in all contexts)

6 Related work

The root of our work belongs to compiler optimization in the polyhedral model [7]
and loop versioning [4]. The Pluto algorithm is a state-of-the-art compiler tech-
nique relying on the polyhedral model to build complex loop transformations
with excellent parallelism-locality trade-offs using a target independent cost
model [3]. It has been coupled with iterative frameworks to optimize for specific
targets [12]. Those techniques create unspecialized or overspecialized optimiza-
tion which may not be adequate for various execution contexts.

Static compiler techniques have been used to help runtime systems to op-
timize dynamically. The ADAPT framework provides runtime generation and
specialization of code sections [18]. Because of the runtime overhead it fits well
to programs with large execution time while we are using static techniques as
much as possible to minimize runtime costs. Qilin provides adaptive mapping
for parallel programs [10]. Unlike our method, it is not addressing the dynamic
workload dimension of the execution context. Emani et al. proposed an adaptive
mapping technique which primarily targets dynamic workload variations [5]. It
impacts the OpenMP runtime behaviour whereas we target code restructuring.

Aggressive dynamic optimization techniques include thread-level speculation
[14, 15]. They generate an optimistically optimized version and in case of mis-
take, they rollback to a conservative version. In comparison, we target a different



11

program class that can be analyzed precisely at compile time, and in case of a
bad choice, no rolling back is necessary since every computation is useful by
construction. Dynamic optimization involving polyhedral compilation is emerg-
ing. EvolveTile is a framework to perform a dynamic tile size selection [16].
Our approach also supports such optimization but with more restrictions on tile
sizes and shapes because of the switchable scheduling class constraints. However,
our technique supports a wider range of optimizations. Pradelle et al. target the
same program class as our technique and involve versioning as well [13]. Their
approach is to use profiling to build predictive tests according to dynamic fac-
tors to choose the best version of a kernel before executing it. Our approach is
acting at a finer grain as we focus on switching from kernel versions during com-
putation. VMAD is an infrastructure for dynamic profiling with the unique ability
to discover static behavior, which is not visible at static compilation time [9].
VMAD supports dynamic version selection. Some forms of switchable scheduling
are possible within this framework and are under investigation.

7 Conclusion

This paper addresses the problem of taking advantage of the best optimization
while computing in an ever more dynamic environment, focusing on static con-
trol loop nests. Our proposal differs from just-in-time compilation approaches
which have to rely on low-overhead techniques as well as static compilation ap-
proaches that generate a code which can be either too generic or too specialized.
Instead, we propose a mixed static-dynamic scheme which builds on state-of-
the-art static polyhedral compilation techniques with empirical study to select
pertinent optimizations and a low-overhead runtime mechanism to switch to
the best optimization during computation, depending on the current execution
context. Our technique introduces a special class of optimization called switch-
able scheduling and a code generation method to build a program that takes
advantage of multiple such optimizations. Experimental evidence demonstrate
both the potential of this approach and its effectiveness at generating codes that
perform well on various environments.

Ongoing work includes a code generation technique to allow versions to lie
inside their own functions, to benefit from per-version low-level compiler opti-
mization options. More aggressive versioning and switchable-scheduling genera-
tion under time constraint are also under investigation.

References

1. C. Bastoul. Code generation in the polyhedral model is easier than you think. In
PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16, Juan-les-Pins, France, Sept. 2004.

2. F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space. In W. on Profile and
Feedback Directed Compilation, Paris, Oct. 1998.



12

3. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In PLDI’08 ACM Conf.
on Programming language design and implementation, Tucson, USA, June 2008.

4. M. Byler, J. R. B. Davies, C. Huson, B. Leasure, and M. Wolfe. Multiple version
loops. In International Conference on Parallel Processing, Aug. 1987.

5. M. Emani, Z. Wang, and M. O’Boyle. Smart, adaptive mapping of parallelism in
the presence of external workload. In Code Generation and Optimization (CGO),
2013 IEEE/ACM International Symposium on, pages 1–10, 2013.

6. P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22(3):243–268, 1988.

7. P. Feautrier. Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Int. J. of Parallel Programming, 21(6):389–420, Dec. 1992.

8. S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam.
Semi-automatic composition of loop transformations for deep parallelism and mem-
ory hierarchies. Int. J. of Parallel Programming, 34(3):261–317, June 2006.

9. A. Jimborean, L. Mastrangelo, V. Loechner, and P. Clauss. VMAD: an Advanced
Dynamic Program Analysis & Instrumentation Framework. In CC - 21st Interna-
tional Conference on Compiler Construction, volume 7210 of LNCS, pages 220–237,
Tallinn, Estonia, Mar. 2012.

10. C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In MICRO-42. 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 45–55, Dec 2009.

11. L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in the
polyhedral model: Part II, multidimensional time. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’08), pages 90–100,
Tucson, Arizona, June 2008. ACM Press.

12. L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sa-
dayappan. Combined iterative and model-driven optimization in an automatic
parallelization framework. In SC’10, New Orleans, USA, Nov. 2010.

13. B. Pradelle, P. Clauss, and V. Loechner. Adaptive Runtime Selection of Parallel
Schedules in the Polytope Model. In 19th High Performance Computing Symposium
- HPC 2011, Boston, United States, Apr. 2011.

14. L. Rauchwerger and D. Padua. The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. In Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design and implementation,
PLDI ’95, pages 218–232, New York, NY, USA, 1995. ACM.

15. J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The stampede approach to
thread-level speculation. ACM Trans. Comput. Syst., 23(3):253–300, Aug. 2005.

16. S. Tavarageri, L.-N. Pouchet, J. Ramanujam, A. Rountev, and P. Sadayappan.
Dynamic selection of tile sizes. In 18th IEEE Int. Conf. on High Performance
Computing (HiPC’11), Bangalore, India, Dec. 2011.

17. R. Upadrasta and A. Cohen. Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. In ACM Symposium on Principles of Programming Lan-
guages, POPL ’13, pages 483–496, Rome, Italy, 2013.

18. M. Voss and R. Eigenmann. ADAPT: Automated de-coupled adaptive program
transformation. In Int. Conf. on Parallel Processing, pages 163–170, 2000.

19. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of
software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2000.

20. M. Wolfe. High performance compilers for parallel computing. Addison-Wesley
Publishing Company, 1995.


